
LDAP
PROGRAMMING
WITH JAVATM

ROB WELTMAN and TONY DAHBURA

�
��

ADDISON–WESLEY

An Imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California Don Mills, Ontario Sydney
Bonn Amsterdam Tokyo Mexico City

As you may recall from Chapter 1, the major feature of an LDAP directory is its
ability to return search results on queries rapidly. The SDK provides many flexible

methods for obtaining and handling search results from the directory. We will focus in
this chapter on building queries using the SDK to retrieve the information we need.

The result set from a search can easily be parsed to return the entry’s name and
all or a subset of its attributes and values. In our discussion of searches, we will take
an example-based approach. Most of the examples here can be run directly from the
command-line interface with the java command. It is assumed that you have installed
or have access to a directory server and have loaded the sample database from the
LDIF file that is supplied on the CD-ROM that accompanies this book.

Our First Search

Before you can search an LDAP directory, you need certain information:

• Host name of the machine where the directory is installed

• Port number of the directory server

• Base DN of the directory tree managed by the server

• Scope of the search

• Search filter

• Attributes to request

• Optionally, search preferences

Searching
with the SDK

67

C H A P T E R 5

Host Name

The host name directs the search to the machine where the directory resides. This
parameter is mandatory and is usually of the form machinename.domain—for exam-
ple, dirhost.acme.com. If you are at the console on the machine that is running the
LDAP server, you can use the host name “localhost” for your test server. You can
specify the IP address of the host instead if you wish—for example, 127.0.0.1 for
“localhost.”

Port

The port is the TCP port of the machine (indicated by the host name) where the direc-
tory server is listening for LDAP connections. The standard port for LDAP is port 389
for non-SSL connections. You can use the constant LDAPConnection.DEFAULT_PORT
for port 389. For SSL-based connections the default port is 636. This is not to say that
you cannot have an LDAP server listening on any port you desire, but if you wish to
communicate and make your services available to the widest audience, stick to the
standard port numbers.

Base DN

The base distinguished name (DN) indicates where in the LDAP directory you wish to
begin the search. An LDAP directory is arranged in tree fashion, with a root and vari-
ous branches off this root. Figure 5-1 depicts a typical architecture. The base DN is
used to indicate at which node the search should originate. For example, we could
indicate a base of o=airius.com for a search that starts at the top and proceeds down-
ward. If instead we specified a base DN of ou=customers, o=airius.com, then any
entries above this tree level would not be eligible for searching. It is important to spec-
ify the base DN correctly to ensure that you receive the anticipated results.

Scope

Scope is the starting point of a search and the depth from the base DN to which the
search should occur. There are three options (values) for the scope:

1. BASE, represented by the constant LDAPConnection.SCOPE_BASE, is used to
indicate searching only the entry at the base DN, resulting in only that
entry being returned (if it also meets the search filter criteria). Figure 5-2
depicts the scope of a base-level search.

68 Searching with the SDK

2. ONE, represented by the constant LDAPConnection.SCOPE_ONE, is used to
indicate searching all entries one level under the base DN—but not includ-
ing the base DN. Figure 5-3 depicts the scope of a one level search.

3. SUBTREE, represented by the constant LDAPConnection.SCOPE_SUB, is used
to indicate searching of all entries at all levels under and including the spec-
ified base DN. Figure 5-4 depicts the scope of a subtree search.

The base DN and scope parameters can dramatically affect the number of
records returned from a query. It is important to understand what is involved in using
these arguments.

Our First Search 69

o: Airius.com

o=Airius.com

ou: People

ou=People, o=Airius.com

ou: Groups

ou=Groups, o=Airius.com

cn: Babs Jensen
uid: bjensen

uid=bjensen, ou=People, o=Airius.com uid=kjensen, ou=People, o=Airius.com

cn: Karl Jensen
uid: kjensen

FIGURE 5-1. Typical directory architecture.

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_BASE

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-2. Scope BASE search.

Filter

The search filter is the query string. It is used to filter the entries in the directory and
produce the desired set of matching records. Filters are built using parentheses and
combinations of the symbols &, |, and !, which represent AND, OR, and NOT, respec-
tively. If you wanted to locate all people with “tony” at the beginning of their names,
the following filter would do the trick:

(&(objectclass=person)(cn=tony*))

This expression represents a search for all entries with an object class of type
person in which the common name begins with “tony.” Like most other LDAP attri-

70 Searching with the SDK

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_ONE

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-3. Scope ONE search.

o: Airius.com
Search base: o=Airius.com
Search scope: SCOPE_SUB

ou: People ou: Groups

cn: Babs Jensen
uid: bjensen

cn: Karl Jensen
uid: kjensen

FIGURE 5-4. Scope SUBTREE search.

butes, the cn attribute has case-insensitive syntax, so replacing tony* with Tony* or
TONY* would yield the same results.

Search filters can be nested to any level:

(&(objectclass=person)(|(cn=sam carter) (cn=tony*)))

This filter says to find all entries with object class person in which the common
name is Sam Carter or begins with “tony.” Complex filters can be built using the oper-
ators and corresponding parentheses. A logical operator should appear before the
parenthesis enclosing the group of compares it affects. You can specify the order for
operators by nesting parentheses.

Table 5-1 lists all the operators for a search filter. These options can be combined
using parentheses, as shown in the examples already given. Wild cards can also be
used for filters—for example, (cn=tony*).

Attributes

Among the attributes of an LDAP entry for a person are cn, sn, and givenName. In the
LDIF record for Babs Jensen that follows, the attribute names are marked in bold.

Our First Search 71

TABLE 5-1. Search filter operators.

OPERATOR MEANING

| OR

& AND

! NOT

= Entry attribute equals value (e.g., cn=John Doe)

>= Entry attribute is greater than or equal to value (e.g., cn>=John Doe,
which would find Tom Doe among other entries)

<= Entry attribute is less than or equal to value

=* All entries that have a value for the attribute (e.g., cn=* for all entries with
a cn value)

~= Entries that approximately match the value—a soundex match for values
that “sound like” the value (e.g., cn~=olson to match Olson, Olsson, and
Oleson)

Each entry can contain numerous attributes—the specific ones determined by the
object classes of the entry. Some attributes are optional for a particular object class,
and some are required, as discussed in Chapter 2.

dn: uid=bjensen, ou=People, o=airius.com

cn: Babs Jensen

sn: Jensen

givenName: Barbara

objectclass: top

objectclass: person

l: Cupertino

uid: bjensen

mail: bjensen@airius.com

telephoneNumber: +1 408 555 1862

roomNumber: 0209

userPassword: hifalutin

The search attributes in a search request represent the values to return for
records matching the filter, starting at the base DN and progressing through the scope
level desired. You should request only attributes that you need. Requesting all attri-
butes for a large result set can significantly increase processing time and memory
usage. Note that specifying null for the attributes field of the search or read methods
of LDAPConnection means to return all the attributes associated with each entry. If you
wish to retrieve no attributes for an entry, use the constant LDAPConnection.NO_ATTRS
for the attributes parameter.

LDAP attributes are either user attributes or operational attributes. User attri-
butes appear in the directory only if they have been explicitly added to it, by the addi-
tion or modification of entries. Operational attributes are created by the server itself.
Examples of operational attributes are createTimeStamp (the time when the entry
was created) and numSubordinates (the number of direct children of the node). If you
specify null for attributes in a search, operational attributes are not returned. Each
operational attribute to be returned must be specified explicitly in the list of attributes.
If you wish to receive operational attributes in addition to all user attributes, use the
constant LDAPConnection.ALL_USER_ATTRS as one of the attributes—for example:

String[] attrs1 = { LDAPConnection.ALL_USER_ATTRS, "createTimeStamp",

"numSubordinates"};

String[] attrs2 = { "cn", "objectclass", "createTimeStamp",

"numSubordinates"};

The String array attrs1 indicates to return all user attributes for this entry, as
well as the two operational attributes createTimeStamp and numSubordinates. The

72 Searching with the SDK

String array attrs2 is used to return the two user attributes cn and objectclass, as
well as the two operational attributes createTimeStamp and numSubordinates.

If you want to do client-side sorting of your result sets, you must include the
attributes by which you are sorting as attributes to be returned by the server. If you
are doing server-side sorting (which we will cover in Chapter 16), including these
attributes is not necessary. Note that attribute names are always case-insensitive, so
{ “objectclass” } is treated the same as “{ “ObjectClass” }” when specifying
attributes to return. Also, you should not count on the server using the same case for
names of attributes it returns.

Search Preferences

You may set certain preferences for a search. These preferences include the amount
of time you wish to allow the server to spend on your search, the maximum number
of records you will accept, and whether the search should wait (block) until all data
is received or should return records as they are available. Search preferences are
specified using the LDAPSearchConstraints class. Commonly used methods of
LDAPSearchConstraints include the following:

• setBatchSize specifies how results are returned during a search. A value
of zero indicates to wait until all results are in before returning them; a
value of one means to return each result as it becomes available. The sec-
ond option is useful if you want to populate a list and not make the user
wait until everything is back before showing some data. On the other
hand, if no data is to be processed until all results have arrived, it is more
efficient to specify zero.

• setHopLimit specifies how many times a returned referral should be fol-
lowed in finding a real entry. A referral is returned when a server does not
contain the data being requested; instead it returns to the caller informa-
tion on where the data resides. It is said to “refer” the caller to another
source for the information.

• setMaxResults specifies the maximum number of results that should be
returned from a search. For no limit on the number of results (unlimited
returns), use a value of zero. Note that if this number is higher than the
maximum number the server has been configured to return, you will get
only the server’s maximum, and an exception will be thrown indicating
that the server size limit was exceeded.

• setReferrals specifies whether or not the SDK should follow referrals
automatically.

Our First Search 73

• setServerTimeLimit specifies the maximum number of seconds for the
server to spend on delivering search results.

All options for searching and other LDAP operations are covered in more detail
in Chapter 14.

The following examples demonstrate setting these options:

// Get the preferences associated with this connection

LDAPSearchConstraints cons = ld.getSearchConstraints();

cons.setBatchSize(1);

cons.setHopLimit (5);

cons.setMaxResults(0);

cons.setReferrals(true);

cons.setServerTimeLimit(5);

Our First Search Program

The following program is a command line-based Java search program. It assumes that
the airius.com sample database was loaded as described in Chapter 4. The program
provides a framework to try out different search filters. Let’s look at the code for
FilterSearch.java:

import netscape.ldap.*;

import java.util.*;

/**

* Simple search program to experiment with filters

*/

public class FilterSearch {

/**

* Do a subtree search using a specified filter

*

* @parm args host, port, authDN, password, baseDN, filter

*/

public static void main(String[] args) {

if (args.length != 6) {

System.out.println("Usage: java FilterSearch " +

"<host> <port> " +

"<authdn> <password> " +

"<baseDN> <filter>");

System.out.println("Example:");

System.out.println(" java FilterSearch " +

74 Searching with the SDK

"localhost 389 " +

"\"\" \"\" " +

"\"o=airius.com\" " +

"\"(|(cn=sam*)(cn=b*))\"");

System.exit(1);

}

The code declares some needed values, including the host name of the machine
and the port on which the LDAP server is listening.

The next section of code sets up our search constraints. The only value we set is
to block on one result at a time. This setting will cause our program to get one value
and allow us to display it while the next value is being retrieved from the server.

String host = args[0];

int port = Integer.parseInt(args[1]);

String authid = args[2];

String authpw = args[3];

String base = args[4];

String filter = args[5];

String[] ATTRS = {"cn","mail","telephoneNumber"};

int status = -1;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

The getSearchConstraints method returns a copy of the preferences in the
connection. In addition, this program allows connecting with a user DN and pass-
word. An LDAPv3 server will assume an anonymous authentication if no user
DN and password are specified. If communicating with an LDAPv2 server, you
must authenticate, even if binding anonymously (for an anonymous bind, use empty
strings for the user DN and password). We will cover authentication in detail in
Chapter 6.

The program takes as input a search filter and does a search with a scope of
LDAPConnection.SCOPE_SUB. Recall that SCOPE_SUB indicates searching all entries at
all levels under and including the specified base DN. We specify the base DN as the
top of our tree (o=airius.com).

System.out.println("Search filter=" + filter);

LDAPSearchResults res = ld.search(base,

ld.SCOPE_SUB,

filter,

Our First Search 75

ATTRS,

false);

// Loop on results until complete

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

Once the search request is issued, we retrieve each eligible record and send it to
prettyPrint for display on the console, as the following code shows. For now, we will
ignore any referrals returned by the server. Referrals are discussed in detail in Chapter
16. If any errors result in an exception (netscape.ldap.LDAPException), we just print
the error and continue to process any remaining results. All classes in the SDK have a
toString method, which provides useful information about the state of each object.

prettyPrint(entry, ATTRS);

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

continue;

} catch (LDAPException e) {

System.out.println(e.toString());

continue;

}

}

} catch(LDAPException e) {

System.out.println(e.toString());

}

The following block disconnects us from the LDAP server.

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(status);

}

76 Searching with the SDK

The method prettyPrint takes a returned entry and the array of the attributes
we requested and pulls the values from the search result:

/**

* Print names and values of attributes in an entry

*

* @param entry entry containing attributes

* @param attrs array of attribute names to display

*/

public static void prettyPrint(LDAPEntry entry,

String[] attrs) {

System.out.println("DN: " + entry.getDN());

// Use array to pick attributes. We could have

// enumerated them all using LDAPEntry.getAttributes

// but this gives us control of the display order.

for (int i = 0; i < attrs.length; i++) {

LDAPAttribute attr =

entry.getAttribute(attrs[i]);

if (attr == null) {

System.out.println(attrs[i] +

" not present");

continue;

}

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

while ((enumVals != null) &&

enumVals.hasMoreElements()) {

String val = (String)enumVals.nextElement();

System.out.println(attrs[i] + ": " + val);

hasVals = true;

}

if (!hasVals) {

System.out.println(attrs[i] +

" has no values");

}

}

System.out.println("——————————");

}

}

The value or values for each attribute are obtained with getStringValues,
which returns an Enumeration. Most LDAP attributes are strings, but some are
binary. Examples of binary attributes are userCertificate;binary and jpegPhoto.

Our First Search 77

It is up to you, the programmer, to specify if you want the values delivered to you
as strings or as binaries. The alternative interface is getBinaryValues. There is no
way to query the directory to determine whether it is appropriate to call getString
Values or getBinaryValues on an attribute. As a programmer you must have some
understanding of the data type represented in a particular attribute. For standard
LDAP attributes the data type is typically a known format that is the same in all appli-
cations.

Data from the directory is always returned in binary or UTF8 format, not in
any other character set (such as latin-1 or shift-jis). Strings are represented internally
in UTF8 format, a form of Unicode, which allows representation of all the world’s
languages. When you call getBinaryValues, the SDK gives you the values exactly as
they are stored in the directory. If you call getStringValues, the SDK attempts to
convert the values into Java String objects, which are in UCS2 (another Unicode
format), before returning them. If the data cannot be converted, which might be the
case with the value of a jpegPhoto attribute, for example, then getStringValues
returns null.

Using Search Filters

You should type in the code or load it from the CD-ROM and compile, using the fol-
lowing command:

javac FilterSearch.java

Let’s execute some searches and see what different filters return:

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn=sam carter)"

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn=Sam Carter)"

These two commands will return the same single record, demonstrating that case
does not matter in a search for the common name (which is defined in the LDAP
server as a case-insensitive attribute):

dn: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

mail: scarter@airius.com

telephoneNumber: +1 408 555 4798

Now let’s try a more complex search filter. The following request will return a
series of results. You will get all members whose names begin with “sam,” “tony,” or
the letter J.

78 Searching with the SDK

java FilterSearch localhost 389 "" "" "o=airius.com"

"(|(cn=sam*)(cn=tony*)(cn=j*))"

The next search uses the telephone number field.

java FilterSearch localhost 389 "" "" "o=airius.com"

"(telephoneNumber=650-9*)"

java FilterSearch localhost 389 "" "" "o=airius.com"

"(telephoneNumber=6509*)"

One complication that arises with telephone numbers in many contexts is that
some people store them as (XXX) XXX-XXXX, others use the syntax XXX-XXX-
XXXX, and some may just store the digits (XXXXXXXXXX). It would be cumber-
some if anyone doing a search had to know how each person had entered the telephone
number. LDAP defines a special telephone number syntax for the telephoneNumber
attribute. To enter a phone number to be searched, you can use any of the three for-
mats described here, and the LDAP server strips the expression down to just the num-
bers before performing the comparison. The LDAP standard document RFC 2252
specifies many different syntaxes for attributes beyond the one most commonly used:
case-insensitive string.

The following search is interesting:

java FilterSearch localhost 389 "" "" "o=airius.com" "(cn~=brian)"

This search uses the “sounds like” operator (see Table 5-1). The following
results will be displayed:

Search filter=(cn~=brian)

DN: uid=bplante, ou=People, o=airius.com

cn: Brian Plante

mail: bplante@airius.com

telephoneNumber: +1 408 555 3550

——————————

DN: uid=jbrown, ou=People, o=airius.com

cn: Judy Brown

mail: jbrown@airius.com

telephoneNumber: +1 408 555 6885

——————————

The results indicate that “Brown” sounds close to “Brian” according to the syn-
tax rules of the server, and of course Brian was found as well.

Using Search Filters 79

Any attribute that is in the directory and is not protected with access control
from searches by an anonymous user is eligible to be searched against, as shown here:

java FilterSearch localhost 389 "" "" "o=airius.com" "(&(

(objectclass=person) (cn=t*) (|(telephoneNumber=>650*) (mail=*))))"

This search expression indicates that we want all records in which (1) the entry
includes the object class person, (2) the first name begins with the letter T, and (3) the
area code of the telephone number is greater than or equal to 650 or the entry has a
mail attribute. Note the syntax for mail: =*. This syntax indicates that we want every
entry that contains a value for this attribute. The asterisk is a presence indicator when
used in isolation on the right-hand side of a filter expression.

Handling Results

A significant aspect of working with LDAP searches is processing the results after issu-
ing the query. The results from the search are returned as an LDAPSearchResults
object, which implements Enumeration. Note that once you iterate over the result set,
it is not available anymore. If you must do multiple passes over the result set, then you
must save the values in a store that is internal to your program.

There are two methods for iteration: nextElement and next. The nextElement
method returns Object, which could be LDAPEntry, LDAPReferralException, or
LDAPException. You are responsible for detecting the type of result (using
instanceof) and taking appropriate action. The next method returns LDAPEntry and
may throw an LDAPReferralException or an LDAPException. We recommend using
next in most cases.

When the next method of LDAPSearchResults is called, there are three possible
consequences. The first is that an entry is returned as an LDAPEntry object. The sec-
ond possibility is that you will be passed a referral (search reference) exception. This
might happen if there is a referral configured in the directory tree you are searching
and you have not set up the SDK to follow referrals automatically. The third possibil-
ity is that you will receive an LDAPException, which might happen if, for example, the
entry specified as the base DN does not exist.

If referrals are followed automatically and if the referral hop limit has not been
exceeded, the LDAP Java classes follow the referral and retrieve the entry for you and
you will never get a referral exception, even when the classes are creating a new con-
nection to the referred-to server in order to retrieve the entry for you. The default set-
ting in the SDK is to not follow referrals automatically, so you might encounter one if
you used the FilterSearch code above. You can indicate that you want automatic refer-
ral handling with the following code:

80 Searching with the SDK

ld = new LDAPConnection();

ld.getSearchConstraints().setReferrals(true);

Referrals are discussed in detail in Chapter 16.
The next method of LDAPSearchResults returns an LDAPEntry object. The

LDAPEntry class contains the following four methods:

1. getDN returns the full distinguished name of the entry as a String (for
example, uid=scarter, ou=People, o=airius.com).

2. getAttribute(String name) takes a String argument of the attribute
name that we are interested in retrieving and returns an object that repre-
sents this attribute. The return type is LDAPAttribute. An optional argu-
ment that identifies a language subtype can also be specified. Language
subtypes (part of the LDAP RFC 2596) can be used to store different values
for a single attribute in an environment where clients specify the language
in which they want to view directory contents. Such attributes include a
semicolon and the language subtype when they are added to the directory.
For example:

givenName;lang-en: John

givenName;lang-fr: Jean

givenName;lang-sp: Juan

If all three values were present in an entry, you could retrieve the third one with
the following code:

LDAPEntry.getAttribute("givenName", "lang-sp");

If the specified attribute does not exist in the entry, null is returned.

3. getAttributeSet returns an LDAPAttributeSet object that represents all
the attributes in this entry. You can then call the getAttributes method of
the LDAPAttributeSet to obtain an Enumeration on all the attributes in
the entry:

LDAPAttributeSet attrs = theEntry.getAttributeSet();

Enumeration enum_attrs = attrs.getAttributes(); //allows iterating

//each one

4. toString returns the entire entry, including all the attributes retrieved, as a
String. This method is useful for debugging and is called by the compiler
when a conversion to String is implied. For example,

Handling Results 81

System.out.println("This is what was returned: " + theEntry);

Once we have the attributes that are present in the entry, we can obtain the
values for these attributes. The LDAPAttribute class has many methods for dealing
with the attribute and its values. The methods most commonly used are the following:

• getStringValues returns an Enumeration of the values for a particular
attribute as Strings. Remember that in LDAP, many attributes may have
more than one value.

• getName returns the name of the attribute (for example, mail or cn).

If we examine the prettyPrint method, we can see the calls needed to extract
the attribute values from an entry:

public static void prettyPrint(LDAPEntry entry,

String[] attrs) {

The following line displays the DN of an entry, which we get by using the getDN
method of LDAPEntry.

System.out.println("DN: "+theEntry.getDN());

Knowing the DN of an entry is very important to an application developer,
because it provides a method to obtain the entry uniquely if we should need to retrieve
it again.

To specify the attributes to be extracted from the entry, the next block of code
uses the attrs array, which contains {"cn","telephoneNumber","mail"}.

// Use array to pick attributes. We could have

// enumerated them all using LDAPEntry.getAttributes,

// but this gives us control of the display order.

for (int i = 0; i < attrs.length; i++) {

LDAPAttribute attr =

entry.getAttribute(attrs[i]);

if (attr == null) {

System.out.println(attrs[i] +

" not present");

continue;

}

Note that we check if any attribute is null for an entry. The value null indicates
that the attribute is not present in this entry. Any attribute that is not mandatory for

82 Searching with the SDK

an entry may be omitted and will then not be returned during a search. Another pop-
ular programming method for handling attributes is just to enumerate over the values
for the entry. We will examine a version of prettyPrint a bit later that will use this
method.

After reaching this point, we know the entry has the attribute, but we do
not know if the attribute has a value. Formally, LDAP does not allow attributes
with no values, but it does allow attributes with a null value. Many attributes in
an LDAP directory can have multiple values. For example, the telephoneNumber
attribute could contain one or more telephone numbers. The following block of
code gets the attribute values and handles multivalue situations by calling
LDAPAttribute.getStringValues, which returns an Enumeration of the values:

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

while ((enumVals != null) &&

enumVals.hasMoreElements()) {

String val = (String)enumVals.nextElement();

System.out.println(attrs[i] + ": " + val);

hasVals = true;

}

if (!hasVals) {

System.out.println(attrs[i] +

" has no values");

}

Finally, we mark the end of the output for this record:

}

System.out.println("——————————");

}

}

Attributes in Detail

One of the three following conditions will be true for an attribute in an entry: the
attribute is present but has no value (actually a null value), the attribute is not pre-
sent, or the attribute is present and has one or more values:

1. Attribute present in entry with no value. The following abbreviated LDIF
record shows that this entry has the telephoneNumber attribute, but that
the attribute has no value.

Attributes in Detail 83

dn: uid=andy1, ou=People, o=airius.com

ou: People

cn: Andy Jones

...

telephoneNumber:

This is a valid condition, and when prettyPrint executes, it does not print the
attribute in the listing. Code that detects this condition sets the boolean flag hasVals
inside the enumeration loop:

while (enumVals.hasMoreElements()) {

...

hasVals = true;

The output from prettyPrint is as follows:

Search filter=(uid=andy*)

DN: uid=andy1, ou=People, o=airius.com

cn: Andy James

mail: andy1@airius.com

telephoneNumber HAS NO VALUES

2. Attribute not present. As indicated by the following LDIF record, if the
attribute is not mandatory for any of the object classes of the entry, then it
may or may not be present.

dn: uid=andy2, ou=People, o=airius.com

ou: People

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Andy James

The corresponding code in prettyPrint that handles this situation is as follows:

if (attr == null) {

System.out.println(ATTRS[i] + " NOT PRESENT");

continue;

}

Keep in mind that just because you requested a particular attribute does not
mean that every entry will contain the attribute. If we had used the enumerated set

84 Searching with the SDK

returned by getAttributes, the telephoneNumber attribute would not have been in
the enumeration. If using the enumeration, your program would need to track which
attributes were returned for each entry. Otherwise, use the getAttribute method to
retrieve a specific attribute; if null is returned, then the attribute is not present for this
particular entry.

The output from prettyPrint is as follows:

DN: uid=andy2, ou=People, o=airius.com

cn: Andy Jones

mail: andy2@airius.com

telephoneNumber NOT PRESENT

3. Attribute present and has one or more values. This condition is the most
common for most searches. The following LDIF record has multiple values
for the telephoneNumber attribute. Often programmers are interested in
only one value, but they must be prepared for the occurrence of multiple
values.

dn: uid=andy3, ou=People, o=airius.com

ou: People

...

cn: Andy Stevens

telephoneNumber: 650-555-1212

telephoneNumber: 650-555-1213

The output from prettyPrint is as follows:

DN: uid=andy3, ou=People, o=airius.com

cn: Andy Stevens

mail: andy3@airius.com

telephoneNumber: 650-555-1212

telephoneNumber: 650-555-1213

I Want Only One Record and I Have the DN

The DN uniquely identifies a single entry in the directory. In some situations you have
the DN (for example, because you saved it or because information is provided to
allow you to build it), and you want to retrieve the single record corresponding to the
DN. The read method of the LDAPConnection class provides this functionality.
Although not as flexible as issuing a full search, this method provides the benefit of
retrieving the single uniquely identified record with few parameters required. Within

I Want Only One Record and I Have the DN 85

the SDK the method is just a search with the scope set to SCOPE_BASE and the filter to
objectclass=*.

The following code is a modification of FilterSearch that takes a DN as argu-
ment instead of a search base and filter.

public class EntryRead {

/**

* Read an entry from the directory and display the contents

*

* @param args host, port, authDN, password, dn

*/

public static void main(String[] args) {

if (args.length != 5) {

System.out.println("Usage: java EntryRead " +

"<host> <port> " +

"<authdn> <password> " +

"<dn>");

System.out.println("Example:");

System.out.println(" java EntryRead " +

"localhost 389 " +

"\"\" \"\" " +

"\"uid=scarter, ou=People, " +

"o=airius.com\"");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String authid = args[2];

String authpw = args[3];

String base = args[4];

String[] ATTRS = { "cn","mail","telephoneNumber" };

int status = -1;

LDAPConnection ld = new LDAPConnection();

try {

// Connect to server and authenticate

ld.connect(host, port, authid, authpw);

LDAPEntry entry = ld.read(base, ATTRS);

prettyPrint(entry, ATTRS);

86 Searching with the SDK

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

} catch (LDAPException e) {

System.out.println(e.toString());

}

// Done, so disconnect

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException e) {

System.out.println(e.toString());

}

}

System.exit(status);

}

}

The method prettyPrint here is the same as in FilterSearch.
Executing the program with the following command:

java EntryRead localhost 389 "" "" "uid=scarter, ou=People, o=airius.com"

will result in the following output:

DN: uid=scarter, ou=People, o=airius.com

cn: Sam Carter

mail: scarter@airius.com

telephoneNumber: +1 408 555 4798

Searching and Comparing

The LDAP SDK allows you to compare a value in memory to the value of an attribute
of an entry without actually retrieving the entry. This is called a compare operation. In
many ways a compare can be simulated using a search by setting the scope of the
search to SCOPE_BASE and providing a search filter with which the value can be com-
pared; if an entry is returned, the compare operation was successful. A compare, how-
ever, may improve performance because the return data from the LDAP server is a
small packet that says either that the value is the same or that it is different.

Let’s examine a small piece of code to compare a specific record and see if the l
attribute (the LDAP attribute for location) has the value Santa Clara. The following
code is abbreviated to show simply how to call the compare method of LDAPConnection.

Searching and Comparing 87

String ENTRYDN = "uid=scarter, ou=People, o=Airius.com";

LDAPAttribute attr = new LDAPAttribute("l","Santa Clara");

try {

LDAPConnection ld = new LDAPConnection();

ld.connect(HOST, PORT); //connect to server

boolean ok = ld.compare(ENTRYDN, attr);

if (ok) {

System.out.println("Values matched!");

} else {

System.out.println("No Match!");

}

} catch (LDAPException e) {

System.out.println("Error: " + e.toString());

}

The compare method takes a DN, an LDAPAttribute object representing the
attribute you wish to compare and the value to compare, and an optional
LDAPSearchConstraints object. The method returns true if the entry has the
attribute and specified value and false if the entry does not have the value or the
attribute. An exception is thrown if the entry does not exist.

More on Filters

In the previous sections we spent a great deal of time on filters and the syntax to build
them. Although filters are incredibly powerful, the power is magnified tenfold if we can
build them dynamically (at run time) using templates. Take the case of providing a user
with a text field in which to type some search data. How can we form a search using
this data? The user might type in a phone number, or she might type in “tony.” We
should choose a search filter that includes sn in one case but telephoneNumber in the
other case. It would also be wasteful to use a search of the form (|(cn=searchstring)
(telephoneNumber=searchstring)), since the server is comparing against extra fields
that are not needed and it might return unwanted results.

A filter configuration file allows building rules that can present the filter based on
input at run time. The filter configuration file has the following format:

Tag

pattern delimiters filter1-1 description (optional scope)

filter1-n description (optional scope)

pattern2 delimiters filter2-1 description (optional scope)

88 Searching with the SDK

As an example, let’s look at a filter configuration file we will be using:

More on Filters 89

"search"

"=" " " "%v" "arbitrary"

"^[0-9][0-9-]*$" " " "(telephoneNumber=*%v*)" "phone number"

"@" " " "(mail=%v)" "email address"

"(mail=%v*)" "start of email"

"^.[. _].*" ". _" "(cn=%v1* %v2-)" "first initial"

".*[. _].$" ". _" "(cn=%v1-*)" "last initial"

"[. _]" ". _" "(|(sn=%v1-)(cn=%v1-))" "exact"

"(|(sn~=%v1-)(cn~=%v1-))" "approximate"

"*" "." "(|(cn=%v1)(sn=%v1)(uid=%v1))" "exact"

"(|(cn~=%v1)(sn~=%v1))" "approximate"

The tag is used to identify a block of patterns, allowing the mixing of multiple
patterns in a single filter configuration file. The filter configuration file shown here has
only one tag, named search. The patterns are regular expressions that are applied to
the search string entered by the user. The first pattern—"="—indicates that if the
search string entered by the user contains "=" anywhere, then the designated filter, in
this case %v, should be applied.

Filters are built using the text entered by the user and static text from the config-
uration file. The filter %v indicates a variable substitution. By itself, %v means the
whole string entered by the user. If we used the template (mail=%v) and the user
entered “tony@abc.com,” a filter string of (mail=tony@abc.com) would be built.

The filter %v has a series of different modifiers. Assume for the examples shown
in Table 5-2 that the search string is “this is a test.” Words are determined and split on
the basis of the characters entered in the second column of the configuration file—the
delimiter column.

Returning to our configuration file example, if the user enters a string of the
form “cn=tony” (in the pattern "="), then the first rule will be used: return a filter con-
sisting of the whole string entered by the user. This pattern allows advanced users to
directly build their own filters at run time. The next pattern—^[0-9][0-9-]*$—is
used to detect if a phone number has been entered. The character ̂ indicates to start at

the beginning and use the filter if the search string contains one or more digits: if the
user types one or more digits, then return the filter (telephoneNumber=*digits*).

The following Java command-line program will allow you to try out filters and
search commands. The program presents all the filters that match a search string and
builds a filter expression that can be issued to an LDAP search.

import netscape.ldap.*;

import netscape.ldap.util.*;

import java.util.*;

// Class to experiment with filter configuration files

public class CreateFilter {

public static void main(String[] args) {

if (args.length != 2) {

System.out.println("Usage: java CreateFilter " +

"<filterfile> <search " +

"expression> ");

System.out.println("Example:");

System.out.println(" java CreateFilter " +

"tryfilt.conf \"*peter*\"");

System.exit(1);

}

LDAPFilterDescriptor filterDesc = null;

LDAPFilterList filtlist = null;

String srchfilter = "";

int numfilts = 0;

90 Searching with the SDK

TABLE 5-2. “This is a test” search.

SYNTAX ENTITY REPRESENTED SAMPLE RESULT

%v Whole value entered %v "this is a test"

%vN Word N %v2 "is"

%vN- Word N and all words following %v2- "is a test"

%vN-M Words N through M %v3-4 "a test"

%v$ Last word %v$ "test"

try {

// Read a filter configuration file

filterDesc = new LDAPFilterDescriptor(args[0]);

} catch (Exception e) {

System.out.println("Cannot load file: " +

args[0]);

System.exit(0);

}

try {

// Construct filters from the parsed configuration

// file and the search expression from the command

// line

filtlist =

filterDesc.getFilters("search", args[1]);

numfilts = filtlist.numFilters();

if (numfilts > 1) {

srchfilter += "(|";

}

// Iterate through constructed expressions

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

String fstr = fline.getFilter();

System.out.println("Filter = " + fstr);

// Concatenate the individual matches

srchfilter += fstr;

}

if (numfilts > 1) {

srchfilter += ")";

}

} catch (Exception e) {

System.out.println("Filter error: " +

e.toString());

}

System.out.println("Search filter = " +

srchfilter);

}

}

Some sample runs and corresponding output follow:

java CreateFilter tryfilt.conf 213

filter=(telephoneNumber=*213*)

search string=(|(telephoneNumber=*213*))

More on Filters 91

The above response indicates that a number was detected and that the filter for
telephoneNumber was built. The value typed by the user—213—was inserted into a
search string. Note that the program builds a search string by prepending it with "(|"
and appending it with ")". The search string is built in this way to handle the case in
which multiple filters may be returned, as in the next example:

java CreateFilter tryfilt.conf tony

filter=(|(cn=tony)(sn=tony)(uid=tony))

filter=(|(cn~=tony)(sn~=tony))

search string=(|(|(cn=tony)(sn=tony)(uid=tony))(|(cn~=tony)

(sn~=tony)))

Let’s focus on the code used to handle the input and return these filters. Before
anything can occur with a filter configuration, an LDAPFilterDescriptor object
needs to be created. The constructor for an LDAPFilterDescriptor can take a file
name, a StringBuffer containing the filter configuration information, or a URL to
the filter file (allowing the file to exist anywhere on the Web).

The following instruction will read the file.

LDAPFilterDescriptor filtdesc = new LDAPFilterDescriptor("filename");

The next step is to call the getFilters method, passing in your search string and
the tag for the section to use as an example:

LDAPFilterList filtlist = filltdesc.getFilters("tag","search string");

This method will return an enumerated list that can be iterated over to retrieve
each filter and other information.

The following code fragment shows how to enumerate the filters.

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

System.out.println("description:"+ fline.getDescription());

System.out.println("filter="+ fline.getFilter());

}

The primary information we need to retrieve is the filter, which is obtained with
the getFilter method.

There are many advantages to using filter configuration files. They eliminate the
need to predefine searches in the code, and they provide flexibility at run time for
dynamically tailoring a query based on information provided by a user. The CD-
ROM for this book contains a graphical Java application, a screen shot of which is

92 Searching with the SDK

shown in Figure 5-5. The application takes a search string entered by a user and issues
a query against the directory. The results are displayed in a scrollable text box. The
code demonstrates use of a filter configuration file, the searching functions of the
LDAP SDK, and some AWT (Abstract Windows Toolkit) user interface code as well.
The code is presented here for review, and it will be extended in the next section in our
discussion of client-side sorting.

import java.lang.*;

import java.awt.*;

import java.awt.event.*;

import netscape.ldap.*;

import netscape.ldap.util.*;

import java.util.*;

/**

* Frame to select filters from a filter file and do searches

*/

public class FilterSearchDialog extends Frame {

/**

* Launch a frame to do searches using a filter file

*

* @param args host, port, authDN, password, base

*/

public static void main(String[] args) {

if ((args.length != 4) &&

(args.length != 6)) {

System.out.println("Usage: java " +

"FilterSearchDialog " +

"<host> <port> " +

"<filterfile> <baseDN> " +

"[<authdn> <password>]");

System.out.println("Example:");

System.out.println(" java " +

"FilterSearchDialog " +

"localhost 389 " +

"filter.conf \"o=airius.com\"");

System.exit(1);

}

String host = args[0];

int port = Integer.parseInt(args[1]);

String conf = args[2];

More on Filters 93

String base = args[3];

String authid = "";

String authpw = "";

if (args.length > 4) {

authid = args[4];

authpw = args[5];

}

Frame f = new FilterSearchDialog(

"Graphical LDAP Search", host, port,

authid, authpw, conf, base);

f.setSize(430,280);

f.show();

}

/**

* Standard Frame constructor, plus connection parameters

*

* @param title window title

* @param host host to search

* @param port port number of server

* @param authid DN to authenticate as (may be "")

* @param authpw password for authentication (may be "")

* @param conf name of filter configuration file

* @param base base DN for subtree search

*/

public FilterSearchDialog(String title,

String host, int port,

String authdn, String authpw,

String conf, String base) {

super(title);

this.host = host;

this.port = port;

this.authdn = authdn;

this.authpw = authpw;

this.conf = conf;

this.base = base;

setLayout(null);

The following block of code handles disconnecting from the LDAP server when
the user closes the window.

94 Searching with the SDK

this.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

// Disconnect from server

if ((ld != null) && ld.isConnected()) {

try {

ld.disconnect();

} catch (LDAPException le) {

System.out.println(le.toString());

}

}

System.exit(0);

}

});

The following code creates the GUI components and places them on the frame.

Label lbl1 = new Label("Search for:");

lbl1.setBounds(10,36,75,26);

add(lbl1);

srch = new TextField();

Font font = new Font("Monospaced",Font.PLAIN,12);

srch.setFont(font);

srch.setBounds(90,36,230,26);

add(srch);

searchb = new Button("Search");

searchb.setBounds(340,36,80,26);

add(searchb);

output = new TextArea(12,3);

output.setFont(font);

output.setEditable(false);

output.setBounds(10,70,410,200);

add(output);

An action is associated with the Search button:

searchb.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

String srchstr = srch.getText();

// If there is a search string, do a search

if (srchstr.length() > 0) {

searchLDAP(srchstr);

}

More on Filters 95

}

});

The following code handles reading the filter description file and creating a filter
descriptor. If the file cannot be located, the program aborts, reporting an error to the
console.

// Read the filter description file

// If not found, exit and report error to the console

try {

filterDesc =

new LDAPFilterDescriptor(conf);

} catch (Exception e) {

System.out.println("Cannot load " + conf +

" file");

System.out.println("Exiting...");

System.exit(1) ;

}

}

The searchLDAP method takes the search string from the user and builds a filter
with the aid of the filter descriptor. Once the proper search string has been built, an
LDAP search is executed:

protected void searchLDAP(String srchString) {

int status = -1;

String appendmsg = "";

LDAPSearchResults res = null;

LDAPFilterList filtlist = null;

String srchfilter = "(|";

// Check if we are connected first

if ((ld == null) || (!ld.isConnected())) {

connectServer();

}

// Use the filter descriptor to build a

// search filter

try {

filtlist =

filterDesc.getFilters("search", srchString);

while (filtlist.hasMoreElements()) {

LDAPFilter fline = filtlist.next();

// The actual filter is next

96 Searching with the SDK

String fstr = fline.getFilter();

srchfilter += fstr;

}

srchfilter += ")";

if (srchfilter.length() == 3) {

// No filters found

return;

}

// Now do the search

res = ld.search(base,

scope,

srchfilter,

ATTRS,

false);

// Display search filter

String outres = "Filter=" + srchfilter + "\n" +

"———————\n";

// Loop on results building each line

while (res.hasMoreElements()) {

try {

// Next directory entry

LDAPEntry entry = res.next();

outres += format(entry);

status = 0;

} catch (LDAPReferralException e) {

// Ignore referrals

continue;

} catch (LDAPException le) {

int rc = le.getLDAPResultCode();

if (rc == le.SIZE_LIMIT_EXCEEDED) {

appendmsg =

"\nExceeded size limit";

} else if (rc ==

le.TIME_LIMIT_EXCEEDED) {

appendmsg =

"\nExceeded time limit";

} else {

appendmsg = le.toString();

}

}

}

More on Filters 97

outres += appendmsg;

output.setText(outres); // Display in text area

} catch(Exception e) {

System.out.println("Search error: " +

e.toString());

}

}

The connectServer method is called whenever we need to establish a connec-
tion to the LDAP server:

protected void connectServer() {

// Connect to the LDAP server

if ((ld == null) || (!ld.isConnected())) {

try {

ld = new LDAPConnection();

ld.connect(host, port, authdn, authpw);

} catch(LDAPException e) {

System.out.println("Connect error: " +

e.toString());

System.exit(1);

}

}

}

We are binding with the specified command-line credential information. If none is
supplied, we simply bind anonymously.

The following two methods return a display string for the text box. They handle
situations in which no value exists by substituting a dash for the value. The format
method returns a String with each matching entry in tab-delimited format. The
returned String is directly appended to the text box by the calling method.

/**

* Format a string with attribute values from an entry,

* separated by tabs

*

* @param entry LDAP entry containing cn, telephoneNumber,

* and mail

*/

public String format(LDAPEntry entry) {

String outstr = "";

// Get the data - hard-coded attribute names here!

String name = getValue(entry, "cn");

98 Searching with the SDK

String phone = getValue(entry, "telephoneNumber");

String email = getValue(entry, "mail");

// Limit the full name to 15 characters

if (name.length() > 15) {

name = name.substring(0, 15);

}

outstr = name + "\t" + phone + "\t" + email + "\n";

return outstr;

}

/**

* Get first string value of an attribute from an entry

* or ‘-’ if not present

*

* @param entry LDAP entry containing the attribute

* @param attrName name of attribute to retrieve

* @return first value of attribute or ‘-’

*/

protected String getValue(LDAPEntry entry,

String attrName) {

LDAPAttribute attr = entry.getAttribute(attrName);

if (attr == null) {

return "-";

}

Enumeration enumVals = attr.getStringValues();

// Enumerate on values for this attribute

boolean hasVals = false;

if ((enumVals == null) ||

!enumVals.hasMoreElements()) {

return "-";

}

return (String)enumVals.nextElement();

}

private LDAPConnection ld = null;

private String host;

private int port;

private String conf;

private String base;

private String authdn;

private String authpw;

More on Filters 99

private int scope = LDAPConnection.SCOPE_SUB;

private TextArea output;

private TextField srch;

private Button searchb;

// Attributes to display for each entry found

private static final String[] ATTRS =

{"cn","mail","telephoneNumber"};

// Filter configuration file object

private LDAPFilterDescriptor filterDesc = null;

}

This program is useful as an example of working with the results from a search
and presenting them in a graphical environment. When the program is first started, a
Connect button is displayed. Clicking this button will open a connection to the LDAP
server and rename the button as Search. After a search string is entered, clicking the
Search button will cause the search string to be parsed using a filter configuration file,
and then the search will be submitted to the server. Search filter configurations provide
other functionality as well, such as filter prefixing and suffixing.

Check the reference section of this book for details on these features. It should be
evident that this functionality can make your code more dynamic in response to user
input.

To execute the program, use the following command-line option:

java FilterSearchDialog localhost 389 filter.conf "o=airius.com"

This command will present a search screen, where you may issue searches against
the directory. Issuing a search of 555 against the sample data file included on the
CD-ROM that accompanies this book will result in the display shown in Figure 5-5.

Sorting

We now turn our attention to sorting the results returned from the server. As you may
have noticed, the LDAP server does not always return results in a natural order.
Human beings generally prefer to have information ordered so that it can be reviewed
or browsed easily. The LDAP SDK provides two methods for sorting results: client-
side sorting and server-side sorting. Server-side sorting is an LDAPv3 enhancement
and is supported on many servers, including Netscape Directory Server. We will cover
server-side sorting in detail in Chapter 16. Client-side sorting is the option to retrieve
the data and sort it on the client machine before working with the results.

Client-side sorting has a couple of restrictions. First, the attributes on which you
wish to sort must be among the attributes you request in your search results. You can-

100 Searching with the SDK

not, for instance, request just the uid and telephoneNumber for your search, and then
try to sort by cn. Second, in client-side sorting, the sort will block until all records
have been retrieved from the server. With these restrictions in mind, let’s look at how
we can add client-side sorting to the FilterSearchDialog program.

The client-side sort routine needs two arrays or two single values that indicate
the attributes to sort and a flag for ascending or descending order. The following code
snippet shows the modifications to the FilterSearchDialog code that are needed to
sort by cn in ascending order.

res = ld.search(BASE, SCOPE, srchfilter, ATTRS, false;

// Since we are sorting by only one field, we do not need an array

res.sort (new LDAPCompareAttrNames("cn",true));

The LDAPCompareAttrNames constructor creates a comparator that looks at
LDAP string values in the entries for sorting purposes. The LDAPCompareAttrNames
constructor also takes a form with two arrays. For instance, to sort on both the cn and
telephoneNumber attributes, the code would look like this:

String[] sortattr = {"cn", "telephoneNumber"};

boolean[] ascend = {true, true};

res.sort new (LDAPCompareAttrNames(sortattr,ascend));

Authenticating for Searches 101

FIGURE 5-5. Results of sample query with FilterSearchDialog.

The output from FilterSearchDialogSort (the sorting version of Filter
SearchDialog) with the same search as earlier looks like Figure 5-6.

Authenticating for Searches

None of the examples presented so far in this chapter have involved authenticating to
the directory. All connections have been anonymous (not using a DN or password).
Most LDAP directories are configured to allow anonymous searching of at least some of
the information in the system, but some attributes may have access control configured to
prevent access. For instance, the corporate directory at Netscape Communications Cor-
poration does not allow anonymous connections to retrieve the JPEG photo of an
employee. Only security personnel or the employee corresponding to the entry may
retrieve this attribute. The same usually is true for the userPassword attribute as well.

If you ask for one of the required or commonly used attributes and it is not
returned, more than likely access control has been configured to prevent you from
retrieving it. We will cover authenticating to the directory in Chapter 6, when we will
be modifying data, but to peek ahead—for those who need to authenticate for a
search or to retrieve a specific attribute—the additional method to call is shown here
(indicated by bold):

102 Searching with the SDK

FIGURE 5-6. Results with client-side sorting.

ld = new LDAPConnection();

ld.connect(HOST, PORT); // Connect to server

ld.authenticate(3, authid, authpw); // Bind by DN and password

The connect and authenticate steps can be combined:

ld.connect(3, HOST, PORT, authid, authpw);

The optional first numerical parameter is the requested LDAP protocol
version. You must specify 3 to take advantage of controls and other new features
of LDAPv3. On the other hand, if the server supports only LDAPv2 and you spec-
ify 3 when authenticating, the server will refuse the connection. The default in the
SDK is 2.

The value used to authenticate to the directory must be a DN of an existing
entry. One DN in the server—the root DN (like the root user on UNIX)—has unlim-
ited privileges and does not correspond to a physical entry. In Netscape Directory
Server, the default root DN is cn=Directory Manager. The root DN is also often
called the Directory Manager.

Typically the DN used to authenticate will be that of a user needing to perform
an operation on his own entry. For example, if Sam Carter wanted to bind and
retrieve his photograph, he would authenticate as follows:

String bindDN = "uid=scarter, ou=People, o=airius.com";

// Bind password is passed to us

if (bindpwd.length() > 0) {

ld.authenticate(bindDN,bindpwd);

}

When authenticating, always validate that the password is not a blank string
("") or null. If a blank string is passed as the password, there will be no exception
thrown to indicate an invalid authentication. Instead the operation will succeed but
the connection will be anonymous. Later, when the program attempts to modify an
entry, an exception may be thrown because anonymous users do not have the right to
make modifications. We will cover authenticating in detail in Chapter 6.

Improving Directory Search Performance

As an application developer you can increase the performance of your search opera-
tions, reduce memory usage, and reduce the load on the server by observing a few
rules of thumb:

Improving Directory Search Performance 103

• Use indexed attributes

• Specify an object class in your filter to get only entries of the desired type

• Retrieve only attributes you need

• Keep the DN handy

• Use compare where it makes sense

Use Indexed Attributes

The most significant way to get good performance from the directory when searching is
to use only indexed attributes in your search requests. As a programmer you may need
to work with your directory administrator to determine which attributes are indexed
or to request that additional attributes be indexed. If you find you need to perform
searches frequently on unindexed attributes, then it may make sense to index the par-
ticular attributes. With Netscape Directory Server, you can view the access logs and
determine if searches are occurring against unindexed fields. The following is a sample
of the access log. The text “notes=U” marks a search against an unindexed attribute.

[03/May/1999:09:24:29 -0400] conn=19 op=6 SRCH

base="ou=tony.home,o=NetscapeRoot" scope=2 filter="(objectclass=NsHost)"

.

.

[03/May/1999:09:24:29 -0400] conn=19 op=6 RESULT err=0 tag=101 nentries=1

etime=0 notes=U

Specify an Object Class to Get Only Entries
of the Desired Type

If your application is working with particular types of records (for example, person
records), it makes sense to include in your filter the object class you need. For
instance, for all the records of people whose names begin with “barbara,” use a filter
such as (&(objectclass=person)(cn=Barbara*)). You can use a filter configuration
file to set up a tag for finding entries that represent people. Include the filter compo-
nent objectclass=person in the tag. The result may be that fewer records are
returned to the client, and consequently that performance is improved, particularly if
your directory stores many entries for objects other than people.

Retrieve Only Attributes You Need

Many programmers pass null as the attributes field for a search operation. The
result is that all attributes for the indicated records are returned. For a large potential

104 Searching with the SDK

result set, the performance of both server and client can be severely affected. If you
need only the name and phone number, then specify these in your search request. Keep
in mind that if you are doing client-side sorting, you will also need to request the
attributes by which you wish to sort.

Keep the DN Handy

If you are going to do anything else with a retrieved record, keep the DN. The DN can
be used to find a record uniquely within the directory without invoking a new search.
For instance, suppose you are displaying a list of names and want to allow the user to
click on a name and get all the information about that person. Store the DN for each
record in a nonvisible variable and use it to look up the record when the user clicks on it.

Use compare Where It Makes Sense

If you are interested only in whether an attribute exists and has a certain value, use
compare rather than search. A compare is a lightweight transaction with very little
client and server overhead. When entries are returned, access control must be evalu-
ated for each attribute, and client memory usage increases according to the size of the
entries returned.

Conclusion

The major use of an LDAP directory is to retrieve information. In this chapter we have
presented samples of code to direct searches to LDAP directories. We have also cov-
ered the details of processing the results, along with many tips to make the most effi-
cient use of the SDK. One of the key pieces of information to maintain during
processing is the DN of the retrieved records. With this information, any other data
can be obtained rapidly from the directory. We have also included in this chapter a
discussion of techniques to minimize impact on the directory, the client application,
and the network through efficient use of the SDK.

Conclusion 105

	C H A P T E R 5 Searching with the SDK
	Our First Search
	Host Name
	Port
	Base DN
	Scope
	Filter
	Attributes
	Search Preferences
	Our First Search Program

	Using Search Filters
	Handling Results
	Attributes in Detail
	I Want Only One Record and I Have the DN
	Searching and Comparing
	More on Filters
	Sorting
	Authenticating for Searches
	Improving Directory Search Performance
	Use Indexed Attributes
	Specify an Object Class to Get Only Entries
of the Desired Type
	Retrieve Only Attributes You Need
	Keep the DN Handy
	Use compare Where It Makes Sense

	Conclusion

