
bbc

FormCalc User Reference

Adobe® LiveCycle® Designer ES
Version 8.1

July 2007

© 2007 Adobe Systems Incorporated. All rights reserved.

Adobe® LiveCycle® Designer ES (8.1) FormCalc User Reference for Microsoft® Windows®
Edition 3.0, July 2007

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names, company logos and user names in sample material or sample forms included in this documentation
and/or software are for demonstration purposes only and are not intended to refer to any actual organization or persons.

Adobe, Adobe logo, Acrobat, LiveCycle, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

JavaScript is a trademark of Sun Microsystems, Inc. in the United States and other countries.

Microsoft and Windows are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

All other trademarks are the property of their respective owners.

This product contains either BISAFE and/or TIPEM software by RSA Data Security, Inc.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes code licensed from RSA Data Security.

This product includes software developed by the JDOM Project (http://www.jdom.org/).

Macromedia Flash 8 video is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights Reserved.
http://www.on2.com.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/).

Portions of this code are licensed from Nellymoser(www.nellymoser.com).

MPEG Layer-3 audio compression technology licensed by Fraunhofer IIS and THOMSON Multimedia (http://www.iis.fhg.de/amm/).

This product includes software developed by L2FProd.com (http://www.L2FProd.com/).

The JBoss library is licensed under the GNU Library General Public LIcense, a copy of which is included with this software.

The BeanShell library is licensed under the GNU Library General Public License, a copy of which is included with this software.

This product includes software developed by The Werken Company (http://jaxen.werken.com/).

This product includes software developed by the IronSmith Project (http://www.ironsmith.org/).

The OpenOffice.org library is licensed under the GNU Library General Public License, a copy of which is included with this software.

This product includes software developed by Gargoyle Software Inc. (http://www.GargoyleSoftware.com/).

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. ß2.101,
consisting of “Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R.
ß12.212 or 48 C.F.R. ß227.7202, as applicable. Consistent with 48 C.F.R. ß12.212 or 48 C.F.R. ßß227.7202-1 through 227.7202-4, as applicable,
the Commercial Computer Software and Commercial Computer Software Documentation are being licensed to U.S. Government end users
(a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.
Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA
95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if
appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of
1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

 3

Contents

Preface .. 6
What’s in this guide? ... 6
Who should read this guide? ... 6
Related documentation ... 6

1 Introducing FormCalc.. 7
About scripting in LiveCycle Designer ES.. 7

2 Language Reference.. 8
Building blocks .. 8

Literals .. 8
Operators ..10
Comments ..11
Keywords...12
Identifiers ..12
Line terminators ...13
White space..13

Expressions ...13
Simple ..14
Assignment ..16
Logical OR ...16
Logical AND..17
Unary ..17
Equality and inequality ..18
Relational ..18
If expressions ...19
While expressions ..20
For expressions ...21
Foreach expressions..22
Break expressions ..22
Continue expressions ...23

Variables ..23
Reference Syntax ..24
Property and method calls..28
Built-in function calls...29

3 Alphabetical Functions List .. 30

4 Arithmetic Functions... 34
Abs ...34
Avg...35
Ceil ...36
Count ..37
Floor ..38
Max ..39
Min...40
Mod ...41

Adobe LiveCycle Designer ES Contents
FormCalc User Reference 4

Round ...42
Sum..43

5 Date and Time Functions .. 44
Structuring dates and times ...44

Locales ...44
Epoch..48
Date formats ..48
Time formats..49
Date and time picture formats ..50

Date ...54
Date2Num...55
DateFmt ...56
IsoDate2Num ...57
IsoTime2Num...58
LocalDateFmt...59
LocalTimeFmt ..60
Num2Date...61
Num2GMTime ...62
Num2Time ..63
Time...64
Time2Num ..65
TimeFmt...66

6 Financial Functions.. 67
Apr ...68
CTerm ...69
FV..70
IPmt ...71
NPV ..72
Pmt ..73
PPmt..74
PV ...75
Rate..76
Term ..77

7 Logical Functions... 79
Choose..80
Exists..81
HasValue ..82
Oneof ..83
Within ...84

8 Miscellaneous Functions... 85
Eval...86
Null...87
Ref ..88
UnitType ..89
UnitValue...90

9 String Functions... 91
At ..92
Concat ..93

Adobe LiveCycle Designer ES Contents
FormCalc User Reference 5

Decode ...94
Encode..95
Format ..96
Left ...97
Len ...98
Lower ..99
Ltrim ... 100
Parse... 101
Replace.. 102
Right ... 103
Rtrim... 104
Space.. 105
Str .. 106
Stuff .. 107
Substr... 108
Uuid .. 109
Upper ... 110
WordNum... 111

10 URL Functions ..112
Get... 112
Post ... 113
Put... 115

Index ...116

 6

Preface

Adobe® LiveCycle® Designer ES provides a set of tools that enables a form developer to build intelligent
business documents. The form developer can incorporate calculations and scripting to create a richer
experience for the recipient of the form. For example, you might use simple calculations to automatically
update costs on a purchase order, or you might use more advanced scripting to modify the appearance of
your form in response to the locale of the user.

To facilitate the creation of calculations, LiveCycle Designer ES provides users with FormCalc. FormCalc is a
simple calculation language created by Adobe, and is modeled on common spreadsheet applications.
FormCalc is simple and accessible for those with little or no scripting experience. It also follows many rules
and conventions common to other scripting languages, so experienced form developers will find their
skills relevant to using FormCalc.

What’s in this guide?
This guide is intended for form developers using LiveCycle Designer ES who want to incorporate FormCalc
calculations in their forms. The guide provides a reference to the FormCalc functions, which are organized
into chapters according to function category. The guide also provides an introduction to the FormCalc
language and the building blocks that make up FormCalc expressions.

Who should read this guide?
This guide provides information to assist form developers interested in using the FormCalc language to
create calculations that enhance form designs created in LiveCycle Designer ES.

Related documentation
For additional information on using FormCalc calculations in your forms, see Creating Calculations and
Scripts in LiveCycle Designer Help.

If you require more technical information about FormCalc, refer to the Adobe XML Forms Architecture (XFA)
Specification, version 2.4, available from
http://partners.adobe.com/public/developer/xml/index_arch.html.

http://partners.adobe.com/public/developer/xml/index_arch.html

 7

1 Introducing FormCalc

FormCalc is a simple yet powerful calculation language modeled on common spreadsheet software. Its
purpose is to facilitate fast and efficient form design without requiring a knowledge of traditional scripting
techniques or languages. Users new to FormCalc can expect, with the use of a few built-in functions, to
create forms quickly that save end users from performing time-consuming calculations, validations, and
other verifications. In this way, a form developer is able to create a basic intelligence around a form at
design time that allows the resulting interactive form to react according to the data it encounters.

The built-in functions that make up FormCalc cover a wide range of areas including mathematics, dates
and times, strings, finance, logic, and the web. These areas represent the types of data that typically occur
in forms, and the functions provide quick and easy manipulation of the data in a useful way.

About scripting in LiveCycle Designer ES
Within LiveCycle Designer ES, FormCalc is the default scripting language in all scripting locations, with
JavaScript™ as the alternative. Scripting takes place on the various events that accompany each form
object, and you can use a mixture of FormCalc and JavaScript on interactive forms. However, if you are
using a server-based process, such as LiveCycle Forms ES, to create forms for viewing in an internet
browser, FormCalc scripts on certain form object events do not render onto the HTML form. This
functionality is to prevent Internet browser errors from occurring when users work with the completed
form.

 8

2 Language Reference

Building blocks
The FormCalc language consists of a number of building blocks that make up FormCalc expressions. Each
FormCalc expression is a sequence of some combination of these building blocks.

● “Literals” on page 8

● “Operators” on page 10

● “Comments” on page 11

● “Keywords” on page 12

● “Identifiers” on page 12

● “Line terminators” on page 13

● “White space” on page 13

Literals
Literals are constant values that form the basis of all values that pass to FormCalc for processing. The two
general types of literals are numbers and strings.

Number literals

A number literal is a sequence of mostly digits consisting of one or more of the following characters: an
integer, a decimal point, a fractional segment, an exponent indicator (“e” or “E”), and an optionally signed
exponent value. These are all examples of literal numbers:

● -12

● 1.5362

● 0.875

● 5.56e-2

● 1.234E10

It is possible to omit either the integer or fractional segment of a literal number, but not both. In addition,
within the fractional segment, you can omit either the decimal point or the exponent value, but not both.

All number literals are internally converted to Institute of Electrical and Electronics Engineers (IEEE) 64-bit
binary values. However, IEEE values can only represent a finite quantity of numbers, so certain values do
not have a representation as a binary fraction. This is similar to the fact that certain values, such as 1/3, do
not have a precise representation as a decimal fraction (the decimal value would need an infinite number
of decimal places to be entirely accurate).

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Literals 9

The values that do not have a binary fraction equivalent are generally number literals with more than 16
significant digits prior to their exponent. FormCalc rounds these values to the nearest representable IEEE
64-bit value in accordance with the IEEE standard. For example, the value:

123456789.012345678

rounds to the (nearest) value:

123456789.01234567

However, in a second example, the number literal:

99999999999999999

rounds to the (nearest) value:

100000000000000000

This behavior can sometimes lead to surprising results. FormCalc provides a function, Round, which
returns a given number rounded to a given number of decimal places. When the given number is exactly
halfway between two representable numbers, it is rounded away from zero. That is, the number is rounded
up if positive and down if negative. In the following example:

Round(0.124, 2)

returns 0.12,

and

Round(.125, 2)

returns 0.13.

Given this convention, one might expect that:

Round(0.045, 2)

returns 0.05.

However, the IEEE 754 standard dictates that the number literal 0.045 be approximated to
0.0449999999999999. This approximation is closer to 0.04 than to 0.05. Therefore,

Round(0.045, 2)

returns 0.04.

This also conforms to the IEEE 754 standard.

IEEE 64-bit values support representations like NaN (not a number), +Inf (positive infinity), and -Inf
(negative infinity). FormCalc does not support these, and expressions that evaluate to NaN, +Inf, or -Inf
result in an error exception, which passes to the remainder of the expression.

String literals

A string literal is a sequence of any Unicode characters within a set of quotation marks. For example:

"The cat jumped over the fence."
"Number 15, Main street, California, U.S.A"

The string literal "" defines an empty sequence of text characters called the empty string.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Operators 10

To embed a quotation mark (") character within a literal string, you must insert two quotation marks. For
example:

"The message reads: ""Warning: Insufficient Memory"""

All Unicode characters have an equivalent 6 character escape sequence consisting of \u followed by four
hexadecimal digits. Within any literal string, it is possible to express any character, including control
characters, using their equivalent Unicode escape sequence. For example:

"\u0047\u006f\u0066\u0069\u0073\u0068\u0021"
"\u000d" (carriage return)
"\u000a" (newline character)

Operators
FormCalc includes a number of operators: unary, multiplicative, additive, relational, equality, logical, and
the assignment operator.

Several of the FormCalc operators have an equivalent mnemonic operator keyword. These keyword
operators are useful whenever FormCalc expressions are embedded in HTML and XML source text, where
the symbols less than (<), greater than (>), and ampersand (&) have predefined meanings and must be
escaped. The following table lists all FormCalc operators, illustrating both the symbolic and mnemonic
forms where appropriate.

Operator type Representations

Addition +

Division /

Equality == eq
<> ne

Logical AND & and

Logical OR | or

Multiplication *

Relational < lt (less than)
> gt (greater than)
<= le (less than or equal to)
>= ge (greater than or equal to)

Subtraction -

Unary -
+
not

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Comments 11

Comments
Comments are sections of code that FormCalc does not execute. Typically comments contain information
or instructions that explain the use of a particular fragment of code. FormCalc ignores all information
stored in comments at run time.

You can specify a comment by using either a semi-colon (;) or a pair of slashes (//). In FormCalc, a comment
extends from its beginning to the next line terminator.

For example:

// This is a type of comment
First_Name="Tony"
Initial="C" ;This is another type of comment
Last_Name="Blue"

Commenting all FormCalc calculations on an event

Commenting all of the FormCalc calculations for a particular event generates an error when you preview
your form in the Preview PDF tab or when you view the final PDF. Each FormCalc calculation is required to
return a value, and FormCalc does not consider comments to be values.

To prevent the commented FormCalc code from returning an error, you must do one of the following
actions:

● Remove the commented code from the event

● Add an expression that returns a value to the FormCalc code on the event

To prevent the value of the expression from producing unwanted results on your form, use one of the
following types of expressions:

● A simple expression consisting of a single character, as shown in the following example:

// First_Name="Tony"
// Initial="C"
// Last_Name="Blue"
//
// The simple expression below sets the value of the event to zero.
0

● An assignment expression that retains the value of the object. Use this type of expression if your
commented FormCalc code is located on the calculate event to prevent the actual value of the object
from being altered, as shown in the following example:

// First_Name="Tony"
// Initial="C"
// Last_Name="Blue"
//
// The assignment expression below sets the value of the current
// field equal to itself.
$.rawValue = $.rawValue

Character name Representations

Comment ;
//

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Keywords 12

Keywords
Keywords in FormCalc are reserved words and are case-insensitive. Keywords are used as parts of
expressions, special number literals, and operators.

The following table lists the FormCalc keywords. Do not use any of these words when naming objects on
your form design.

Identifiers
An identifier is a sequence of characters of unlimited length that denotes either a function or a method
name. An identifier always begins with one of the following characters:

● Any alphabetic character (based on the Unicode letter classifications)

● Underscore (_)

● Dollar sign ($)

● Exclamation mark (!)

FormCalc identifiers are case-sensitive. That is, identifiers whose characters only differ in case are
considered distinct.

These are examples of valid identifiers:

GetAddr
$primary
_item
!dbresult

and endif in step

break endwhile infinity then

continue eq le this

do exit lt throw

downto for nan upto

else foreach ne var

elseif func not while

end ge null

endfor gt or

endfunc if return

Character name Representations

Identifier A..Z,a..z
$
!
_

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Line terminators 13

Line terminators
Line terminators are used for separating lines and improving readability.

The following table lists the valid FormCalc line terminators:

White space
White space characters separate various objects and mathematical operations from each other. These
characters are strictly for improving readability and are irrelevant during FormCalc processing.

Expressions
Literals, operators, comments, keywords, identifiers, line terminators, and white space come together to
form a list of expressions, even if the list only contains a single expression. In general, each expression in
the list resolves to a value, and the value of the list as a whole is the value of the last expression in the list.

For example, consider the following scenario of two fields on a form design:

The value of both Field1 and Field2 after the evaluation of each field’s expression list is 50.

FormCalc divides the various types of expressions that make up an expression list into the following
categories:

● “Simple” on page 14

● “Assignment” on page 16

● “Logical OR” on page 16

Character name Unicode characters

Carriage Return #xD
U+000D

Line Feed #xA

&#D;

Character name Unicode character

Form Feed #xC

Horizontal Tab #x9

Space #x20

Vertical Tab #xB

Field name Calculations Returns

Field1 5 + Abs(Price)
"Hello World"
10 * 3 + 5 * 4

50

Field2 10 * 3 + 5 * 4 50

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Simple 14

● “Logical AND” on page 17

● “Unary” on page 17

● “Equality and inequality” on page 18

● “Relational” on page 18

● “If expressions” on page 19

● “While expressions” on page 20

● “For expressions” on page 21

● “Foreach expressions” on page 22

● “Break expressions” on page 22

● “Continue expressions” on page 23

Simple
In their most basic form, FormCalc expressions are groups of operators, keywords, and literals strung
together in logical ways. For example, these are all simple expressions:

2
"abc"
2 - 3 * 10 / 2 + 7

Each FormCalc expression resolves to a single value by following a traditional order of operations, even if
that order is not always obvious from the expression syntax. For example, the following sets of
expressions, when applied to objects on a form design, produce equivalent results:

As the previous table suggests, all FormCalc operators carry a certain precedence when they appear within
expressions. The following table illustrates this operator hierarchy:

Expression Equivalent to Returns

"abc" "abc" abc

2 - 3 * 10 / 2 + 7 2 - (3 * (10 / 2)) + 7 -6

10 * 3 + 5 * 4 (10 * 3) + (5 * 4) 50

0 and 1 or 2 > 1 (0 and 1) or (2 >1) 1 (true)

2 < 3 not 1 == 1 (2 < 3) not (1 == 1) 0 (false)

Precedence Operator

Highest =

(Unary) - , + , not

* , /

+ , -

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Simple 15

Promoting operands

In cases where one or more of the operands within a given operation do not match the expected type for
that operation, FormCalc promotes the operands to match the required type. How this promotion occurs
depends on the type of operand required by the operation.

Numeric operations

When performing numeric operations involving non-numeric operands, the non-numeric operands are
first promoted to their numeric equivalent. If the non-numeric operand does not successfully convert to a
numeric value, its value is 0. When promoting null-valued operands to numbers, their value is always zero.

The following table provides some examples of promoting non-numeric operands:

Boolean operations

When performing Boolean operations on non-Boolean operands, the non-Boolean operands are first
promoted to their Boolean equivalent. If the non-Boolean operand does not successfully convert to a
nonzero value, its value is true (1); otherwise its value is false (0). When promoting null-valued operands to
a Boolean value, that value is always false (0). For example, the expression:

"abc" | 2

evaluates to 1. That is, false | true = true, whereas

if ("abc") then
10
else
20
endif

evaluates to 20.

< , <= , > , >= , lt , le , gt , ge

== , <> , eq , ne

& , and

Lowest | , or

Expression Equivalent to Returns

(5 - "abc") * 3 (5 - 0) * 3 15

"100" / 10e1 100 / 10e1 1

5 + null + 3 5 + 0 + 3 8

Precedence Operator

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Assignment 16

String operations

When performing string operations on nonstring operands, the nonstring operands are first promoted to
strings by using their value as a string. When promoting null-valued operands to strings, their value is
always the empty string. For example, the expression:

concat("The total is ", 2, " dollars and ", 57, " cents.")

evaluates to "The total is 2 dollars and 57 cents."

Note: If during the evaluation of an expression an intermediate step yields NaN, +Inf, or -Inf, FormCalc
generates an error exception and propagates that error for the remainder of the expression. As
such, the expression's value will always be 0. For example:

3 / 0 + 1

evaluates to 0.

Assignment
An assignment expression sets the property identified by a given reference syntax to be the value of a
simple expression. For example:

$template.purchase_order.name.first = "Tony"

This sets the value of the form design object “first” to Tony.

For more information on using reference syntax, see “Reference Syntax” on page 24.

Logical OR
A logical OR expression returns either true (1) if at least one of its operands is true (1), or false (0) if both
operands are false (0). If both operands are null, the expression returns null.

These are examples of using the logical OR expression:

Expression Character representation

Logical OR |
or

Expression Returns

1 or 0 1 (true)

0 | 0 0 (false)

0 or 1 | 0 or 0 1 (true)

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Logical AND 17

Logical AND
A logical AND expression returns either true (1) if both operands are true (1), or false if at least one of its
operands is false (0). If both operands are null, the expression returns null.

These are examples of using the logical AND expression:

Unary
A unary expression returns different results depending on which of the unary operators is used.

Note: The arithmetic negation of a null operand yields the result null, whereas the logical negation of a
null operand yields the Boolean result true. This is justified by the common sense statement: If null
means nothing, then “not nothing” should be something.

These are examples of using the unary expression:

Expression Character representation

Logical AND &
and

Expression Returns

1 and 0 0 (false)

0 & 0 1 (true)

0 and 1 & 0 and 0 0 (false)

Expression Character representation Returns

Unary - The arithmetic negation of the operand, or null if
the operand is null.

+ The arithmetic value of the operand (unchanged),
or null if its operand is null.

not The logical negation of the operand.

Expression Returns

-(17) -17

-(-17) 17

+(17) 17

+(-17) -17

not("true") 1 (true)

not(1) 0 (false)

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Equality and inequality 18

Equality and inequality
Equality and inequality expressions return the result of an equality comparison of its operands.

The following special cases also apply when using equality operators:

● If either operand is null, a null comparison is performed. Null-valued operands compare identically
whenever both operands are null, and compare differently whenever one operand is not null.

● If both operands are references, both operands compare identically when they both refer to the same
object, and compare differently when they do not refer to the same object.

● If both operands are string valued, a locale-sensitive lexicographic string comparison is performed on
the operands. Otherwise, if they are not both null, the operands are promoted to numeric values, and a
numeric comparison is performed.

These are examples of using the equality and inequality expressions:

Relational
A relational expression returns the Boolean result of a relational comparison of its operands.

Expression Character representation Returns

Equality == eq True (1) when both operands compare identically,
and false (0) if they do not compare identically.

Inequality <> ne True (1) when both operands do not compare
identically, and false (0) if they compare identically.

Expression Returns

3 == 3 1 (true)

3 <> 4 1 (true)

"abc" eq "def" 0 (false)

"def" ne "abc" 1 (true)

5 + 5 == 10 1 (true)

5 + 5 <> "10" 0 (false)

Expression Character representation Returns

Relational < lt True (1) when the first operand is less than the
second operand, and false (0) when the first
operand is larger than the second operand.

> gt True (1) when the first operand is greater than the
second operand, and false (0) when the first
operand is less than the second operand.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference If expressions 19

The following special cases also apply when using relational operators:

● If either operand is null valued, a null comparison is performed. Null-valued operands compare
identically whenever both operands are null and the relational operator is less-than-or-equal or greater
than or equal, and compare differently otherwise.

● If both operands are string valued, a locale-sensitive lexicographic string comparison is performed on
the operands. Otherwise, if they are not both null, the operands are promoted to numeric values, and a
numeric comparison is performed.

These are examples of using the relational expression:

If expressions
An if expression is a conditional statement that evaluates a given simple expression for truth, and then
returns the result of a list of expressions that correspond to the truth value. If the initial simple expression
evaluates to false (0), FormCalc examines any elseif and else conditions for truth and returns the results of
their expression lists if appropriate.

<= le True (1) when the first operand is less than or equal
to the second operand, and false (0) when the first
operand is greater than the second operand.

>= ge True (1) when the first operand is greater than or
equal to the second operand, and false (0) when
the first operand is less than the second operand.

Expression Returns

3 < 3 0 (false)

3 > 4 0 (false)

"abc" <= "def" 1 (true)

"def" > "abc" 1 (true)

12 >= 12 1 (true)

"true" < "false" 0 (false)

Expression Character representation Returns

Expression Syntax Returns

If if (simple expression) then
list of expressions

elseif (simple expression) then
list of expressions

else
list of expressions

endif

The result of the list of expressions
associated with any valid conditions
stated in the if expression.

Note: You are not required to have any
elseif(...) or else statements as part
of your if expression, but you must
state the end of the expression
with endif.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference While expressions 20

These are examples of using the if expression:

While expressions
A while expression is an iterative statement or loop that evaluates a given simple expression. If the result of
the evaluation is true (1), FormCalc repeatedly examines the do condition and returns the results of the
expression lists. If the result is false (0), then control passes to the next statement.

A while expression is particularly well-suited to situations in which conditional repetition is needed.
Conversely, situations in which unconditional repetition is needed are often best dealt with using a for
expression.

In the following example, the values of the elements are added to a drop-down list from an XML file using
the addItem method for all of the XML elements listed under list1 that are not equal to 3:

var List = ref(xfa.record.lists.list1)
var i = 0
while (List.nodes.item(i+1).value ne "3")do
$.addItem (List.nodes.item(i).value,List.nodes.item(i+1).value)
i = i + 2
endwhile

Expression Returns

if (1 < 2) then
1

endif

1

if ("abc" > "def") then
1 and 0

else
0

endif

0

if (Field1 < Field2) then
Field3 = 0

elseif (Field1 > Field2) then
Field3 = 40

elseif (Field1 = Field2) then
Field3 = 10

endif

Varies with the values of Field1 and Field2. For
example, if Field1 is 20 and Field2 is 10, then this
expression sets Field3 to 40.

Expression Syntax Returns

While while (simple expression) do
expression list

endwhile

The result of the list of expressions
associated with the do condition.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference For expressions 21

For expressions
A for expression is a conditionally iterative statement or loop.

A for expression is particularly well-suited to looping situations in which unconditional repetition is
needed. Conversely, situations in which conditional repetition is needed are often best dealt with using a
while expression.

The value of the for expression is the value of the last evaluation list that was evaluated, or false (0).

The for condition initializes a FormCalc variable, which controls the looping action.

In the upto variant, the value of the loop variable will iterate from the start expression to the end
expression in step expression increments. If you omit the step expression, the step increment defaults to 1.

In the downto variant, the value of the loop variable iterates from the start expression to the end
expression in step expression decrements. If the step expression is omitted, the step decrements defaults
to -1.

Iterations of the loop are controlled by the end expression value. Before each iteration, the end expression
is evaluated and compared to the loop variable. If the result is true (1), the expression list is evaluated. After
each evaluation, the step expression is evaluated and added to the loop variable.

Before each iteration, the end expression is evaluated and compared to the loop variable. In addition, after
each evaluation of the do condition, the step expression is evaluated and added to the loop variable.

A for loop terminates when the start expression has surpassed the end expression. The start expression
can surpass the end expression in either an upwards direction, if you use upto, or in a downward direction,
if you use downto.

In the following example, the values of the elements are added to a drop-down list from an XML file using
the addItem method for all of the XML elements listed under list1:

var List = ref(xfa.record.lists.list1)
for i=0 upto List.nodes.length - 1 step 2 do
$.addItem (List.nodes.item(i).value,"")
endfor

Expression Syntax Returns

For for variable = start expression
(upto | downto) end expression

(step step expression) do
expression list

endfor

Note: The start, end, and step expressions must all
be simple expressions.

The result of the list of
expressions associated with the
do condition.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Foreach expressions 22

Foreach expressions
A foreach expression iterates over the expression list for each value in its argument list.

The value of the foreach expression is the value of the last expression list that was evaluated, or zero (0), if
the loop was never entered.

The in condition, which is executed only once (after the loop variable has been declared) controls the
iteration of the loop. Before each iteration, the loop variable is assigned successive values from the
argument list. The argument list cannot be empty.

In the following example, only the values of the “display” XML elements are added to the foreach
drop-down list.

foreach Item in (xfa.record.lists.list1.display[*]) do
$.addItem(Item,"")
endfor

Break expressions
A break expression causes an immediate exit from the innermost enclosing while, for, or foreach
expression loop. Control passes to the expression following the terminated loop.

The value of the break expression is always the value zero (0).

In the following example, an if condition is placed in the while loop to check whether the current value is
equal to “Display data for 2”. If true, the break executes and stops the loop from continuing.

var List = ref(xfa.record.lists.list1)
var i=0
while (List.nodes.item(i+1).value ne "3") do
$.addItem(List.nodes.item(i).value,List.nodes.item(i+1).value)
i = i + 2
if (List.nodes.item(i) eq "Display data for 2" then
break
endif
endwhile

Expression Syntax Returns

Foreach foreach variable in(argument list)do
expression list

endfor

Note: Use a comma (,) to separate more than one
simple expression in the argument list.

The value of the last expression
list that was evaluated, or zero(0),
if the loop was never entered.

Expression Syntax Returns

Break break Passes control to the expression following the terminated loop.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Continue expressions 23

Continue expressions
A continue expression causes the next iteration of the innermost enclosing while, for, or foreach loop.

The value of the continue expression is always the value zero (0).

The object of the following example is to populate the drop-down list with values from the XML file. If the
value of the current XML element is “Display data for 3,” then the while loop exits via the break expression.
If the value of the current XML element is “Display data for 2”, then the script adds 2 to the variable i
(which is the counter) and immediately the loop moves on to its next cycle. The last two lines are ignored
when the value of the current XML element is “Display data for 2”.

var List = ref(xfa.record.lists.list1)
var i = 0
while (List.nodes.item(i+1).value ne "5") do
if (List.nodes.item(i) eq "Display data for 3") then
break
endif
if (List.nodes.item(i) eq "Display data for 2" then
i=i+2
continue
endif
$.addItem(List.nodes.item(i).value,List.nodes.item(i+1).value)
i=i+2
endwhile

Variables
Within your calculations, FormCalc allows you to create and manipulate variables for storing data. The
name you assign to each variable you create must be a unique identifier.

For example, the following FormCalc expressions define the userName variable and set the value of a text
field to be the value of userName.

var userName = "Tony Blue"
TextField1.rawValue = userName

You can reference variables that you define in the Variables tab of the Form Properties dialog box in the
same way. The following FormCalc expression uses the Concat function to set the value of the text field
using the form variables salutation and name.

TextField1.rawValue = Concat(salutation, name)

Note: A variable you create using FormCalc will supersede a similarly named variable you define in the
Variables tab of the Form Properties dialog box.

Expression Syntax Returns

Continue continue When used in a while expression, control is passed to the while
condition. When used in a for expression, control is passed to the step
expression.

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Reference Syntax 24

Reference Syntax
FormCalc provides access to form design object properties and values using a reference syntax. The
following example demonstrates both assigning and retrieving object values:

Invoice_Total.rawValue = Invoice_SubTotal.rawValue * (8 / 100)

In this case the reference syntax Invoice_Total assigns the value of Invoice_SubTotal * (8 /
100) to the field Invoice_Total.

In the context of form design, a fully qualified reference syntax enables access to all the objects on a form
design.

To make accessing object properties and values easier, FormCalc includes shortcuts to reduce the effort
required to create references. The following table outlines the reference syntax shortcuts for FormCalc.

Notation Description

$ Refers to the current field or object, as shown in this example:

$ = "Tony Blue"

The above example sets the value of the current field or object to Tony Blue.

$data Represents the root of the data model xfa.datasets.data. For example,

$data.purchaseOrder.total

is equivalent to

xfa.datasets.data.purchaseOrder.total

$event Represents the current form object event. For example,

$event.name

is equivalent to

xfa.event.name

$form Represents the root of the form model xfa.form. For example,

$form.purchaseOrder.tax

is equivalent to stating

xfa.form.purchaseOrder.tax

$host Represents the host object. For example,

$host.messageBox("Hello world")

is equivalent to

xfa.host.messageBox("Hello world")

$layout Represents the root of the layout model xfa.layout. For example,

$layout.ready

is equivalent to stating

xfa.layout.ready

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Reference Syntax 25

$record Represents the current record of a collection of data, such as from an XML file. For
example,

$record.header.txtOrderedByCity

references the txtOrderedByCity node within the header node of the current
XML data.

$template Represents the root of the template model xfa.template. For example,

$template.purchaseOrder.item

is equivalent to

xfa.template.purchaseOrder.item

! Represents the root of the data model xfa.datasets. For example,

!data

is equivalent to

xfa.datasets.data

* Selects all form objects within a given container, such as a subform, regardless of
name, or selects all objects that have a similar name.

For example, the following expression selects all objects named item on a form:

xfa.form.form1.item[*]

Note: You can use the ‘*’ (asterisk) syntax with JavaScript if it used with the
resolveNode method. For more information about the resolveNode
method, see LiveCycle Designer Help, or see the XML Form Object Model
Reference at http://www.adobe.com/go/learn_lc_scriptingReference.

Notation Description

http://www.adobe.com/go/learn_lc_scriptingReference

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Reference Syntax 26

.. You can use two dots at any point in your reference syntax to search for objects that
are a part of any subcontainer of the current container object, such as a subform. For
example, the expression Subform_Page..Subform2 means locate the node
Subform_Page (as usual) and find a descendant of Subform_Page called
Subform2.

Using the example tree above,

Subform_Page..TextField2

is equivalent to

Subform_Page.Subform1[0].Subform3.TextField2[0]

because TextField2[0] is in the first Subform1 node that FormCalc encounters
on its search. As a second example,

Subform_Page..Subform3[*]

returns all four TextField2 objects.

Note: You can use the ‘..’ (double period) syntax with JavaScript if it used with the
resolveNode method. For more information about the resolveNode
method, see LiveCycle Designer Help, or see the XML Form Object Model
Reference at http://www.adobe.com/go/learn_lc_scriptingReference.

The number sign (#) notation is used to denote one of the following items in a
reference syntax:

● An unnamed object. For example, the following reference syntax accesses an
unnamed subform:

xfa.form.form1.#subform

● Specify a property in a reference syntax if a property and an object have the same
name. For example, the following reference syntax accesses the name property of
a subform if the subform also contains a field named name:

xfa.form.form1.#subform.#name

Note: You can use the ‘#’ (number sign) syntax with JavaScript if it used with the
resolveNode method. For more information about the resolveNode
method, see LiveCycle Designer Help, or see XML Form Object Model Reference
at http://www.adobe.com/go/learn_lc_scriptingReference.

Notation Description

http://www.adobe.com/go/learn_lc_scriptingReference
http://www.adobe.com/go/learn_lc_scriptingReference

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Reference Syntax 27

[] The square bracket ([]) notation denotes the occurrence value of an object. To
construct an occurrence value reference, place square brackets ([]) after an object
name, and enclose within the brackets one of the following values:

● [n], where n is an absolute occurrence index number beginning at 0. An
occurrence number that is out of range does not return a value. For example,

xfa.form.form1.#subform.Quantity[3]
refers to the fourth occurrence of the Quantity object.

● [+/- n], where n indicates an occurrence relative to the occurrence of the
object making the reference. Positive values yield higher occurrence numbers,
and negative values yield lower occurrence numbers. For example,

xfa.form.form1.#subform.Quantity[+2]

This reference yields the occurrence of Quantity whose occurrence number is
two more than the occurrence number of the container making the reference. For
example, if this reference was attached to the Quantity[2]object , the
reference would be the same as

xfa.template.Quantity[4]

If the computed index number is out of range, the reference returns an error.

The most common use of this syntax is for locating the previous or next
occurrence of a particular object. For example, every occurrence of the
Quantity object (except the first) might use Quantity[-1] to get the value of
the previous Quantity object.

● [*] indicates multiple occurrences of an object. The first named object is found,
and objects of the same name that are siblings to the first are returned. Note that
using this notation returns a collection of objects. For example,

xfa.form.form1.#subform.Quantity[*]

This expression refers to all objects with a name of Quantity that are siblings to
the first occurrence of Quantity found by the reference.

Note: In language-specific forms for Arabic, Hebrew, Thai, and Vietnamese, the
reference syntax is always on the right (even for right-to-left languages).

Notation Description

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Property and method calls 28

Property and method calls
LiveCycle Designer ES defines a variety of properties and methods for all objects on a form design.
FormCalc provides access to these properties and methods and allows you to use them to modify the
appearance and behavior of objects on your form. Similar to a function call, you invoke properties and
methods by passing arguments to them in a specific order. The number and type of arguments in each
property and method are specific to each object type.

Note: Different form design objects support different properties and methods. For a complete list of the
properties and methods objects support, see the Adobe XML Form Object Model Reference located
on the LiveCycle Designer ES Developer Center at
www.adobe.com/devnet/livecycle/designing_forms.html.

[]

(Continued)

Using the tree for reference, these expressions return the following objects:

● Subform_Page.Subform1[*] returns both Subform1 objects.

● Subform_Page.Subform1.Subform3.TextField2[*] returns two
TextField2 objects. Subform_Page.Subform1 resolves to the first
Subform1 object on the left, and TextField2[*] evaluates relative to the
Subform3 object.

● Subform_Page.Subform1[*].TextField1 returns both of the
TextField1 instances. Subform_Page.Subform1[*] resolves to both
Subform1 objects, and TextField1 evaluates relative to the Subform1
objects.

● Subform_Page.Subform1[*].Subform3.TextField2[1] returns the
second and fourth TextField2 objects from the left.
Subform_Page.Subform1[*] resolves to both Subform1 objects, and
TextField2[1] evaluates relative to the Subform3 objects.

● Subform_Page.Subform1[*].Subform3[*] returns both instances of the
Subform3 object.

● Subform_Page.* returns both Subform1 objects and the Subform2 object.

● Subform_Page.Subform2.* returns the two instances of the
NumericField2 object.

Note: You can use the ‘[]’ (square bracket) syntax with JavaScript if it used with the
resolveNode method. For more information about the resolveNode
method, see LiveCycle Designer Help, or see XML Form Object Model Reference
at http://www.adobe.com/go/learn_lc_scriptingReference.

Notation Description

http://www.adobe.com/go/learn_lc_scriptingReference
http://www.adobe.com/devnet/livecycle/designing_forms.html

Adobe LiveCycle Designer ES Language Reference
FormCalc User Reference Built-in function calls 29

Built-in function calls
FormCalc supports a large set of built-in functions with a wide range of capabilities. The names of the
functions are case-insensitive, but unlike keywords, FormCalc does not reserve the names of the functions.
This means that calculations on forms with objects whose names coincide with the names of FormCalc
functions do not conflict.

Functions may or may not require some set of arguments to execute and return a value. Many functions
have arguments that are optional, meaning it is up to you to decide if the argument is necessary for the
particular situation.

FormCalc evaluates all function arguments in order, beginning with the lead argument. If an attempt is
made to pass less than the required number of arguments to a function, the function generates an error
exception.

Each function expects each argument in a particular format, either as a number literal or string literal. If the
value of an argument does not match what a function expects, FormCalc converts the value. For example:

Len(35)

The Len function actually expects a literal string. In this case, FormCalc converts the argument from the
number 35 to the string “35”, and the function evaluates to 2.

However, in the case of a string literal to number literal, the conversion is not so simple. For example:

Abs("abc")

The Abs function expects a number literal. FormCalc converts the value of all string literals as 0. This can
cause problems in functions where a 0 value forces an error, such as in the case of the Apr function.

Some function arguments only require integral values; in such cases, the passed arguments are always
promoted to integers by truncating the fractional part.

Here is a summary of the key properties of built-in functions:

● Built-in function names are case-insensitive.

● The built-in functions are predefined, but their names are not reserved words. This means that the
built-in function Max never conflicts with an object, object property, or object method named Max.

● Many of the built-in functions have a mandatory number of arguments, which can be followed by a
optional number of arguments.

● A few built-in functions, Avg, Count, Max, Min, Sum, and Concat, accept an indefinite number of
arguments.

For a complete listing of all the FormCalc functions, see the “Alphabetical Functions List” on page 30.

 30

3 Alphabetical Functions List

The following table lists all available FormCalc functions, provides a description of each function, and
identifies the category type to which each function belongs.

Function Description Type

“Abs” on page 34 Returns the absolute value of a numeric value or
expression.

Arithmetic

“Apr” on page 68 Returns the annual percentage rate for a loan. Financial

“At” on page 92 Locates the starting character position of a string within
another string.

String

“Avg” on page 35 Evaluates a set of number values and/or expressions and
returns the average of the non-null elements contained
within that set.

Arithmetic

“Ceil” on page 36 Returns the whole number greater than or equal to a
given number.

Arithmetic

“Choose” on page 80 Selects a value from a given set of parameters. Logical

“Concat” on page 93 Returns the concatenation of two or more strings. String

“Count” on page 37 Evaluates a set of values and/or expressions and returns
the number of non-null elements contained within the
set.

Arithmetic

“CTerm” on page 69 Returns the number of periods needed for an
investment earning a fixed, but compounded, interest
rate to grow to a future value.

Financial

“Date” on page 54 Returns the current system date as the number of days
since the epoch.

Date and Time

“Date2Num” on page 55 Returns the number of days since the epoch, given a
date string.

Date and Time

“DateFmt” on page 56 Returns a date format string, given a date format style. Date and Time

“Decode” on page 94 Returns the decoded version of a given string. String

“Encode” on page 95 Returns the encoded version of a given string. String

“Eval” on page 86 Returns the value of a given form calculation. Miscellaneous

“Exists” on page 81 Determines whether the given parameter is a reference
syntax to an existing object.

Logical

“Floor” on page 38 Returns the largest whole number that is less than or
equal to the given value.

Arithmetic

Adobe LiveCycle Designer ES Alphabetical Functions List
FormCalc User Reference 31

“Format” on page 96 Formats the given data according to the specified
picture format string.

String

“FV” on page 70 Returns the future value of consistent payment amounts
made at regular intervals at a constant interest rate.

Financial

“Get” on page 112 Downloads the contents of the given URL. URL

“HasValue” on page 82 Determines whether the given parameter is an accessor
with a non-null, non-empty, or non-blank value.

Logical

“IPmt” on page 71 Returns the amount of interest paid on a loan over a set
period of time.

Financial

“IsoDate2Num” on
page 57

Returns the number of days since the epoch, given an
valid date string.

Date and Time

“IsoTime2Num” on
page 58

Returns the number of milliseconds since the epoch,
given a valid time string.

Date and Time

“Left” on page 97 Extracts a specified number of characters from a string,
starting with the first character on the left.

String

“Len” on page 98 Returns the number of characters in a given string. String

“LocalDateFmt” on
page 59

Returns a localized date format string, given a date
format style.

Date and Time

“LocalTimeFmt” on
page 60

Returns a localized time format string, given a time
format style.

Date and Time

“Lower” on page 99 Converts all uppercase characters within a specified
string to lowercase characters.

String

“Ltrim” on page 100 Returns a string with all leading white space characters
removed.

String

“Max” on page 39 Returns the maximum value of the non-null elements in
the given set of numbers.

Arithmetic

“Min” on page 40 Returns the minimum value of the non-null elements of
the given set of numbers.

Arithmetic

“Mod” on page 41 Returns the modulus of one number divided by another. Arithmetic

“NPV” on page 72 Returns the net present value of an investment based on
a discount rate and a series of periodic future cash flows.

Financial

“Null” on page 87 Returns the null value. The null value means no value. Miscellaneous

“Num2Date” on page 61 Returns a date string, given a number of days since the
epoch.

Date and Time

“Num2GMTime” on
page 62

Returns a GMT time string, given a number of
milliseconds from the epoch.

Date and Time

Function Description Type

Adobe LiveCycle Designer ES Alphabetical Functions List
FormCalc User Reference 32

“Num2Time” on page 63 Returns a time string, given a number of milliseconds
from the epoch.

Date and Time

“Oneof” on page 83 Returns true (1) if a value is in a given set, and false (0) if it
is not.

Logical

“Parse” on page 101 Analyzes the given data according to the given picture
format.

String

“Pmt” on page 73 Returns the payment for a loan based on constant
payments and a constant interest rate.

Financial

“Post” on page 113 Posts the given data to the specified URL. URL

“PPmt” on page 74 Returns the amount of principal paid on a loan over a
period of time.

Financial

“Put” on page 115 Uploads the given data to the specified URL. URL

“PV” on page 75 Returns the present value of an investment of periodic
constant payments at a constant interest rate.

Financial

“Rate” on page 76 Returns the compound interest rate per period required
for an investment to grow from present to future value in
a given period.

Financial

“Ref” on page 88 Returns a reference to an existing object. Miscellaneous

“Replace” on page 102 Replaces all occurrences of one string with another
within a specified string.

String

“Right” on page 103 Extracts a number of characters from a given string,
beginning with the last character on the right.

String

“Round” on page 42 Evaluates a given numeric value or expression and
returns a number rounded to the given number of
decimal places.

Arithmetic

“Rtrim” on page 104 Returns a string with all trailing white space characters
removed.

String

“Space” on page 105 Returns a string consisting of a given number of blank
spaces.

String

“Str” on page 106 Converts a number to a character string. FormCalc
formats the result to the specified width and rounds to
the specified number of decimal places.

String

“Stuff” on page 107 Inserts a string into another string. String

“Substr” on page 108 Extracts a portion of a given string. String

“Sum” on page 43 Returns the sum of the non-null elements of a given set
of numbers.

Arithmetic

Function Description Type

Adobe LiveCycle Designer ES Alphabetical Functions List
FormCalc User Reference 33

“Term” on page 77 Returns the number of periods needed to reach a given
future value from periodic constant payments into an
interest-bearing account.

Financial

“Time” on page 64 Returns the current system time as the number of
milliseconds since the epoch.

Date and Time

“Time2Num” on page 65 Returns the number of milliseconds since the epoch,
given a time string.

Date and Time

“TimeFmt” on page 66 Returns a time format, given a time format style. Date and Time

“UnitType” on page 89 Returns the units of a unitspan. A unitspan is a string
consisting of a number followed by a unit name.

Miscellaneous

“UnitValue” on page 90 Returns the numeric value of a measurement with its
associated unitspan, after an optional unit conversion.

Miscellaneous

“Upper” on page 110 Converts all lowercase characters within a string to
uppercase.

String

“Uuid” on page 109 Returns a Universally Unique Identifier (UUID) string to
use as an identification method.

String

“Within” on page 84 Returns true (1) if the test value is within a given range,
and false (0) if it is not.

Logical

“WordNum” on page 111 Returns the English text equivalent of a given number. String

Function Description Type

 34

4 Arithmetic Functions

These functions perform a range of mathematical operations.

Functions
● “Abs” on page 34

● “Avg” on page 35

● “Ceil” on page 36

● “Count” on page 37

● “Floor” on page 38

● “Max” on page 39

● “Min” on page 40

● “Mod” on page 41

● “Round” on page 42

● “Sum” on page 43

Abs
Returns the absolute value of a numeric value or expression, or returns null if the value or expression is
null.

Syntax
Abs(n1)

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Abs function:

Parameter Description

n1 A numeric value or expression to evaluate.

Expression Returns

Abs(1.03) 1.03

Abs(-1.03) 1.03

Abs(0) 0

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Avg 35

Avg
Evaluates a set of number values and/or expressions and returns the average of the non-null elements
contained within that set.

Syntax
Avg(n1 [, n2 ...])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Avg function:

Parameter Description

n1 The first numeric value or expression of the set.

n2 (optional) Additional numeric values or expressions.

Expression Returns

Avg(0, 32, 16) 16

Avg(2.5, 17, null) 9.75

Avg(Price[0], Price[1], Price[2], Price[3]) The average value of the first four
non-null occurrences of Price.

Avg(Quantity[*]) The average value of all non-null
occurrences of Quantity.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Ceil 36

Ceil
Returns the whole number greater than or equal to a given number, or returns null if its parameter is null.

Syntax
Ceil(n)

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Ceil function:

Parameter Description

n Any numeric value or expression.

The function returns 0 if n is not a numeric value or expression.

Expression Returns

Ceil(2.5875) 3

Ceil(-5.9) -5

Ceil("abc") 0

Ceil(A) 100 if the value of A is 99.999

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Count 37

Count
Evaluates a set of values and/or expressions and returns the count of non-null elements contained within
the given set.

Syntax
Count(n1 [, n2 ...])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Count function:

Parameter Description

n1 A numeric value or expression.

n2 (optional) Additional numeric values and/or expressions.

Expression Returns

Count("Tony", "Blue", 41) 3

Count(Customers[*]) The number of non-null occurrences of Customers.

Count(Coverage[2], "Home", "Auto") 3, provided the third occurrence of Coverage is
non-null.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Floor 38

Floor
Returns the largest whole number that is less than or equal to the given value.

Syntax
Floor(n)

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Floor function:

Parameter Description

n Any numeric value or expression.

Expression Returns

Floor(21.3409873) 21

Floor(5.999965342) 5

Floor(3.2 * 15) 48

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Max 39

Max
Returns the maximum value of the non-null elements in the given set of numbers.

Syntax
Max(n1 [, n2 ...])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Max function:

Parameter Description

n1 A numeric value or expression.

n2 (optional) Additional numeric values and/or expressions.

Expression Returns

Max(234, 15, 107) 234

Max("abc", 15, "Tony Blue") 15

Max("abc") 0

Max(Field1[*], Field2[0]) Evaluates the non-null
occurrences of Field1 as well as
the first occurrence of Field2,
and returns the highest value.

Max(Min(Field1[*], Field2[0]), Field3, Field4) The first expression evaluates the
non-null occurrences of Field1
as well as the first occurrence of
Field2, and returns the lowest
value. The final result is the
maximum of the returned value
compared against the values of
Field3 and Field4.

See also “Min” on page 40.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Min 40

Min
Returns the minimum value of the non-null elements of the given set of numbers.

Syntax
Min(n1 [, n2 ...])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Min function:

Parameter Description

n1 A numeric value or expression.

n2 (optional) Additional numeric values and/or expressions.

Expression Returns

Min(234, 15, 107) 15

Min("abc", 15, "Tony Blue") 15

Min("abc") 0

Min(Field1[*], Field2[0]) Evaluates the non-null occurrences
of Sales_July as well as the first
occurrence of Sales_August,
and returns the lowest value.

Min(Max(Field1[*], Field2[0]), Field3, Field4) The first expression evaluates the
non-null occurrences of Field1 as
well as the first occurrence of
Field2, and returns the highest
value. The final result is the
minimum of the returned value
compared against the values of
Field3 and Field4.

See also “Max” on page 39.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Mod 41

Mod
Returns the modulus of one number divided by another. The modulus is the remainder of the division of
the dividend by the divisor. The sign of the remainder always equals the sign of the dividend.

Syntax
Mod(n1, n2)

Parameters

If n1 and/or n2 are not numeric values or expressions, the function returns 0.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Mod function:

Parameter Description

n1 The dividend, a numeric value or expression.

n2 The divisor, a numeric value or expression.

Expression Returns

Mod(64, -3) 1

Mod(-13,3) -1

Mod("abc", 2) 0

Mod(X[0], Y[9]) The first occurrence of X is used as the
dividend and the tenth occurrence of Y is used
as the divisor.

Mod(Round(Value[4], 2), Max(Value[*])) The first fifth occurrence of Value rounded to
two decimal places is used as the dividend and
the highest of all non-null occurrences of
Value is used as the divisor.

See also “Max” on page 39 and “Round” on
page 42.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Round 42

Round
Evaluates a given numeric value or expression and returns a number rounded to a given number of
decimal places.

Syntax
Round(n1 [, n2])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Round function:

Parameter Description

n1 A numeric value or expression to be evaluated.

n2 (optional) The number of decimal places with which to evaluate n1 to a maximum of 12.

If you do not include a value for n2, or if n2 is invalid, the function assumes the
number of decimal places is 0.

Expression Returns

Round(12.389764537, 4) 12.3898

Round(20/3, 2) 6.67

Round(8.9897, "abc") 9

Round(FV(400, 0.10/12, 30*12), 2) 904195.17. This takes the value evaluated using the
FV function and rounds it to two decimal places.

See also “FV” on page 70.

Round(Total_Price, 2) Rounds off the value of Total_Price to two decimal
places.

Adobe LiveCycle Designer ES Arithmetic Functions
FormCalc User Reference Sum 43

Sum
Returns the sum of the non-null elements of a given set of numbers.

Syntax
Sum(n1 [, n2 ...])

Parameters

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Sum function:

Parameter Description

n1 A numeric value or expression.

n2 (optional) Additional numeric values and/or expressions.

Expression Returns

Sum(2, 4, 6, 8) 20

Sum(-2, 4, -6, 8) 4

Sum(4, 16, "abc", 19) 39

Sum(Amount[2], Amount[5]) Totals the third and sixth
occurrences of Amount.

Sum(Round(20/3, 2), Max(Amount[*]), Min(Amount[*])) Totals the value of 20/3
rounded to two decimal
places, as well as the largest
and smallest non-null
occurrences of Amount.

See also “Max” on page 39,
“Min” on page 40, and
“Round” on page 42.

 44

5 Date and Time Functions

Functions in this section deal specifically with creating and manipulating date and time values.

Functions
● “Date” on page 54

● “Date2Num” on page 55

● “DateFmt” on page 56

● “IsoDate2Num” on page 57

● “IsoTime2Num” on page 58

● “LocalDateFmt” on page 59

● “LocalTimeFmt” on page 60

● “Num2Date” on page 61

● “Num2GMTime” on page 62

● “Num2Time” on page 63

● “Time” on page 64

● “Time2Num” on page 65

● “TimeFmt” on page 66

Structuring dates and times

Locales
A locale is a standard term used when developing international standards to identify a particular nation
(language, country or region). For the purposes of FormCalc, a locale defines the format of dates, times,
numeric, and currency values relevant to a specific nation or region so that users can use the formats they
are accustomed to.

Each locale is comprised of a unique string of characters called a locale identifier. The composition of these
strings is controlled by the international standards organization (ISO) Internet Engineering Task Force
(IETF), a working group of the Internet Society (www.isoc.org).

Locale identifiers consist of a language part, a country or region part, or both. The following table lists valid
locales for this release of LiveCycle Designer ES.

Language Country or Region ISO Code

Arabic United Arabian Emirates ar_AE

Arabic Bahrain ar_BH

Arabic Algeria ar_DZ

Arabic Egypt ar_EG

http://www.isoc.org

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Locales 45

Arabic Iraq ar_IQ

Arabic Jordan ar_JO

Arabic Kuwait ar_KW

Arabic Lebanon ar_LB

Arabic Libya ar_LY

Arabic Morocco ar_MA

Arabic Oman ar_OM

Arabic Qatar ar_QA

Arabic Saudi Arabia ar_SA

Arabic Sudan ar_SD

Arabic Syria ar_SY

Arabic Tunisia ar_TN

Arabic Yemen ar_YE

Bulgarian Bulgaria bg_BG

Chinese Hong Kong zh_HK

Chinese People’s Republic of China
(Simplified)

zh_CN

Chinese Taiwan (Traditional) zh_TW

Croatian Croatia hr_HR

Czech Czech Republic cs_CAZ

Danish Denmark da_DK

Dutch Belgium nl_BE

Dutch Netherlands nl_NL

English Australia en_AU

English Canada en_CA

English India en_IN

English Ireland en_IE

English New Zealand en_NZ

English South Africa en_ZA

English United Kingdom en_GB

English United Kingdom Euro en_GB_EURO

Language Country or Region ISO Code

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Locales 46

English United States of America en_US

Estonian Estonia et_EE

Finnish Finland fi_FI

French Belgium fr_BE

French Canada fr_CA

French France fr_FR

French Luxembourg fr_LU

French Switzerland fr_CH

German Austria de_AT

German Germany de_DE

German Luxembourg de_LU

German Switzerland de_CH

Greek Greece el_GR

Hebrew Israel he_IL

Hungarian Hungary hu_HU

Indonesian Indonesia id_ID

Italian Italy it_IT

Italian Switzerland it_CH

Japanese Japan ja_JP

Korean Republic of Korea ko_KR

Korean Korea Hanja ko_KR_HANI

Latvian Latvia lv_LV

Lithuanian Lithuania lt_LT

Malay Malaysia ms_MY

Norwegian - Bokmal Norway nb_NO

Norwegian - Nynorsk Norway nn_NO

Polish Poland pl_PL

Portuguese Brazil pt_BR

Portuguese Portugal pt_PT

Romanian Romania ro_RO

Russian Russia ru_RU

Language Country or Region ISO Code

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Locales 47

Serbo-Croatian Bosnia and Herzegovina sh_BA

Serbo-Croatian Croatia sh_HR

Serbo-Croatian Serbia and Montenegro sh_CS

Slovak Slovakia sk_SK

Slovenian Slovenia sl_SI

Spanish Ecuador es_EC

Spanish El Salvador es_SV

Spanish Guatemala es_GT

Spanish Honduras es_HN

Spanish Nicaragua es_NI

Spanish Panama es_PA

Spanish Paraguay es_PY

Spanish Puerto Rico es_PR

Spanish Uruguay es_UY

Spanish Argentina es_AR

Spanish Bolivia es_BO

Spanish Chile es_CL

Spanish Columbia es_CO

Spanish Costa Rica es_CR

Spanish Dominican Republic es_DO

Spanish Mexico es_MX

Spanish Peru es_PE

Spanish Spain es_ES

Spanish Venezuela es_VE

Swedish Sweden sv_SE

Thai Thailand th_TH

Thai Thailand Traditional th_TH_TH

Turkish Turkey tr_TR

Ukrainian Ukraine uk_UA

Vietnamese Vietnam vi_VN

Language Country or Region ISO Code

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Epoch 48

Usually, both elements of a locale are important. For example, the names of weekdays and months, in
English, for Canada and Great Britain are formatted identically, but dates are formatted differently.
Therefore, specifying an English language locale is insufficient. Also, specifying only a country as the locale
is insufficient. For example, Canada has different date formats for English and French.

In general, every application operates in an environment where a locale is present. This locale is known as
the ambient locale. In some circumstances, an application might operate on a system, or within an
environment, where a locale is not present. In these rare cases, the ambient locale is set to a default of
English United States (en_US). This locale is known as a default locale.

Epoch
Date values and time values have an associated origin or epoch, which is a moment in time from which
time begins. Any date value and any time value prior to its epoch is invalid.

The unit of value for all date functions is the number of days since the epoch. The unit of value for all time
functions is the number of milliseconds since the epoch.

LiveCycle Designer ES defines day one for the epoch for all date functions as Jan 1, 1900, and millisecond
one for the epoch for all time functions is midnight, 00:00:00, Greenwich Mean Time (GMT). This definition
means that negative time values can be returned to users in time zones east of GMT.

Date formats
A date format is a shorthand specification of how a date appears. It consists of various punctuation marks
and symbols that represent the formatting that the date must use. The following table lists examples of
date formats.

The format of dates is governed by an ISO standard. Each country or region specifies its own date formats.
The four general categories of date formats are short, medium, long, and full. The following table contains
examples of different date formats from different locales for each of the categories.

Date format Example

MM/DD/YY 11/11/78

DD/MM/YY 25/07/85

MMMM DD, YYYY March 10, 1964

Locale identifier and
description Date format (Category) Example

en_GB

English (United Kingdom)

DD/MM/YY (Short) 08/18/92

08/04/05

fr_CA

French (Canada)

YY-MM-DD (Medium) 92-08-18

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Time formats 49

Time formats
A time format is a shorthand specification to format a time. It consists of punctuations, literals, and pattern
symbols. The following table lists examples of time formats.

Time formats are governed by an ISO standard. Each nation specifies the form of its default, short,
medium, long, and full-time formats. The locale identifies the format of times that conform to the
standards of that nation.

The following table contains some examples of different date formats from different locales for each of the
categories.

de_DE

German (Germany)

D. MMMM YYYY (Long) 17. Juni 1989

fr_FR

French (France)

EEEE, ' le ' D MMMM YYYY (Full) Lundi, le 29 Octobre, 1990

Locale identifier and
description Date format (Category) Example

Time format Example

h:MM A 7:15 PM

HH:MM:SS 21:35:26

HH:MM:SS 'o''clock' A Z 14:20:10 o’clock PM EDT

Locale identifier and description Time format (Category) Example

en_GB

English (United Kingdom)

HH:MM (Short) 14:13

fr_CA

French (Canada)

HH:MM:SS (Medium) 12:15:50

de_DE

German (Germany)

HH:MM:SS z (Long) 14:13:13 -0400

fr_FR

French (France)

HH ' h ' MM Z (Full) 14 h 13 GMT-04:00

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date and time picture formats 50

Date and time picture formats
The following symbols must be used to create date and time patterns for date/time fields. Certain date
symbols are only used in Chinese, Japanese, and Korean locales. These symbols are also specified below.

Note: The comma (,), dash (-), colon (:), slash (/), period (.), and space () are treated as literal values and can
be included anywhere in a pattern. To include a phrase in a pattern, delimit the text string with
single quotation marks ('). For example, 'Your payment is due no later than' MM-DD-YY
can be specified as the display pattern.

Date symbol Description

Formatted value for English (USA) locale
where the locale-sensitive input value is
1/1/08 (which is January 1, 2008)

D 1 or 2 digit (1-31) day of the month 1

DD Zero-padded 2 digit (01-31) day of the
month

 01

J 1, 2, or 3 digit (1-366) day of the year 1

JJJ Zero-padded, three-digit (001-366)
day of the year

001

M One- or two-digit (1-12) month of the
year

1

MM Zero-padded, two-digit (01-12) month
of the year

01

MMM Abbreviated month name Jan

MMMM Full month name January

E One-digit (1-7) day of the week, where
(1=Sunday)

3 (because January 1, 2008 is a Tuesday)

EEE Abbreviated weekday name Tue (because January 1, 2008 is a Tuesday)

EEEE Full weekday name Tuesday (because January 1, 2008 is a
Tuesday)

YY Two-digit year, where numbers less
than 30 are considered to fall after the
year 2000 and numbers 30 and higher
are considered to occur before 2000.
For example, 00=2000, 29=2029,
30=1930, and 99=1999

08

YYYY Four-digit year 2008

G Era name (BC or AD) AD

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date and time picture formats 51

Several additional date patterns are available for specifying date patterns in Chinese, Japanese, and
Korean locales.

Japanese eras can be represented by several different symbols. The final four era symbols provide
alternative symbols to represent Japanese eras.

w One-digit (0-5) week of the month,
where week 1 is the earliest set of four
contiguous days ending on a Saturday

1

WW Two-digit (01-53) ISO-8601 week of
the year, where week 1 is the week
containing January 4

01

CJK date symbol Description

DDD The locale’s ideographic numeric valued day of the month

DDDD The locale’s tens rule ideographic numeric valued day of the month

YYY The locale’s ideographic numeric valued year

YYYYY The locale’s tens rule ideographic numeric valued year

g The locale’s alternate era name. For the current Japanese era, Heisei, this
pattern displays the ASCII letter H (U+48)

gg The locale’s alternate era name. For the current Japanese era, this pattern
displays the ideograph that is represented by the Unicode symbol (U+5E73)

ggg The locale’s alternate era name. For the current Japanese era, this pattern
displays the ideographs that are represented by the Unicode symbols (U+5E73
U+6210)

g The locale’s alternate era name. For the current Japanese era, this pattern
displays the full width letter H (U+FF28)

g g The locale’s alternate era name. For the current Japanese era, this pattern
displays the ideograph that is represented by the Unicode symbol (U+337B)

Time
symbol Description

Locale-sensitive
input value

Formatted value for
English (USA) locale

h One- or two-digit (1-12) hour of the day
(AM/PM)

12:08 AM or 2:08 PM 12 or 2

hh Zero-padded 2 digit (01-12) hour of the
day (AM/PM)

12:08 AM or 2:08 PM 12 or 02

k One- or two-digit (0-11) hour of the day
(AM/PM)

12:08 AM or 2:08 PM 0 or 2

Date symbol Description

Formatted value for English (USA) locale
where the locale-sensitive input value is
1/1/08 (which is January 1, 2008)

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date and time picture formats 52

kk Two-digit (00-11) hour of the day
(AM/PM)

12:08 AM or 2:08 PM 00 or 02

H One- or two-digit (0-23) hour of the day 12:08 AM or 2:08 PM 0 or 14

HH Zero-padded, two-digit (00-23) hour of
the day

12:08 AM or 2:08 PM 00 or 14

K One- or two-digit (1-24) hour of the day 12:08 AM or 2:08 PM 24 or 14

KK Zero-padded, two-digit (01-24) hour of
the day

12:08 AM or 2:08 PM 24 or 14

M One- or two-digit (0-59) minute of the
hour

Note: You must use this symbol with an
hour symbol.

2:08 PM 8

MM Zero-padded, two-digit (00-59) minute
of the hour

Note: You must use this symbol with an
hour symbol.

2:08 PM 08

S One- or two-digit (0-59) second of the
minute

Note: You must use this symbol with an
hour and minute symbol.

2:08:09 PM 9

SS Zero-padded, two-digit (00-59) second
of the minute

Note: You must use this symbol with an
hour and minute symbol.

2:08:09 PM 09

FFF Three- digit (000-999) thousandth of the
second

Note: You must use this symbol with an
hour, minute, and seconds
symbol.

2:08:09 PM 09

A The part of the day that is from midnight
to noon (AM) or from noon to midnight
(PM)

2:08:09 PM PM

z ISO-8601 time-zone format (for example,
Z, +0500, -0030, -01, +0100)

Note: You must use this symbol with an
hour symbol.

2:08:09 PM -0400

Time
symbol Description

Locale-sensitive
input value

Formatted value for
English (USA) locale

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date and time picture formats 53

Reserved symbols

The following symbols have special meanings and cannot be used as literal text.

zz Alternative ISO-8601 time-zone format
(for example, Z, +05:00, -00:30, -01,
+01:00)

Note: You must use this symbol with an
hour symbol.

2:08:09 PM -04:00

Z Abbreviated time-zone name (for
example, GMT, GMT+05:00, GMT-00:30,
EST, PDT)

Note: You must use this symbol with an
hour symbol.

2:08:09 PM EDT

Symbol Description

? When submitted, the symbol matches any one character. When merged for display, it
becomes a space.

* When submitted, the symbol matches 0 or Unicode white space characters. When
merged for display, it becomes a space.

+ When submitted, the symbol matches one or more Unicode white space characters.
When merged for display, it becomes a space.

Time
symbol Description

Locale-sensitive
input value

Formatted value for
English (USA) locale

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date 54

Date
Returns the current system date as the number of days since the epoch.

Syntax
Date()

Parameters

None

Examples

The following expression is an example of using the Date function:

Expression Returns

Date() 37875 (the number of days from the epoch to September 12, 2003)

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Date2Num 55

Date2Num
Returns the number of days since the epoch, given a date string.

Syntax
Date2Num(d [, f [, k]])

Parameters

The function returns a value of 0 if any of the following conditions are true:

● The format of the given date does not match the format specified in the function.

● Either the locale or date format supplied in the function is invalid.

Insufficient information is provided to determine a unique day since the epoch (that is, any information
regarding the date is missing or incomplete).

Examples

The following expressions are examples of using the Date2Num function:

Parameter Description

d A date string in the format supplied by f that also conforms to the locale given by k.

f (optional) A date format string. If f is omitted, the default date format MMM D, YYYY is used.

k (optional) A locale identifier string that conforms to the locale naming standards. If k is omitted
(or is invalid), the ambient locale is used.

Expression Returns

Date2Num("Mar 15, 1996") 35138

Date2Num("1/1/1900", "D/M/YYYY") 1

Date2Num("03/15/96", "MM/DD/YY") 35138

Date2Num("Aug 1,1996", "MMM D, YYYY") 35277

Date2Num("96-08-20", "YY-MM-DD", "fr_FR") 35296

Date2Num("1/3/00", "D/M/YY") - Date2Num("1/2/00", "D/M/YY") 29

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference DateFmt 56

DateFmt
Returns a date format string, given a date format style.

Syntax
DateFmt([n [, k]])

Parameters

Examples

The following expressions are examples of using the DateFmt function:

Parameter Description

n (optional) An integer identifying the locale-specific time format style as follows:

● 1 (Short style)

● 2 (Medium style)

● 3 (Long style)

● 4 (Full style)

If n is omitted (or is invalid), the default style value 0 is used.

k (optional) A locale identifier string that conforms to the locale naming standards. If k is
omitted (or is invalid), the ambient locale is used.

Expression Returns

DateFmt(1) M/D/YY (if en_US locale is set)

DateFmt(2, "fr_CA") YY-MM-DD

DateFmt(3, "de_DE") D. MMMM YYYY

DateFmt(4, "fr_FR") EEEE D' MMMM YYYY

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference IsoDate2Num 57

IsoDate2Num
Returns the number of days since the epoch began, given a valid date string.

Syntax
IsoDate2Num(d)

Parameters

Examples

The following expressions are examples of using the IsoDate2Num function:

Parameter Description

d A valid date string.

Expression Returns

IsoDate2Num("1900") 1

IsoDate2Num("1900-01") 1

IsoDate2Num("1900-01-01") 1

IsoDate2Num("19960315T20:20:20") 35138

IsoDate2Num("2000-03-01") - IsoDate2Num("20000201") 29

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference IsoTime2Num 58

IsoTime2Num
Returns the number of milliseconds since the epoch, given a valid time string.

Syntax
IsoTime2Num(d)

Parameters

Examples

The following expressions are examples of using the IsoTime2Num function:

Parameter Description

d A valid time string.

Expression Returns

IsoTime2Num("00:00:00Z") 1, for a user in the Eastern Time (ET) zone.

IsoTime2Num("13") 64800001, for a user located in Boston, U.S.

IsoTime2Num("13:13:13") 76393001, for a user located in California.

IsoTime2Num("19111111T131313+01") 43993001, for a user located in the Eastern Time
(ET) zone.

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference LocalDateFmt 59

LocalDateFmt
Returns a localized date format string, given a date format style.

Syntax
LocalDateFmt([n [, k]])

Parameters

Examples

The following expressions are examples of the LocalDateFmt function:

Parameter Description

n (optional) An integer identifying the locale-specific date format style as follows:

● 1 (Short style)

● 2 (Medium style)

● 3 (Long style)

● 4 (Full style)

If n is omitted (or is invalid), the default style value 0 is used.

k (optional) A locale identifier string that conforms to the locale naming standards. If k is
omitted (or is invalid), the ambient locale is used.

Expression Returns

LocalDateFmt(1, "de_DE") tt.MM.uu

LocalDateFmt(2, "fr_CA") aa-MM-jj

LocalDateFmt(3, "de_CH") t. MMMM jjjj

LocalDateFmt(4, "fr_FR") EEEE j MMMM aaaa

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference LocalTimeFmt 60

LocalTimeFmt
Returns a localized time format string, given a time format style.

Syntax
LocalTimeFmt([n [, k]])

Parameters

Examples

The following expressions are examples of using the LocalTimeFmt function:

Parameter Description

n (Optional) An integer identifying the locale-specific time format style as follows:

● 1 (Short style)

● 2 (Medium style)

● 3 (Long style)

● 4 (Full style)

If n is omitted (or is invalid), the default style value 0 is used.

k (Optional) A locale identifier string that conforms to the locale naming standards. If k is
omitted (or is invalid), the ambient locale is used.

Expression Returns

LocalTimeFmt(1, "de_DE") HH:mm

LocalTimeFmt(2, "fr_CA") HH:mm:ss

LocalTimeFmt(3, "de_CH") HH:mm:ss z

LocalTimeFmt(4, "fr_FR") HH' h 'mm z

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Num2Date 61

Num2Date
Returns a date string, given a number of days since the epoch.

Syntax
Num2Date(n [,f [, k]])

Parameters

The function returns a value of 0 if any of the following conditions are true:

● The format of the given date does not match the format specified in the function.

● Either the locale or date format supplied in the function is invalid.

Insufficient information is provided to determine a unique day since the epoch (that is, any information
regarding the date is missing or incomplete.

Examples

The following expressions are examples of using the Num2Date function:

Parameter Description

n An integer representing the number of days.

If n is invalid, the function returns an error.

f (Optional) A date format string. If you do not include a value for f, the function uses the
default date format MMM D, YYYY.

k (Optional) A locale identifier string that conforms to the locale naming standards. If you do
not include a value for k, or if k is invalid, the function uses the ambient locale.

Expression Returns

Num2Date(1, "DD/MM/YYYY") 01/01/1900

Num2Date(35139, "DD-MMM-YYYY", "de_DE") 16-Mrz-1996

Num2Date(Date2Num("Mar 15, 2000") -
Date2Num("98-03-15", "YY-MM-DD", "fr_CA"))

Jan 1, 1902

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Num2GMTime 62

Num2GMTime
Returns a GMT time string, given a number of milliseconds from the epoch.

Syntax
Num2GMTime(n [,f [, k]])

Parameters

The function returns a value of 0 if any of the following conditions are true:

● The format of the given time does not match the format specified in the function.

● Either the locale or time format supplied in the function is invalid.

Insufficient information is provided to determine a unique time since the epoch (that is, any information
regarding the time is missing or incomplete.

Examples

The following expressions illustrate using the Num2GMTime function:

Parameter Description

n An integer representing the number of milliseconds.

If n is invalid, the function returns an error.

f (Optional) A time format string. If you do not include a value for f, the function uses the
default time format H:MM:SS A.

k (Optional) A locale identifier string that conforms to the locale naming standards. If you do
not include a value for k, or if k is invalid, the function uses the ambient locale.

Expression Returns

Num2GMTime(1, "HH:MM:SS") 00:00:00

Num2GMTime(65593001, "HH:MM:SS Z") 18:13:13 GMT

Num2GMTime(43993001, TimeFmt(4, "de_DE"), "de_DE") 12.13 Uhr GMT

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Num2Time 63

Num2Time
Returns a time string, given a number of milliseconds from the epoch.

Syntax
Num2Time(n [,f [, k]])

Parameters

The function returns a value of 0 if any of the following conditions are true:

● The format of the given time does not match the format specified in the function.

● Either the locale or time format supplied in the function is invalid.

Insufficient information is provided to determine a unique time since the epoch (that is, any information
regarding the time is missing or incomplete.

Examples

The following expressions illustrate using the Num2Time function:

Parameter Description

n An integer representing the number of milliseconds.

If n is invalid, the function returns an error.

f (Optional) A time format string. If you do not include a value for f, the function uses the
default time format H:MM:SS A.

k (Optional) A locale identifier string that conforms to the locale naming standards. If you do
not include a value for k, or if k is invalid, the function uses the ambient locale.

Expression Returns

Num2Time(1, "HH:MM:SS") 00:00:00 in Greenwich, England
and 09:00:00 in Tokyo.

Num2Time(65593001, "HH:MM:SS Z") 13:13:13 EST in Boston, U.S.

Num2Time(65593001, "HH:MM:SS Z", "de_DE") 13:13:13 GMT-05:00 to a
German-Swiss user in Boston, U.S.

Num2Time(43993001, TimeFmt(4, "de_DE"), "de_DE") 13.13 Uhr GMT+01:00 to a
user in Zurich, Austria.

Num2Time(43993001, "HH:MM:SSzz") 13:13+01:00 to a user in Zurich,
Austria.

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Time 64

Time
Returns the current system time as the number of milliseconds since the epoch.

Syntax
Time()

Parameters

None

Examples

The following expression is an example of using the Time function:

Expression Returns

Time() 71533235 at precisely 3:52:15 P.M. on September 15th, 2003 to a user in the
Eastern Standard Time (EST) zone.

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference Time2Num 65

Time2Num
Returns the number of milliseconds since the epoch, given a time string.

Syntax
Time2Num(d [, f [, k]])

Parameters

The function returns a value of 0 if any of the following conditions are true:

● The format of the given time does not match the format specified in the function.

● Either the locale or time format supplied in the function is invalid.

Insufficient information is provided to determine a unique time since the epoch (that is, any information
regarding the time is missing or incomplete.

Examples

The following expressions illustrate using the Time2Num function:

Parameter Description

d A time string in the format supplied by f that also conforms to the locale given by k.

f (Optional) A time format string. If you do not include a value for f, the function uses the default
time format H:MM:SS A.

k (Optional) A locale identifier string that conforms to the locale naming standards. If you do not
include a value for k, or if k is invalid, the function uses the ambient locale.

Expression Returns

Time2Num("00:00:00 GMT", "HH:MM:SS Z") 1

Time2Num("1:13:13 PM") 76393001 to a user in California
on Pacific Standard Time, and
76033001 when that same user is
on Pacific Daylight Savings Time.

Time2Num("13:13:13", "HH:MM:SS") -
Time2Num("13:13:13 GMT", "HH:MM:SS Z")) / (60 *
60 * 1000)

8 to a user in Vancouver and 5 to a
user in Ottawa when on Standard
Time. On Daylight Savings Time,
the returned values are 7 and 4,
respectively.

Time2Num("13:13:13 GMT", "HH:MM:SS Z", "fr_FR") 47593001

Adobe LiveCycle Designer ES Date and Time Functions
FormCalc User Reference TimeFmt 66

TimeFmt
Returns a time format, given a time format style.

Syntax
TimeFmt([n [, k]])

Parameters

Examples

The following expressions are examples of using the TimeFmt function:

Parameter Description

n (Optional) An integer identifying the locale-specific time format style as follows:

● 1 (Short style)

● 2 (Medium style)

● 3 (Long style)

● 4 (Full style)

If you do not include a value for n, or if n is invalid, the function uses the default
style value.

k (Optional) A locale identifier string that conforms to the locale naming standards. If k is
omitted (or is invalid), the ambient locale is used.

Expression Returns

TimeFmt(1) h:MM A (if en_US locale is set)

TimeFmt(2, "fr_CA") HH:MM:SS

TimeFmt(3, "fr_FR") HH:MM:SS Z

TimeFmt(4, "de_DE") H.MM' Uhr 'Z

 67

6 Financial Functions

These functions perform a variety of interest, principal, and evaluation calculations related to the financial
sector.

Functions
● “Apr” on page 68

● “CTerm” on page 69

● “FV” on page 70

● “IPmt” on page 71

● “NPV” on page 72

● “Pmt” on page 73

● “PPmt” on page 74

● “PV” on page 75

● “Rate” on page 76

● “Term” on page 77

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference Apr 68

Apr
Returns the annual percentage rate for a loan.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
Apr(n1, n2, n3)

Parameters

If any parameter is null, the function returns null. If any parameter is negative or 0, the function returns
an error.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Apr function:

Parameter Description

n1 A numeric value or expression representing the principal amount of the loan.

n2 A numeric value or expression representing the payment amount on the loan.

n3 A numeric value or expression representing the number of periods in the loan’s
duration.

Expression Returns

Apr(35000, 269.50, 360) 0.08515404566 for a $35,000 loan repaid
at $269.50 a month for 30 years.

Apr(210000 * 0.75, 850 + 110, 25 * 26) 0.07161332404

Apr(-20000, 250, 120) Error

Apr(P_Value, Payment, Time) This example uses variables in place of actual
numeric values or expressions.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference CTerm 69

CTerm
Returns the number of periods needed for an investment earning a fixed, but compounded, interest rate
to grow to a future value.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
CTerm(n1, n2, n3)

Parameters

If any parameter is null, the function returns null. If any parameter is negative or 0, the function returns an
error.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the CTerm function:

Parameter Description

n1 A numeric value or expression representing the interest rate per period.

n2 A numeric value or expression representing the future value of the investment.

n3 A numeric value or expression representing the amount of the initial investment.

Expression Returns

CTerm(0.02, 1000, 100) 116.2767474515

CTerm(0.10, 500000, 12000) 39.13224648502

CTerm(0.0275 + 0.0025, 1000000, 55000 * 0.10) 176.02226044975

CTerm(Int_Rate, Target_Amount, P_Value) This example uses variables in place
of actual numeric values or
expressions.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference FV 70

FV
Returns the future value of consistent payment amounts made at regular intervals at a constant interest
rate.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
FV(n1, n2, n3)

Parameters

The function returns an error if either of the following conditions are true:

● Either of n1 or n3 are negative or 0.

● n2 is negative.

If any of the parameters are null, the function returns null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of the FV function:

Parameter Description

n1 A numeric value or expression representing the payment amount.

n2 A numeric value or expression representing the interest per period of the investment.

n3 A numeric value or expression representing the total number of payment periods.

Expression Returns

FV(400, 0.10 / 12, 30 * 12) 904195.16991842445. This is the value, after
30 years, of a $400 a month investment growing
at 10% annually.

FV(1000, 0.075 / 4, 10 * 4) 58791.96145535981. This is the value, after 10
years, of a $1000 a month investment growing at
7.5% a quarter.

FV(Payment[0], Int_Rate / 4, Time) This example uses variables in place of actual
numeric values or expressions.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference IPmt 71

IPmt
Returns the amount of interest paid on a loan over a set period of time.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
IPmt(n1, n2, n3, n4, n5)

Parameters

The function returns an error if either of the following conditions are true:

● n1, n2, or n3 are negative or 0.

● Either n4 or n5 are negative.

If any parameter is null, the function returns null. If the payment amount (n3) is less than the monthly
interest load, the function returns 0.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the IPmt function:

Parameter Description

n1 A numeric value or expression representing the principal amount of the loan.

n2 A numeric value or expression representing the annual interest rate of the investment.

n3 A numeric value or expression representing the monthly payment amount.

n4 A numeric value or expression representing the first month in which a payment will be
made.

n5 A numeric value or expression representing the number of months for which to
calculate.

Expression Returns

IPmt(30000, 0.085, 295.50, 7, 3) 624.8839283142. The amount of interest repaid
on a $30000 loan at 8.5% for the three months
between the seventh month and the tenth month
of the loan’s term.

IPmt(160000, 0.0475, 980, 24, 12) 7103.80833569485. The amount of interest
repaid during the third year of the loan.

IPmt(15000, 0.065, 65.50, 15, 1) 0, because the monthly payment is less than the
interest the loan accrues during the month.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference NPV 72

NPV
Returns the net present value of an investment based on a discount rate and a series of periodic future
cash flows.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
NPV(n1, n2 [, ...])

Parameters

The function returns an error if n1 is negative or 0. If any of the parameters are null, the function returns
null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the NPV function:

Parameter Description

n1 A numeric value or expression representing the discount rate over a single period.

n2 A numeric value or expression representing a cash flow value, which must occur at
the end of a period. It is important that the values specified in n2 and beyond are
in the correct sequence.

Expression Returns

NPV(0.065, 5000) 4694.83568075117, which is the net present
value of an investment earning 6.5% per year
that will generate $5000.

NPV(0.10, 500, 1500, 4000, 10000) 11529.60863329007, which is the net
present value of an investment earning 10% a
year that will generate $500, $1500, $4000, and
$10,000 in each of the next four years.

NPV(0.0275 / 12, 50, 60, 40, 100, 25) 273.14193838457, which is the net present
value of an investment earning 2.75% year that
will generate $50, $60, $40, $100, and $25 in
each of the next five months.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference Pmt 73

Pmt
Returns the payment for a loan based on constant payments and a constant interest rate.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
Pmt(n1, n2, n3)

Parameters

The function returns an error if any parameter is negative or 0. If any parameter is null, the function returns
null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Pmt function:

Parameter Description

n1 A numeric value or expression representing the principal amount of the loan.

n2 A numeric value or expression representing the interest rate per period of the
investment.

n3 A numeric value or expression representing the total number of payment periods.

Expression Returns

Pmt(150000, 0.0475 / 12, 25 * 12) 855.17604207164, which is the monthly
payment on a $150,000 loan at 4.75% annual
interest, repayable over 25 years.

Pmt(25000, 0.085, 12) 3403.82145169876, which is the annual
payment on a $25,000 loan at 8.5% annual
interest, repayable over 12 years.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference PPmt 74

PPmt
Returns the amount of principal paid on a loan over a period of time.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on US interest rate standards.

Syntax
PPmt(n1, n2, n3, n4, n5)

Parameters

The function returns an error if either of the following conditions are true:

● n1, n2, or n3 are negative or 0.

● Either n4 or n5 is negative.

If any parameter is null, the function returns null. If the payment amount (n3) is less than the monthly
interest load, the function returns 0.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the PPmt function:

Parameter Description

n1 A numeric value or expression representing the principal amount of the loan.

n2 A numeric value or expression representing the annual interest rate.

n3 A numeric value or expression representing the amount of the monthly payment.

n4 A numeric value or expression representing the first month in which a payment
will be made.

n5 A numeric value or expression representing the number of months for which to
calculate.

Expression Returns

PPmt(30000, 0.085, 295.50, 7, 3) 261.6160716858, which is the amount of
principal repaid on a $30,000 loan at 8.5% for the
three months between the seventh month and
the tenth month of the loan’s term.

PPmt(160000, 0.0475, 980, 24, 12) 4656.19166430515, which is the amount of
principal repaid during the third year of the loan.

PPmt(15000, 0.065, 65.50, 15, 1) 0, because in this case the monthly payment is less
than the interest the loan accrues during the
month, therefore, no part of the principal is repaid.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference PV 75

PV
Returns the present value of an investment of periodic constant payments at a constant interest rate.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
PV(n1, n2, n3)

Parameters

The function returns an error if either n1 or n3 is negative or 0. If any parameter is null, the function returns
null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the PV function:

Parameter Description

n1 A numeric value or expression representing the payment amount.

n2 A numeric value or expression representing the interest per period of the
investment.

n3 A numeric value or expression representing the total number of payment periods.

Expression Returns

PV(400, 0.10 / 12, 30 * 12) 45580.32799074439. This is the value after
30 years, of a $400 a month investment
growing at 10% annually.

PV(1000, 0.075 / 4, 10 * 4) 58791.96145535981. This is the value after
ten years of a $1000 a month investment
growing at 7.5% a quarter.

PV(Payment[0], Int_Rate / 4, Time) This example uses variables in place of actual
numeric values or expressions.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference Rate 76

Rate
Returns the compound interest rate per period required for an investment to grow from present to future
value in a given period.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
Rate(n1, n2, n3)

Parameters

The function returns an error if any parameter is negative or 0. If any parameter is null, the function returns
null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Rate function:

Parameter Description

n1 A numeric value or expression representing the future value of the investment.

n2 A numeric value or expression representing the present value of the investment.

n3 A numeric value or expression representing the total number of investment periods.

Expression Returns

Rate(12000, 8000, 5) 0.0844717712 (or 8.45%), which is
the interest rate per period needed for
an $8000 present value to grow to
$12,000 in five periods.

Rate(10000, 0.25 * 5000, 4 * 12) 0.04427378243 (or 4.43%), which is
the interest rate per month needed for
the present value to grow to $10,000 in
four years.

Rate(Target_Value, Pres_Value[*], Term * 12) This example uses variables in place of
actual numeric values or expressions.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference Term 77

Term
Returns the number of periods needed to reach a given future value from periodic constant payments into
an interest bearing account.

Note: Interest rate calculation methods differ from country to country. This function calculates an interest
rate based on U.S. interest rate standards.

Syntax
Term(n1, n2, n3)

Parameters

The function returns an error if any parameter is negative or 0. If any parameter is null, the function returns
null.

Note: FormCalc follows the IEEE-754 international standard when handling floating point numeric values.
For more information, see “Number literals” on page 8.

Examples

The following expressions are examples of using the Term function:

Parameter Description

n1 A numeric value or expression representing the payment amount made at the end of
each period.

n2 A numeric value or expression representing the interest rate per period of the
investment.

n3 A numeric value or expression representing the future value of the investment.

Expression Returns

Term(475, .05, 1500) 3.00477517728 (or roughly
3), which is the number of
periods needed to grow a
payment of $475 into $1500,
with an interest rate of 5% per
period.

Adobe LiveCycle Designer ES Financial Functions
FormCalc User Reference Term 78

Term(2500, 0.0275 + 0.0025, 5000) 1.97128786369, which is the
number of periods needed to
grow payments of $2500 into
$5000, with an interest rate of
3% per period.

Rate(Inv_Value[0], Int_Rate + 0.0050, Target_Value) This example uses variables in
place of actual numeric values
or expressions. In this case, the
first occurrence of the variable
Inv_Value is used as the
payment amount, half a
percentage point is added to
the variable Int_Rate to use
as the interest rate, and the
variable Target_Value is
used as the future value of the
investment.

Expression Returns

 79

7 Logical Functions

These functions are useful for testing and/or analyzing information to obtain a true or false result.

Functions
● “Choose” on page 80

● “Exists” on page 81

● “HasValue” on page 82

● “Oneof” on page 83

● “Within” on page 84

Adobe LiveCycle Designer ES Logical Functions
FormCalc User Reference Choose 80

Choose
Selects a value from a given set of parameters.

Syntax
Choose(n, s1 [, s2 ...])

Parameters

Examples

The following expressions are examples of using the Choose function:

Parameter Description

n The position of the value you want to select within the set. If this value is not a
whole number, the function rounds n down to the nearest whole value.

The function returns an empty string if either of the following conditions is true:

● n is less than 1.

● n is greater than the number of items in the set.

If n is null, the function returns null.

s1 The first value in the set of values.

s2 (Optional) Additional values in the set.

Expression Returns

Choose(3, "Taxes", "Price", "Person", "Teller") Person

Choose(2, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) 9

Choose(Item_Num[0], Items[*]) Returns the value within
the set Items that
corresponds to the position
defined by the first
occurrence of Item_Num.

Choose(20/3, "A", "B", "C", "D", "E", "F", "G", "H") F

Adobe LiveCycle Designer ES Logical Functions
FormCalc User Reference Exists 81

Exists
Determines whether the given parameter is a reference syntax to an existing object.

Syntax
Exists(v)

Parameters

Examples

The following expressions are examples of using the Exists function:

Parameter Description

v A valid reference syntax expression.

If v is not a reference syntax, the function returns false (0).

Expression Returns

Exists(Item) True (1) if the object Item exists and false (0)
otherwise.

Exists("hello world") False (0). The string is not a reference syntax.

Exists(Invoice.Border.Edge[1].Color) True (1) if the object Invoice exists and has a
Border property, which in turn has at least one
Edge property, which in turn has a Color
property. Otherwise, the function returns false (0).

Adobe LiveCycle Designer ES Logical Functions
FormCalc User Reference HasValue 82

HasValue
Determines whether the given parameter is a reference syntax with a non-null, non-empty, or non-blank
value.

Syntax
HasValue(v)

Parameters

Examples

The following expressions are examples of using the HasValue function.

Parameter Description

v A valid reference syntax expression.

If v is not a reference syntax, the function returns false (0).

Expression Returns

HasValue(2) True (1)

HasValue(" ") False (0)

HasValue(Amount[*]) Error

HasValue(Amount[0]) Evaluates the first occurrence of Amount and returns true (1) if it is a
non-null, non-empty, or non-blank value.

Adobe LiveCycle Designer ES Logical Functions
FormCalc User Reference Oneof 83

Oneof
Determines whether the given value is within a set.

Syntax
Oneof(s1, s2 [, s3 ...])

Parameters

Examples

The following expressions are examples of using the Oneof function:

Parameter Description

s1 The position of the value you want to select within the set. If this value is not a
whole number, the function rounds s1 down to the nearest whole value.

s2 The first value in the set of values.

s3 (Optional) Additional values in the set.

Expression Returns

Oneof(3, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) True (1)

Oneof("John", "Bill", "Gary", "Joan", "John", "Lisa") True (1)

Oneof(3, 1, 25) False(0)

Oneof("loan", Fields[*]) Verifies whether any
occurrence of Fields has
a value of loan.

Adobe LiveCycle Designer ES Logical Functions
FormCalc User Reference Within 84

Within
Determines whether the given value is within a given range.

Syntax
Within(s1, s2, s3)

Parameters

Examples

The following expressions are examples of using the Within function:

Parameter Description

s1 The value to test for.

If s1 is a number, the ordering comparison is numeric.

If s1 is not a number, the ordering comparison uses the collating sequence for the
current locale. For more information, see “Locales” on page 44.

If s1 is null, the function returns null.

s2 The lower bound of the test range.

s3 The upper bound of the test range.

Expression Returns

Within("C", "A", "D") True (1)

Within(1.5, 0, 2) True (1)

Within(-1, 0, 2) False (0)

Within($, 1, 10) True (1) if the current value is between 1 and 10.

 85

8 Miscellaneous Functions

Functions in this section do not fit within any other particular function category and are useful in a variety
of applications.

Functions
● “Eval” on page 86

● “Null” on page 87

● “Ref” on page 88

● “UnitType” on page 89

● “UnitValue” on page 90

Adobe LiveCycle Designer ES Miscellaneous Functions
FormCalc User Reference Eval 86

Eval
Returns the value of a given form calculation.

Syntax
Eval(s)

Parameters

Examples

The following expressions are examples of using the Eval function:

Parameter Description

s A valid string representing an expression or list of expressions.

Note: The Eval function cannot refer to user-defined variables and functions. For
example:

var s = "var t = concat(s, ""hello"")"
eval(s)

In this case, the Eval function does not recognize s, and so returns an error. Any
subsequent functions that make reference to the variable s also fail.

Expression Returns

eval("10*3+5*4") 50

eval("hello") error

Adobe LiveCycle Designer ES Miscellaneous Functions
FormCalc User Reference Null 87

Null
Returns the null value. The null value means no value.

Definition
Null()

Parameters

None

Examples

The following expressions are examples of using the Null function:

Expression Returns

Null() null

Null() + 5 5

Quantity = Null() Assigns null to the object Quantity.

Concat("ABC", Null(), "DEF") ABCDEF

See also “Concat” on page 93.

Adobe LiveCycle Designer ES Miscellaneous Functions
FormCalc User Reference Ref 88

Ref
Returns a reference to an existing object.

Definition
Ref(v)

Parameters

Examples

The following expressions are examples of using the Ref function:

Parameters Description

v A valid string representing a reference syntax, property, method, or function.

Note: If the given parameter is null, the function returns the null reference. For all
other given parameters, the function generates an error exception.

Expressions Returns

Ref("10*3+5*4") 10*3+5*4

Ref("hello") hello

Adobe LiveCycle Designer ES Miscellaneous Functions
FormCalc User Reference UnitType 89

UnitType
Returns the units of a unitspan. A unitspan is a string consisting of a number followed by a unit name.

Syntax
UnitType(s)

Parameters

Examples

The following expressions are examples of using the UnitType function:

Parameter Description

s A valid string containing a numeric value and a valid unit of measurement
(unitspan). Recognized units of measurement are:

● in, inches

● mm, millimeters

● cm, centimeters

● pt, picas, points

● mp, millipoints

If s is invalid, the function returns in.

Expression Results

UnitType("36 in") in

UnitType("2.54centimeters") cm

UnitType("picas") pt

UnitType("2.cm") cm

UnitType("2.zero cm") in

UnitType("kilometers") in

UnitType(Size[0]) Returns the measurement value of the first occurrence of Size.

Adobe LiveCycle Designer ES Miscellaneous Functions
FormCalc User Reference UnitValue 90

UnitValue
Returns the numerical value of a measurement with its associated unitspan, after an optional unit
conversion. A unitspan is a string consisting of a number followed by a valid unit of measurement.

Syntax
UnitValue(s1 [, s2])

Parameters

Examples

The following expressions are examples of using the UnitValue function:

Parameters Description

s1 A valid string containing a numeric value and a valid unit of measurement
(unitspan). Recognized units of measurement are:

● in, inches

● mm, millimeters

● cm, centimeters

● pt, picas, points

● mp, millipoints

s2 (optional) A string containing a valid unit of measurement. The function converts the
unitspan specified in s1 to this new unit of measurement.

If you do not include a value for s2, the function uses the unit of measurement
specified in s1. If s2 is invalid, the function converts s1 into inches.

Expression Returns

UnitValue("2in") 2

UnitValue("2in", "cm") 5.08

UnitValue("6", "pt") 432

UnitValue("A", "cm") 0

UnitValue(Size[2], "mp") Returns the measurement value of the third
occurrence of Size converted into millipoints.

UnitValue("5.08cm", "kilograms") 2

 91

9 String Functions

Functions in this section deal with the manipulation, evaluation, and creation of string values.

Functions
● “At” on page 92

● “Concat” on page 93

● “Decode” on page 94

● “Encode” on page 95

● “Format” on page 96

● “Left” on page 97

● “Len” on page 98

● “Lower” on page 99

● “Ltrim” on page 100

● “Parse” on page 101

● “Replace” on page 102

● “Right” on page 103

● “Rtrim” on page 104

● “Space” on page 105

● “Str” on page 106

● “Stuff” on page 107

● “Substr” on page 108

● “Uuid” on page 109

● “Upper” on page 110

● “WordNum” on page 111

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference At 92

At
Locates the starting character position of a string within another string.

Syntax
At(s1, s2)

Parameters

Examples

The following expressions are examples of using the At function:

Parameter Description

s1 The source string.

s2 The search string.

If s2 is not a part of s1, the function returns 0.

If s2 is empty, the function returns 1.

Expression Returns

At("ABCDEFGH", "AB") 1

At("ABCDEFGH", "F") 6

At(23412931298471, 29) 5, the first occurrence of 29 within the source string.

At(Ltrim(Cust_Info[0]), "555") The location of the string 555 within the first occurrence
of Cust_Info.

See also “Ltrim” on page 100.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Concat 93

Concat
Returns the concatenation of two or more strings.

Syntax
Concat(s1 [, s2 ...])

Parameters

Examples

The following expressions are examples of using the Concat function:

Parameter Description

s1 The first string in the set.

s2 (Optional) Additional strings to append to the set.

Expression Returns

Concat("ABC", "DEF") ABCDEF

Concat("Tony", Space(1), "Blue") Tony Blue

See also “Space” on page 105.

Concat("You owe ", WordNum(1154.67, 2), ".") You owe One Thousand One
Hundred Fifty-four Dollars
And Sixty-seven Cents.

See also “WordNum” on page 111.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Decode 94

Decode
Returns the decoded version of a given string.

Syntax
Decode(s1 [, s2])

Parameters

Examples

The following expressions are examples of using the Decode function:

Parameter Description

s1 The string to decode.

s2 (Optional) A string identifying the type of decoding to perform. The following strings are
valid decoding strings:

● url (URL decoding)

● html (HTML decoding)

● xml (XML decoding)

If you do not include a value for s2, the function uses URL decoding.

Expression Returns

Decode("ÆÁÂÁ
Â", "html")

ÆÁÂÁÂ

Decode("~!@#$%^&*()_+|`{"}[]
<>?,./;':", "xml")

~!@#$%^&*()_+|`{""}[]<>?,./;':

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Encode 95

Encode
Returns the encoded version of a given string.

Syntax
Encode(s1 [, s2])

Parameters

Examples

The following expressions are examples of using the Encode function:

Parameter Description

s1 The string to encode.

s2 (Optional) A string identifying the type of encoding to perform. The following strings are
valid encoding strings:

● url (URL encoding)

● html (HTML encoding)

● xml (XML encoding)

If you do not include a value for s2, the function uses URL encoding.

Expression Returns

Encode("""hello, world!""", "url") %22hello,%20world!%22

Encode("ÁÂÃÄÅÆ", "html") ÁÂÃÄÅÆ

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Format 96

Format
Formats the given data according to the specified picture format string.

Syntax
Format(s1, s2 [, s3 ...])

Parameters

Examples

The following expressions are examples of using the Format function:

Parameter Description

s1 The picture format string, which may be a locale-sensitive date or time format. See
“Locales” on page 44.

s2 The source data to format.

For date picture formats, the source data must be either an ISO date-time string or
an ISO date string in one of two formats:

● YYYY[MM[DD]]

● YYYY[-MM[-DD]]

For time picture formats, the source data must be either an ISO date-time string or
an ISO time string in one of the following formats:

● HH[MM[SS[.FFF][z]]]

● HH[MM[SS[.FFF][+HH[MM]]]]

● HH[MM[SS[.FFF][-HH[MM]]]]

● HH[:MM[:SS[.FFF][z]

● HH[:MM[:SS[.FFF][-HH[:MM]]]]

● HH[:MM[:SS[.FFF][+HH[:MM]]]]

For date-time picture formats, the source data must be an ISO date-time string.

For numeric picture formats, the source data must be numeric.

For text picture formats, the source data must be textual.

For compound picture formats, the number of source data arguments must match
the number of subelements in the picture.

s3 (Optional) Additional source data to format.

Expression Returns

Format("MMM D, YYYY", "20020901") Sep 1, 2002

Format("$9,999,999.99", 1234567.89) $1,234,567.89 in the U.S. and
1 234 567,89 Euros in France.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Left 97

Left
Extracts a specified number of characters from a string, starting with the first character on the left.

Syntax
Left(s, n)

Parameters

Examples

The following expressions are examples of using the Left function:

Parameter Description

s The string to extract from.

n The number of characters to extract.

If the number of characters to extract is greater than the length of the string, the
function returns the whole string.

If the number of characters to extract is 0 or less, the function returns the empty string.

Expression Returns

Left("ABCDEFGH", 3) ABC

Left("Tony Blue", 5) "Tony "

Left(Telephone[0], 3) The first three characters of the first occurrence of Telephone.

Left(Rtrim(Last_Name), 3) The first three characters of Last_Name.

See also “Rtrim” on page 104.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Len 98

Len
Returns the number of characters in a given string.

Syntax
Len(s)

Parameters

Examples

The following expressions are examples of using the Len function:

Parameter Description

s The string to examine.

Expression Returns

Len("ABDCEFGH") 8

Len(4) 1

Len(Str(4.532, 6, 4)) 6

See also “Str” on page 106.

Len(Amount[*]) The number of characters in the first occurrence of Amount.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Lower 99

Lower
Converts all uppercase characters within a specified string to lowercase characters.

Syntax
Lower(s, [, k])

Parameters

Examples

The following expressions are examples of using the Lower function:

Parameter Description

s The string to convert.

k (Optional) A string representing a valid locale. If you do not include a value for k, the function
uses the ambient locale.

See also “Locales” on page 44.

Note: This function only converts the Unicode characters U+41 through U+5A (of
the ASCII character set) as well as the characters U+FF21 through U+FF3A
(of the full width character set)

Expression Returns

Lower("ABC") abc

Lower("21 Main St.") 21 main st.

Lower(15) 15

Lower(Address[0]) This example converts the first occurrence of Address to all
lowercase letters.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Ltrim 100

Ltrim
Returns a string with all leading white space characters removed.

White space characters include the ASCII space, horizontal tab, line feed, vertical tab, form feed, carriage
return, and the Unicode space characters (Unicode category Zs).

Syntax
Ltrim(s)

Parameters

Examples

The following expressions are examples of using the Ltrim function:

Parameter Description

s The string to trim.

Expression Returns

Ltrim(" ABCD") "ABCD"

Ltrim(Rtrim(" Tony Blue ")) "Tony Blue"

See also “Rtrim” on page 104.

Ltrim(Address[0]) Removes any leading white space
from the first occurrence of Address.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Parse 101

Parse
Analyzes the given data according to the given picture format.

Parsing data successfully results in one of the following values:

● Date picture format: An ISO date string of the form YYYY-MM-DD.

● Time picture format: An ISO time string of the form HH:MM:SS.

● Date-time picture format: An ISO date-time string of the form YYYY-MM-DDTHH:MM:SS.

● Numeric picture format: A number.

● Text pictures: Text.

Syntax
Parse(s1, s2)

Parameters

Examples

The following expressions are examples of using the Parse function:

Parameter Description

s1 A valid date or time picture format string.

For more information on date and time formats, see “Structuring dates and times”
on page 44.

s2 The string data to parse.

Expression Returns

Parse("MMM D, YYYY", "Sep 1, 2002") 2002-09-01

Parse("$9,999,999.99", "$1,234,567.89") 1234567.89 in the U.S.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Replace 102

Replace
Replaces all occurrences of one string with another within a specified string.

Syntax
Replace(s1, s2 [, s3])

Parameters

Examples

The following expressions are examples of using the Replace function:

Parameter Description

s1 A source string.

s2 The string to replace.

s3 (Optional) The replacement string.

If you do not include a value for s3, or if s3 is null, the function uses an empty
string.

Expression Returns

Replace("Tony Blue", "Tony", "Chris") Chris Blue

Replace("ABCDEFGH", "D") ABCEFGH

Replace("ABCDEFGH", "d") ABCDEFGH

Replace(Comments[0], "recieve", "receive") Correctly updates the spelling of the
word receive in the first occurrence
of Comments.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Right 103

Right
Extracts a number of characters from a given string, beginning with the last character on the right.

Syntax
Right(s, n)

Parameters

Examples

The following expressions are examples of using the Right function:

Parameter Description

s The string to extract.

n The number of characters to extract.

If n is greater than the length of the string, the function returns the whole string.

If n is 0 or less, the function returns an empty string.

Expression Returns

Right("ABCDEFGH", 3) FGH

Right("Tony Blue", 5) " Blue"

Right(Telephone[0], 7) The last seven characters of the first occurrence of
Telephone.

Right(Rtrim(CreditCard_Num), 4) The last four characters of CreditCard_Num.

See also “Rtrim” on page 104.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Rtrim 104

Rtrim
Returns a string with all trailing white space characters removed.

White space characters include the ASCII space, horizontal tab, line feed, vertical tab, form feed, carriage
return, and the Unicode space characters (Unicode category Zs).

Syntax
Rtrim(s)

Parameters

Examples

The following expressions are examples of using the Rtrim function:

Parameter Description

s The string to trim.

Expression Returns

Rtrim("ABCD ") "ABCD"

Rtrim("Tony Blue ") "Tony Blue"

Rtrim(Address[0]) Removes any trailing white space from the first
occurrence of Address.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Space 105

Space
Returns a string consisting of a given number of blank spaces.

Syntax
Space(n)

Parameters

Examples

The following expressions are examples of using the Space function:

Parameter Description

n The number of blank spaces.

Expression Returns

Space(5) " "

Space(Max(Amount[*])) A blank string with as many characters as the value
of the largest occurrence of Amount.

See also “Max” on page 39.

Concat("Tony", Space(1), "Blue") Tony Blue

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Str 106

Str
Converts a number to a character string. FormCalc formats the result to the specified width and rounds to
the specified number of decimal places.

Syntax
Str(n1 [, n2 [, n3]])

Parameters

Examples

The following expressions are examples of using the Str function:

Parameter Description

n1 The number to convert.

n2 (Optional) The maximum width of the string. If you do not include a value for n2, the function
uses a value of 10 as the default width.

If the resulting string is longer than n2, the function returns a string of * (asterisk)
characters of the width specified by n2.

n3 (Optional) The number of digits to appear after the decimal point. If you do not include a
value for n3, the function uses 0 as the default precision.

Expression Returns

Str(2.456) " 2"

Str(4.532, 6, 4) 4.5320

Str(234.458, 4) " 234"

Str(31.2345, 4, 2) ****

Str(Max(Amount[*]), 6, 2) Converts the largest occurrence of Amount to a
six-character string with two decimal places.

See also “Max” on page 39.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Stuff 107

Stuff
Inserts a string into another string.

Syntax
Stuff(s1, n1, n2 [, s2])

Parameters

Examples

The following expressions are examples of using the Stuff function:

Parameter Description

s1 The source string.

n1 The position in s1 to insert the new string s2.

If n1 is less than one, the function assumes the first character position. If n1 is greater
than length of s1, the function assumes the last character position.

n2 The number of characters to delete from string s1, starting at character position n1.

If n2 is less than or equal to 0, the function assumes 0 characters.

s2 (Optional) The string to insert into s1.

If you do not include a value for s2, the function uses the empty string.

Expression Returns

Stuff("TonyBlue", 5, 0, " ") Tony Blue

Stuff("ABCDEFGH", 4, 2) ABCFGH

Stuff(Address[0], Len(Address[0]), 0, "Street") This adds the word Street onto
the end of the first occurrence of
Address.

See also “Len” on page 98.

Stuff("members-list@myweb.com", 0, 0, "cc:" cc:members-list@myweb.com

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Substr 108

Substr
Extracts a portion of a given string.

Syntax
Substr(s1, n1, n2)

Parameters

Examples

The following expressions are examples of using the Substr function:

Parameter Description

s1 The source string.

n1 The position in string s1 to start extracting.

If n1 is less than one, the function assumes the first character position. If n1 is
greater than length of s1, the function assumes the last character position.

n2 The number of characters to extract.

If n2 is less than or equal to 0, FormCalc returns an empty string. If n1 + n2 is
greater than the length of s1, the function returns the substring starting at
position n1 to the end of s1.

Expression Returns

Substr("ABCDEFG", 3, 4) CDEF

Substr(3214, 2, 1) 2

Substr(Last_Name[0], 1, 3) Returns the first three characters from the first
occurrence of Last_Name.

Substr("ABCDEFG", 5, 0) ""

Substr("21 Waterloo St.", 4, 5) Water

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Uuid 109

Uuid
Returns a Universally Unique Identifier (UUID) string to use as an identification method.

Syntax
Uuid([n])

Parameters

Examples

The following expressions are examples of the Uuid function:

Parameter Description

n A number identifying the format of the UUID string. Valid numbers are:

● 0 (default value): UUID string only contains hex octets.

● 1: UUID string contains dash characters separating the sequences of hex octets
at fixed positions.

If you do not include a value for n, the function uses the default value.

Expression Returns

Uuid() A value such as 3c3400001037be8996c400a0c9c86dd5

Uuid(0) A value such as 3c3400001037be8996c400a0c9c86dd5

Uuid(1) A value such as 1a3ac000-3dde-f352-96c4-00a0c9c86dd5

Uuid(7) A value such as 1a3ac000-3dde-f352-96c4-00a0c9c86dd5

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference Upper 110

Upper
Converts all lowercase characters within a string to uppercase.

Syntax
Upper(s [, k])

Parameters

Examples

The following expressions are examples of using the Upper function:

Parameter Description

s The string to convert.

k (Optional) A string representing a valid locale. If you do not include a value for k, the ambient
locale is used.

See also “Locales” on page 44.

Note: This function only converts the Unicode characters U+61 through U+7A (of
the ASCII character set) as well as the characters U+FF41 through U+FF5A
(of the full width character set).

Expression Returns

Upper("abc") ABC

Upper("21 Main St.") 21 MAIN ST.

Upper(15) 15

Upper(Address[0]) This example converts the first occurrence of Address to all
uppercase letters.

Adobe LiveCycle Designer ES String Functions
FormCalc User Reference WordNum 111

WordNum
Returns the English text equivalent of a given number.

Syntax
WordNum(n1 [, n2 [, k]])

Parameters

Examples

The following expressions are examples of using the WordNum function.

Parameter Description

n1 The number to convert.

If any of the following statements is true, the function returns * (asterisk)
characters to indicate an error:

● n1 is not a number.

● The integral value of n1 is negative.

● The integral value of n1 is greater than 922,337,203,685,477,550.

n2 (Optional) A number identifying the formatting option. Valid numbers are:

● 0 (default value): The number is converted into text representing the simple
number.

● 1: The number is converted into text representing the monetary value with no
fractional digits.

● 2: The number is converted into text representing the monetary value with
fractional digits.

If you do not include a value for n2, the function uses the default value (0).

k (Optional) A string representing a valid locale. If you do not include a value for k, the function
uses the ambient locale.

See also “Locales” on page 44.

Note: As of this release, it is not possible to specify a locale identifier other than
English for this function.

Expression Returns

WordNum(123.45) One Hundred and Twenty-three Dollars

WordNum(123.45, 1) One Hundred and Twenty-three Dollars

WordNum(1154.67, 2) One Thousand One Hundred Fifty-four Dollars And
Sixty-seven Cents

WordNum(43, 2) Forty-three Dollars And Zero Cents

WordNum(Amount[0], 2) This example uses the first occurrence of Amount as the
conversion number.

 112

10 URL Functions

These functions deal with the sending and receiving of information, including content types and encoding
data, to any accessible URL locations.

Functions
● “Get” on page 112

● “Post” on page 113

● “Put” on page 115

Get
Downloads the contents of the given URL.

Note: The Get function only runs if a form is certified. Adobe Acrobat® and Adobe Reader® cannot verify
that the form is certified until after the initialize event initiates. To use the Get function on
certified forms prior to the form rendering, use the docReady event.

Syntax
Get(s)

Parameters

Examples

The following expressions are examples of using the Get function.

Parameter Description

s The URL to download.

If the function is unable to download the URL, it returns an error.

Expression Returns

Get("http://www.myweb.com/data/mydata.xml") XML data taken from the specified file.

Get("ftp://ftp.gnu.org/gnu/GPL") The contents of the GNU Public License.

Get("http://intranet?sql=SELECT+*+FROM+
projects+FOR+XML+AUTO,+ELEMENTS")

The results of an SQL query to the
specified website.

Adobe LiveCycle Designer ES URL Functions
FormCalc User Reference Post 113

Post
Posts the given data to the specified URL.

Note: The Post function only runs if a form is certified. Acrobat and Adobe Reader cannot verify that the
form is certified until after the initialize event initiates. To use the Post function on certified
forms prior to the form rendering, use the docReady event.

Syntax
Post(s1, s2 [, s3 [, s4 [, s5]]])

Parameters

Parameter Description

s1 The URL to post to.

s2 The data to post.

If the function cannot post the data, it returns an error.

s3 (Optional) A string containing the content type of the data to post. Here are valid content types:

● application/octet-stream (default value)

● text/html

● text/xml

● text/plain

● multipart/form-data

● application/x-www-form-urlencoded

● Any other valid MIME type

If you do not include a value for s3, the function sets the content type to the default
value. The application ensures that the data to post uses the correct format according
to the specified content type.

s4 (Optional) A string containing the name of the code page used to encode the data. Here are valid
code page names:

● UTF-8 (default value)

● UTF-16

● ISO-8859-1

● Any character encoding listed by the Internet Assigned Numbers Authority (IANA)

If you do not include a value for s4, the function sets the code page to the default
value. The application ensures that encoding of the data to post matches the specified
code page.

s5 (Optional) A string containing any additional HTTP headers to be included with the posting of the
data.

If you do not include a value for s5, the function does not include an additional HTTP
header in the post.

SOAP servers usually require a SOAPAction header when posting to them.

Adobe LiveCycle Designer ES URL Functions
FormCalc User Reference Post 114

Examples

The following expressions are examples of using the Post function:

Expression Returns

Post("http://tools_build/scripts/jfecho.cgi",
"user=joe&passwd=xxxxx&date=27/08/2002",
"application/x-www-form-urlencoded")

Posts some URL encoded
login data to a server and
returns that server's
acknowledgement page.

Post("http://www.nanonull.com/TimeService/
TimeService.asmx/getLocalTime", "<?xml version='1.0'
encoding='UTF-8'?><soap:Envelope><soap:Body>
<getLocalTime/></soap:Body>
</soap:Envelope>", "text/xml", "utf-8",
"http://www.Nanonull.com/TimeService/getLocalTime")

Posts a SOAP request for the
local time to some server,
expecting an XML response
back.

Adobe LiveCycle Designer ES URL Functions
FormCalc User Reference Put 115

Put
Uploads the given data to the specified URL.

Note: The Put function only runs if a form is certified. Acrobat and Adobe Reader cannot verify that the
form is certified until after the initialize event initiates. To use the Put function on certified
forms prior to the form rendering, use the docReady event.

Syntax
Put(s1, s2 [, s3])

Parameters

Examples

The following expressions is an example of using the Put function:

Parameter Description

s1 The URL to upload.

s2 The data to upload.

If the function is unable to upload the data, it returns an error.

s3 (Optional) A string containing the name of the code page used to encode the data. Here are valid
code page names:

● UTF-8 (default value)

● UTF-16

● ISO8859-1

● Any character encoding listed by the Internet Assigned Numbers Authority (IANA)

If you do not include a value for s3, the function sets the code page to the default
value. The application ensures that encoding of the data to upload matches the
specified code page.

Expression Returns

Put("ftp://www.example.com/pub/fubu.xml",
"<?xml version='1.0'
encoding='UTF-8'?><msg>hello world!</msg>")

Nothing if the FTP server has permitted
the user to upload some XML data to the
pub/fubu.xml file. Otherwise, this
function returns an error.

 116

Index

A
Abs (arithmetic function) 34
alphabetical functions, FormCalc list of 30
ambient locale 48
Apr (financial function) 68
array referencing 27
assignment expressions, FormCalc 16
At (string function) 92
Avg (arithmetic function) 35

B
blank spaces, string 105
Boolean operations 15
break expressions, FormCalc 22

C
Ceil (arithmetic function) 36
characters

converting case 99, 110
extracting from a string 97, 103
removing white space from a string 100, 104
starting position 92

Choose (logical function) 80
comments, FormCalc 11
Concat (string function) 93
conditional statements, FormCalc 19, 20, 21, 22, 23
continue expressions, FormCalc 23
converting

character case 99, 110
numbers to a string 106
numbers to text 111
time strings to numbers 65

Count (arithmetic function) 37
CTerm (financial function) 69

D
date formats

about 48
FormCalc 50
string 56, 59

Date function 54
date/time field object

symbols to create patterns for 50
Date2Num function 55
DateFmt function 56
Decode (string function) 94
default locale 48
downloading URL contents 112

E
empty string 9

Encode (string function) 95
epoch, FormCalc 48
equality expressions, FormCalc 18
escape sequence, Unicode 10
Eval (miscellaneous function) 86
Exists (logical function) 81

F
Floor (arithmetic function) 38
for expressions, FormCalc 21
foreach expressions, FormCalc 22
Format (string function) 96
FormCalc

built-in functions 29
comments 11
function calls, FormCalc 29
identifiers 12
language locales 44
line terminators 13
logical expressions 16, 17
operators 10
reference syntax shortcuts 24
restricted keywords 12
variables 23
white space characters 13

FormCalc functions
alphabetical list 30

function calls, FormCalc 29
FV (financial function) 70

G
Get (URL function) 112

H
HasValue (logical function) 82

I
identification, unique 109
identifiers, FormCalc 12, 44
if expressions, FormCalc 19
inequality expressions, FormCalc 18
IPmt (financial function) 71
IsoDate2Num function 57
IsoTime2Num function 58

J
joining strings 93

K
keywords, FormCalc restricted 12

Adobe LiveCycle Designer ES Index
FormCalc User Reference 117

L
language locale

about 44
Left (string function) 97
Len (string function) 98
line terminators, FormCalc 13
LocalDateFmt function 59
locales 44

about 44
See also language locales

LocalTimeFmt function 60
logical expressions, FormCalc 16, 17
Lower (string function) 99
Ltrim (string function) 100

M
Max (arithmetic function) 39
Min (arithmetic function) 40
Mod (arithmetic function) 41
modulus 41

N
NPV (financial function) 72
Null (miscellaneous function) 87
null values 37
Num2Date function 61
Num2GMTime function 62
Num2Time function 63
number literals, FormCalc 8
numbers

converting to a string 106
converting to text 111

numeric operations 15

O
Oneof (logical function) 83
operands, promoting 15
operators, FormCalc 10

P
Parse (string function) 101
patterns

date and time 50
picture formats

applying 96
date and time 50
parsing according to 101

Pmt (financial function) 73
Post (URL function) 113
posting data to URLs 113
PPmt (financial function) 74
Put (URL function) 115
PV (financial function) 75

R
Rate (financial function) 76
Ref (miscellaneous function) 88

reference syntax
about 24
shortcuts 24
shortcuts for FormCalc 24

relational expressions, FormCalc 18
removing white space characters 100, 104
Replace (string function) 102
Right (string function) 103
Round (arithmetic function) 42
Rtrim (string function) 104

S
scripting, about 7
shortcuts, reference syntax 24
Space (string function) 105
Str (string function) 106
string functions 91
string literals, FormCalc 9
string operations 15
Stuff (string function) 107
Substr (string function) 108
Sum (arithmetic function) 43
symbols for date and time patterns 50
syntax, referencing 24

T
Term (financial function) 77
terminators, line, FormCalc 13
time formats

about 49
FormCalc 50
string 60, 66

Time function 64
Time2Num function 65
TimeFmt function 66

U
unary expressions, FormCalc 17
Unicode escape sequence 10
UnitType (miscellaneous function) 89
UnitValue (miscellaneous function) 90
Universally Unique Identifier (UUID) 109
uploading data to URLs 115
Upper (string function) 110
Uuid (string function) 109

V
variables

FormCalc 23

W
while expressions, FormCalc 20
white space

about 13
removing from string 100, 104

Within (logical function) 84
WordNum (string function) 111

	Contents
	Preface
	What’s in this guide?
	Who should read this guide?
	Related documentation

	Introducing FormCalc
	About scripting in LiveCycle Designer ES

	Language Reference
	Building blocks
	Literals
	Operators
	Comments
	Keywords
	Identifiers
	Line terminators
	White space

	Expressions
	Simple
	Assignment
	Logical OR
	Logical AND
	Unary
	Equality and inequality
	Relational
	If expressions
	While expressions
	For expressions
	Foreach expressions
	Break expressions
	Continue expressions

	Variables
	Reference Syntax
	Property and method calls
	Built-in function calls

	Alphabetical Functions List
	Arithmetic Functions
	Abs
	Avg
	Ceil
	Count
	Floor
	Max
	Min
	Mod
	Round
	Sum

	Date and Time Functions
	Structuring dates and times
	Locales
	Epoch
	Date formats
	Time formats
	Date and time picture formats

	Date
	Date2Num
	DateFmt
	IsoDate2Num
	IsoTime2Num
	LocalDateFmt
	LocalTimeFmt
	Num2Date
	Num2GMTime
	Num2Time
	Time
	Time2Num
	TimeFmt

	Financial Functions
	Apr
	CTerm
	FV
	IPmt
	NPV
	Pmt
	PPmt
	PV
	Rate
	Term

	Logical Functions
	Choose
	Exists
	HasValue
	Oneof
	Within

	Miscellaneous Functions
	Eval
	Null
	Ref
	UnitType
	UnitValue

	String Functions
	At
	Concat
	Decode
	Encode
	Format
	Left
	Len
	Lower
	Ltrim
	Parse
	Replace
	Right
	Rtrim
	Space
	Str
	Stuff
	Substr
	Uuid
	Upper
	WordNum

	URL Functions
	Get
	Post
	Put

	Index

