Al

Adobe

Business Activity Monitoring
Server Reference

AdobecLiveCycle® ES

July 2008 Update 1

Adobe LiveCycle ES Update 1 Business Activity Monitoring Server Reference

Portions Copyright © 2008 Adobe Systems Incorporated. All rights reserved.

345 Park Avenue, San Jose, CA 95110

Printed in the United States of America

Copyright © 2002-2007 Cognos Incorporated. All rights reserved.

555 Twin Dolphin Drive, Redwood City, California 94065 U.S.A.

This manual and the software described in it are copyrighted by Cognos Inorporated and licensed to Adobe Systems Incorporated.

Under the copyright laws, this manual or the software may not be copied, in whole or in part, without prior written consent of Cognos
Incorporate, or its assignees, except for purposes of internal use by licensed customers of Adobe Systems. This manual and the software
described in it are provided under the terms of a license between Adobe Systems and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(I)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19.

DISCLAIMER: Adobe Systems and Cognos Incorporated make no representations or warranties with respect to the contents or use of this
publication. Further, Adobe Systems reserves the right to revise this publication and to make changes in its contents at any time, without
obligation to notify any person or entity of such revisions or changes.

TRADEMARKS: Adobe, the Adobe logo, and LiveCycle are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Cognos and Cognos LAVA are trademarks of Cognos Incorporated

BEA and WebLogic are registered trademarks of of BEA Systems, Inc.

JBoss is a registered trademark and servicemark of JBoss, Inc.

IBM and DB2 are registered trademarks of IBM Corporation in the United States.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

All other trademarks, service marks, and trade names belong to their respective owners. Adobe Systems disclaims any proprietary interest in

the marks and names of others.

Contents

1 Introduction . cesssseessssssssessssnssssssssssssssssssssnns cesssseesssssnsseas . cesssssessssnnssssses 13
2 Access Filters...inniccccnnncccnnneneee . S—
ACCESS FIltEr CONAITIONS c.uvvurerrrerrireerersseisssssesssissssssissasssssssssssssns 16

Naming Users... ceeeereeaseasasananes eeeeesseus sttt saae s s e nnsanens 16

Context Filters OO OT OO OT RSO OP PR UPOTROPROPROPRORROPN 16

USEI'S @S CONTEXE couveureuernreueeneeueeuseesessesasesssessesasesstssesssesestssssssessssase s tssetssessstssetasessstsssssstasesasessssusesassssesasssastssesasesaseas 16

SUMIMIBTY wourerenrcrnireenersesssstanessessstssssessssssssssesssesesssssassesssssssssssssssssssestasssssessstsessssessssssssastasssssesssssessssssssssssassssssssesass 17

Access Filter Behavior and RESEIICTIONScvvenneensinresnerseississessessssssssssesssssssssssssssssssens 18

Creating a View Access Filter eeeree ettt bR R s R s bbb e e R R Rs et sete 19

Creating a Cube Access Filter....ncnrnneennnen. . ettt st s e st s R eaes 20
Assigning an Access Filter to Users and Roles. ... 21

3 Agentscccceeeenennnnnnnnnens cessssssssssssssssssssasanes cesssssssssssssssssssssssssssssane 23
External Sources ceeeserseasessesssans PO T TP TP P P OP PPV OPE PP PROPROPRRPROON 24

CrEATING AGENTS c.ueeeeiererrirensesessessessesssssessesssssssssssssssssssssssssssessssssssasssssssssssssassassasssssssssssssssssassanes 25

EAIING AGENTS coureetreriretssetsssssisssresssasssssessssssssssassssssssssssssssssssssssssssasssssssasasssesseness 26

4 Alerts . . . cenes 27
Creating Alerts.........ooeceneeerurevennee ceeteae RS AR RS R R R R R R e R e R R R R R Rt 28

Alert Attributes.......cceveeevererreennn. TP OP TP TP PP OP PP OPEOPE PR OPEOPEPEOPIOPRPROPIOPRON 29

Message Subject and Body TeX......ccuvrrererresneerersssesnens . 30

ALETE SUDSCIIDEIS ..uc ettt sas bt st basebaset st s bttt bR bbbttt et 31
Managing Alert NotificCation MESSAQESrvrinnrnrineissrsisssssssissssssssssssssssssssssens 32

ALEIt STALES ..ttt sisseissessesesesssssasssanns ettt ARttt 33

ALEIE ESCAIATION w.vereerreeeeeesseeeissississsssssss s ssssssssssssesssssssssssssssssssssasssassssssssssssasssssssssssssasssesssassssssssssssssssssssssssssssssasssnses 33
Consolidating Multiple Messages................ 34

Setting an Alert to Invoke an External Web SerV|ce 34

Alert Reportletsrerrenernns . ettt s R e e AR R ARt R e e ee 36

SENA AS oottt eesetss s et sbasebasesassssasesas e seeasesaseeas 36

REPOIIET FILEIING oottt ssssssssss s s ssssssssssssssssssssssssssssssssassssssssssassssssssssassssssssssssssassanssssnsensans 36
Reportlet Data Based On Option...........ccouvuue.. 38

5 Business Activities e 41
Creating BUSINESS ACTIVITIES ..vuicicicirerreseseissesessessssessssssssssssssessassases 42

Business Activity Attributes................ deteteeust sttt R st R et R et e e Rt st s et anens 42

Deleting BUSINESS ACHIVILIES.......ccvuveveeieerrisrersrnsiessessasns 42

6 Context cesesssnsssssnnne 43
HOW HEWOTKS .ottt ssssssssessssssssssssssssssssssssssssssssssassssssssssssesssesssessssssssessssssssssssassssssssssssssssssssssssnnes 44

Creating Context Tables ceeeser st s s tsnsees creerse i s b s e as s e tes 45

EItiNG CONTEXE TADIES .uveeereeirrerernnsinneesessssissssssssisssens 46

Context Column Limitations in QUEries.........cccoeeerreerecuneeens 46

Caching Context Queries ettt st et tans 48
On-Demand Caching st e R RS R RS R R AR R AR R RSBt 48

PrEfEtCh CACRING ... sessessssessssesssssessssessssssssssessasesssssssssesssses s ssasessssesssasessssssssssesssssssnes 49

7 Cubes cessees 50

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 4
IMIBASUIES ...ttt sssssssesssssessessta st sss s st st s b s bR b AR bbb bR R bbbttt 50
DIMENSIONS ..ttt ssesst st es st bbb R s b bes b seb sttt bbb ssbas 51
CrEATING CUDES ... eterestertestss st tsss st bss st sess s sass b sssssass b st s b st s s b b s e e et e bR e e bR e e b s s ben bt R tannbes 52
MEASUIE COIUMNS ..ceoeerverrieseeessissessesssssssessssssssssssessssssssssssssssssssssssssssssssssssssesssassssssssasssassssasssessssssssessssssssssssssssssssssssasssnses 52
DIMENSION COIUMNS.....ceiirireereinneisseeseisssssssssssssssssssssssssssssssssssssassses 53

8 DataTypes . . cessssss 33
Data TYPE CONVEISION ..ceuriererirrienersersseseisssssssssssssssssessses 56
EXPIICHT QST rvurrrreerierereiinsiessessssstssssesssasssssssssssssssssssssssssessssssssssessasssssssessasssassssssasssanses 56
IMNPIICIE CASEurruurrerrerrerereeseeeseeessesssesssssssssssssssssssssssssssssesssasssssssssssssssssssssasssssssssssesssssssssssssssssssssssssessssssssesssesssssssssssssssses 56
Order Of PreCEAENCE ..t sssssssss s sssnns 56
INUMEIIC.uuvuiereurrusersrisnsssssessssssussssesssssessssssssssssssssssessssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssseses 57
Third PArty DAta TYPES ..ccvvecrrerrrrssinnsissssssssssasssssssssssssssssssssssssnssasses 57
Combining NUMENC TYPES ..cvvvererrrneererersrnnens 58
CASTING NUMEIIC TYPES couveurrenereeurenesseesseensesseessesasessetssessstsssessesssessssassssstssesassssstssesssessstusesasessessssssstssesssessssassssssssesans 58

TO STHNGS ettt sttt sas e s s s st b s e bbbt es b betns 58
Decimal Precision ReSUItsc.covveerrecnrreenreannes 59
CASTING .evererrriereinesesessesesssssssssesssssessesssssesssssssssssssssesssssesssasssssssstsssssssssssssssassssssssssssssssssasssssssssssssssssssssasssssasssssassssssssses 59
MUIDIICATION woerrtrreerrrisrseiseisssnsississsessissessasssasssssssses 59
DIVISION weeteeeneeeeseenseeeessesseseessessesssessessetssessseseessesas s essesas s ess s s sttt b st as s asebasessesasesaens 59
Addition and Subtraction . 60

Al OTNET FUNCHIONS....cetetereeeeeneeseensssessissssssssssssisssssssssssssssssssssssesssassssssssessssssssssssassssssssssssssssssssssssssssssssssassasssssssssses 60
STIING eueeerererrrisersereisessrssessesssssssssssssssesssssessssssssssssssssssssssassssssssssssssssssssssssassasssasssssassssssssssnes 60
STING WIATH et ssssisssassssssssssssssssssssssssssssassssssssssssssssssssssssssssssess 60
THIrd Party Data TYPES .rirrseeresnsisssasses 61
STHNG CONCATENATION ..ttt st ss st s s s st bbbt s s st s s s bbb es b s s s st s e ssasssssnbnsntenssnsas 61
SEHNG LILEIALcceeteeee ettt sttt sssbess s sss s s bbbt sss e s esn s s bbb Rt asn s R bt et e 61
Converting Strings to Other Data Types 61
Date-Time ceetestete st e a s AR RS R SRS RS AR AR R SRR SRR R AR R SRRSO R SRR SRR R AR AR e AR R 0n 61
Converting Between Date-Time and Stringsccccc....... 62
Comparing Date-Time ValUESc.cveerrrnrinsnissrnsississssssssssssssssssssssanees 62
Date-Time ArtNMETIC ...t sissssesssessssssssesasssanns 62
THIrd PArtY At TYPES ceuceeeeeeeeerrisetiseiseiisssiseissssisssissesssssessssssessssssssessssssssssssesassssssssasessssssssesssessssssssesssassssssssssssassnss 63
TIMESTAMP LItEIAL.cuuceeeeerrereeerreesseissississssisssssessssssssssssessssssssesssessssssssssssassssssssssssssssss 63
INTERVAL Literal ceeteueei R R R AR RS R AR R R AR RS RRAER R R Rt 63
Date-Time FOIMAtTiNG .. .cccceucvrrrrnerersireneserssssesssessssessssssssesssassssssses 66
BOOIRAN ..ottt tase sttt bas bt as s e s R bRttt 68
9 Dimensionscceeccennnes . . . ceessees 69
WAt @r@ DIMENSIONSTeeriereeerrierseisnsisseessssssssssessssssssssssesssassssssssasssasssssssssssssssssssssssssssssns 70
LOVEI HIIAICRY c.uceeereeerceenereeeraeesseesaesssssessessssesssssessssesssssssssessssesssssessasessssesssssessssesssssessssesssssessssesssssssssessasasssssssssnessas 70
ALIAS NAIMIES ...cveireerseisseeissesssssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssassssssssssssssassssssssssesssssssssssssassssssssssssssassssssssssssssns 71
OFAEI BY ourtereereneinseenssasssasssssessesssssns 71
GO CATRGOIIES cuuveirrrincrnnissersessesssisssassssssssssssssssssssssssessssssssasssssssssssssssssssssssssssssssssssssenss 72
KEY COIUMINS oottt sasestssesssessssssssesssesssssssss st asssbssesasessssabasasssessssesssesssessssasssessssssssssssasssssssssssessssssssesssess 73
Creating DIMENSIONS.... ettt sseasse s ssssass st ssessseses s sss s s sastass s sastssssssesssesssssssssses 74
10 Events........... veeee 76
HOW T WOTKS .ccerreircseiseissssisssissssssissasssassssssssssssssssssssssssassssssssssssssssssssssssssssssass 77
EXTEINIAI SOUICES.....ouneeneeeeeeetietiseisetie ettt b seesse st st ass bbbt bbb sttt bbb a et asets 77
EVENT PrOPEITIES.....ceeeeicererecieisisietsessisssessesssssssssesssssssssssssssssssssssssssassasssssssssssssssssssssnssses 78
CrEatiNG EVENT TADIES ...ttt s sss s sassssss st ass b s ass st s s b ass et e st asn b sesntans 79

Adobe LiveCycle ES Contents

Business Activity Monitoring Server Reference 5
EItiNG EVENT TADIES ...ttt ssans 79
11 FlatFiles cernee 81
How It Works eeeteteestere sttt st ee e b e R bR AR AR Rt et bR e e et s bt 82
Flat File Event Tables eettettetests sttt st E AR AR e b e e R AR RS AR AR AR A e RS ARttt b e e A e et entens 82
Creating @ FIAt-File SOUMCE EVENT ... rerenenseseisssess 84
MUIEI-ROW EVENLES «.cucverierererssiensiessses 84
TimME ZONES FOr FIAt FIle EVENTS ..ottt stsssnns 86
Flat File Agents . ettt b s bt s R tans 89
FIlE PrOCESSING...cuuuereeeeermsreeneesneessesessesssessssesssssssssessssesssssessasesssssssssessssessssesssssessssessssssssssessssssssssssasessssssssssessssessanes 89
Prere@qUISItesmveeveenrensesesensensersesesensessessenees seteee sttt st R st s st sneas 89
Creating a Flat File Agent.....nennenernseisssesinnns ceeeese s R R bR b ee 89
Configuring the File Agent Program.........ccsnssens 20
DEIMITEA FIlES cuuruetsrrrrereisserssreseissersssssisssnssssans 93
FIXEA-WIALN FIlES vttt ssassssssssssassssssssssassssssssssssssessssssssssssans 94
XML Files . ettt s st s ettt tes 95
KPATNS .ottt sttt b s st s s s ss s e ss b e bbb A bbb e s R e ae SR AR e bR bR e R AR bbb ans 95
XML Field Information OO P RO OP PP O PP TP PROPR PSRRI 96
XML Data TYPES ..cvuereererrerrsissssissssssssesssssssssssssssssssssssssses ettt sttt ettt bbb e bRt es 926
How XML Files are FIattenedverereveronsrnnennerssrnsssssssssssens 98
12 Formulas..... . . cessessnnnnneee 108
FUNGCLIONS ..ttt ssss s sssssssssse s sssssssssssssssssssssssssssssssssssssssessssssssssassssssssssassssassssesssssssassesssssssonsasans . 109
Function Types.......ccceevuunee ettt ittt AR AR AR RS R SRR R R A SRS R SR e AR AR E e R Rt . 109
Scalar e et s e e b R s R bbb e et Res .. 109
Set ceeteee ettt st st AR A AR R s A AR AR R SRR R A AR R e AR R e bR H ARt AR Rttt . 110
RANK oottt ssessssstess s sasssessssssesssssasssassssssassssssens . . 110
Moving Set......vrvrerrerrenrennes . 110
TUMDBIING SEU .ourieeeeereeecereerensseesssenssesssssssssessssessssessasessssesssssens . . 110
FUNCEION Cat@QOIIES ..ucvuveeeererrerereeersissssessessessssssssssssssssssssssssesssssessesseses 111
13 Functions.. . . veeee 114
ABS sttt e eneee ettt s ettt a s e ees . 118
AV G oottt sssssss s s ssssssssss st ssssass s sssssass s sass s sbessass s s e e a s bR R AR AR bR bR bR bRt aes . 118
CASE ottt st s e s e s A s R AR R SRR e AR A AR A e bR A e s R bRt e 120
CAST ottt sssssssssssssssassssssssssssssssessssssssssssssssassssssssssasssssssssssssssssssssssssasssssssssssssssssessssssssssssssssesssssssssssssess . 120
CEIL ceteeiereeeeeseieneesssssesssesssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssesssasssssssssssssssssssssassess . 121
CHARACTER_LENGTH ceereeerserssasraens . 122
CONGCAT sttt st ssss s sass b st e s ssssass s s s sasssessasssasssssasssanees . . 122
concatList . . 123
CONCATSEL ...ttt s ssss s st sss st s sss sttt bt s ass bt s e e bR et s s st ssesat s snsstsntss s st s sensasanssssassssssssnseas . 124
COUNT coccrreiseissesssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssssnssssess . 125
CURRENT creeeseressassassressens ceeers bR R a s s e es . 125
CURRENT_TIMESTAMPorrrrerereinsrereisssissssssesssssssssssssssssssssssssssssssssssasssssssssssssssssassasns . 126
CURRENT_USERttt tsstsssassssssssssassssssssssases . 127
DATE_ADD ...oerretenstesresissssssssssssssssssssssssssssssssassssssssssans . 127
DATE_DIFF ..ooeetereertensreerssressrrssesssenssnees . 128
DISPLAY_MONEY......cooverrrrrrrrrerererereneens . . 129
EXP oo reisensetssisssssessss s ssssasssssessssssssssessssssssssssssssssssssssasesesss s ssas et s s st s R R AR R R R s SRR R R AR n bR . 132
FLOOR ceeteeetaee et R s R SRR AR R AR AR AR AR R R AR e R R R R R R bR b n Rt . 133
gamMMADIST 134

GREATEST ..o rtrtretisersssessessssssessesssssssssesssssans . . 135

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 6
[S_RAISED .coeeeenreeereentesesseesseanstssesasesas s eassesasesssess s s s s s e s tsse s s tss s s s e ass st ase bbb s saeen 136
LAST_DAY e teeereeserseenseesessesssesssessesasesastssesssesestssssssessssasssasessesssesessssstasessssssstusesssessssastssstssesasessstssesssessstssesssessstssesssessesssesanees 137
LEAST eetuetseueeus e s R a AR R R A RS RSeE SRR R AR AR R ARttt ee 138
LOG.......... ceetusetst iR AR a e R SRR AR R AR AR R AR S RS s e R s R SRR ARt ee 139
[OGINOIMNDIST ..uurvereererrsneesseseissessssssesssssssssssssssssssssssssssssssssssssssassssssssssasssessssssssssssssssssssssssssssesssssssees 140
LOWER ...eieieirenrennenseissssesssessassessessssssssssssssssssssssssessesssssessssssssssssssssasssssssssssssssassssssssssssssssassssssssssasssssssssssssssssssssssassasssssssessssseses 141
LPAD coeeeettreereensemseesessesseassessesssassessessss s s tssesas s ess s e s e eSS 142
LTRIM oo eeireeestuseeaseestseeaseses s assessssass s essetssesasessstsses st s s s st e e se bbb bbb s asesaens 143
IVIAX <ottt taseassesse s tsse st s e s SRR AR bbbt R ettt 144
INEAIAN cevverriereerrieseessessssssssassesssssssssssssssssssssssssassssssssssssassssssssssssasssasssessssssssesssssssesssassssssssessssesssessssssssesssessssssssesssesssssssssssasssssssss 145
IVIIN oo tterteeeseisesesssssssssessssssssesssssssssssssssesssasesssssssssssssssssssssessesssssesssssssssssssssesssssessssssssesssssssssssssastsssassssssssssssssssssasssssasasssssssnsans 147
IVIOD oieeeresenssesesssssssssesssssessesssssssssssssssesssssessssssssssssssssssssssasssssssssssssesssssssssesssssessssssssesssssssssssssasesssassssssssssssssssssasssssasssssssssnsans 148
MO c...eieeeeeeeasetineeessetssetuseeaasetsseeasseaase st eas e as s bbb b s bR s s AR e bbb R bbbt st b 149
VIOV _FUNCEION et sess e sssssssasssessasssssssasssesessassassssssssassassssssassssassssstassssssassssssassssasssssassssssssssassssssasssssssssssasses 150
TIME-SEIES SPANS ..cuvreirrrrrereereienireissisisssssssssssss s sssssssssssssssssssasssesssssssssssasssssssssssssssssssssssasssssssssssssssssssssssasssssssssssssnsnssns 152
VIBW WAINING ccrirrnirimcecieiecietsesestsensessssessessessssssstssessssssstasssssessstasssssesssssssssstassssssssstasssssessssssssssesssessssssssssessesass 152
INteracting With GROUP BY ... eecnecisreseesseeisessessssssasesssessssssssesssessssssssesssesssssessesssessssssasssssessasssasesssessssssssesss 153
MOV _AVG..couirerrreinrieisesisessessesssasssassassssssssssssssssssssssssassssssssssssans 154
VIOV _COUNT .c.oeeterrencemreensteeessessessessesssesse s esssessesasesssessesssesssessesssessssastassessesasesasessesasesesessesssessstssssnsessssssesasessesasesasesssessessssans 155
VIOV _IMIAX ..o ttereeneenctusesesesseasessessseas s sesse s sss st sss s st s e sttt b st ssabasebntans 156
VIOV _IMIIN c.oueriniiriereensenseiesesssessesssssssessesssesssssssssssssesassssssssessssssssssesssessssasssssassssassssssssessssssssasessssssssssssssasssssssssssssesssessssssesssassssass 157
VIOV _SUM .ccuiiieireensenneiseissessesssssssessesssssssssssssssssssssssssssssssssssssssessssssssssessssssssssssasesssssssssssssesssssssssssssssssessssssssssesssassssssssssassssass 158
MOV_STD_DEVIATION ceeteeu et st a AR e AR RS R SR SRR RS R RS R R SRS AR s bR bR E ARt 159
MOV _VARIANCE. ... eereeeeeecnreeeeieenseseesse s esssessesasesssessesssesssessssssessssassasstssesasesesessesssesssessssssessssssssastssssssesasessssasesasessesssessssans 160
INTILE <o eeeeeeecseensereesseensessesaseassessesssesas s essse s s ass s s e s s et s s et a s b b s saeen 161
POSITION eetuetes et e A AR AR AR E SRR RS RERebaseReEaaseR et bares 163
POWERouiteireisisetseisisessesss s sssessesssesssessesssssssssssssssssssssessssssssssessssssssssessssssssssessssssssasesssassessssssssssesssessssssesssassssssssssassesssssssess 164
PREV .oneeeireireiseisessessessesssessssasssssessssssssssassssssessssssssssessssssssssessssssssassssssssessssssssssessssssssassssssssesasssssassesssessssasessssssssasssssassessssssess 165
PRIOR _VALUE.......orrerrereirisinsesssessessssssssssssssssssessesssssassssssssssssssssssssssssasssssssssssssssssssassssssssssssssssssssssssssssssasssssssssssssns .166
RANK ceetseresea et R R R R SRR R AR R AR AR R Rt 167
RATIO_TO_REPORT ...oeteeereeeeuneemresssesssesseassessessessstssesssessssssesssessssssesssessssssssssesssessssastsmstssesssssssessesssesssessesssesassssssssessesssesaees 169
ROUNDcoeererererreennes ceetueb st u et AR AR RS E R R AR AR RS SREREAReEAReR ARt Rt 170
RPAD c.oceeretreisstnsesseiesessesssessssasssssessssssssasessssssessssssssssessssssssasessssssssassssssssessssssssssessssssssasessssssesassssssssesssessssssesssassssasesssassessssssess 171
RTRIM coceeetretereenetsetassiesessesssessssasssssesssssssssssssssssessssssssssessssssssasessssssssasessssssssssessssssessssssssasesssessesassssssssessssssssssesssassssassssssssesssssaness 172
SAFE_DIVIDE ...oeeererereseiseeserssesssessssessessessasssssssssssssssssssssssssssasssssssssssssssssssssssssssasssssssssssssssenss 173
SIGN ettt s et ess s tsseeas st as eSS eSSt R et 174
SQRT ettt es s aesesseesse st ess s sseass st ss e e R RS RREREsRS RS RREReREEReRReeR ARt R st 175
SUBSTRING ... tieeeeureenreuseneensessetaseassessesssesasessetusesastssstssesssessssssesssessesssssasessesssesastssetssessstssesssessesusesasessstssesasessstssesasesassssesssessstans 176
SUM ottt istasssasessssasstssessssssssssessssssssasssssasssssssssssssesssessssssssssessssssssasessesssessssssesssessssssessssssssssessssssssssesssessssssesssassssass 177
SUM_OVER_GROUPSvirrrrrererretssisessetssesssssssssesssssssssssssssssessssssssssessssssssasssssessssssssssssssssssssssssssssessssssssssessssssssassssssssssass 178
STD_DEVIATION ... ririrererersreserssseiseseisessessessesssssssssssssssssssssessassasssssssssssssssenss 179
TIMESTAMP_DIFF .ooeeeeetseerereetseessensesseessesssesseessessesssesassssssssessstassessesssesssssstsssessesastassessesssesssessesssesasessesssesssesssansessssssesanees 180
TO_CHAR ettt essesssesssesseassesss s sessess s sss s asse sttt s e bR b bbbt b b saeen 181
TO_DATE oottt easstssesase s tsseasse st ass s st bbb R bbb bbbt b s b et beens 182
TRUNC..... ceetuset st eR AR AR AR e ERR ARA RS R R s e S e R SRR AR ARt 183
TUMBLE_AVGi...ccrrireisiseesessessessssssessssssssssesssssssssssssssssssasssesssssssses .184
TUMBLE_COUNT ...cvtierererrencisessessessesssssesssssssssesssssssssssessssssssssssssssssassassssssssssssssssssssssssassssssssssssssses 185
TUMBLE_IMAX .ouemeererseneensetseesseesseseessesastsseessesasesssessesssassesasessssssesastssstssesssesssessesssesssssssassessesasesssessesssesastssesssesassssssssessssssesanees 186
TUMBLE_IMIN wcoeeeeeieesenseenseeseesesssesssessesssesssessesssesssessssssessesssesassssesssessstssssssesssssssesstsssssesastssesssessesssssssessesssesaess .188
TUMBLE_SUMcoieirieesetseuseensessstusesssessstssesasessstssesssessssasesasessssassssstssesasesastssesssessstssessstssesasessstssesssesastssesssessssusssnsessssasesaees 190
TUMBLE_STD_DEVIATIONcrtreurenreresenseessessseussessessssssssssssssssssssssssssssessssssssssesssssssssssssssssessssssssssessssssssssssssssssssssssssssssassssssss 191

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 7
TUMBLE_VARIANCEcoiiretueteeeusecueeeseessetusssessessssssssssssessssssasssasessssssssesssessssssssesssessssssssesssessssssasessssssasssasessssssssesssasssssssseses 193

UPPER .cooerereeetiseisesississesssesssssissessssssssssssesssessssssssesssessssssasessssssasssssasissssssesssassssssssesssessssssssesssessssssssesasessssesasessssssssasssasssssssseses 194
VARIANCE ...ttt issssisss s sasssissssssassssssssesssessssssssesssesssssssesasasssssasessssssssssssasssessssesssesssessssesssasssssssesasesssssssesssaes 195

WIEIG wovvreeveeenveeeseseesensssesessssesss e nsseses s e85 5585585585588 AR SRR AR R 196

14 HTTP Post . cessesesenenees 197
HOW T WOTKS .ottt setssecissessse s e sas e st bss bt s s bbb e et bttt asetes 198

HTTP POSE EVENT TADIEScoueerieeeieeieeeeseeeseciaseeseceeseasetase i et sissesasessssesasesssetsssssssesssetassssssssasesusssssesasessssssasesssasssssssseses 198

Creating an HTTP POSt @VENT LaDIE ...t ssssssssssssssssssssssssssasssanees 199

HTTP POSt COIUMN INfOIMALION c.ucvureereeececerecscieiesssssissssssssssssssesssessssssssessasssssssssssases 200

POStING 1O @N HTTP POST @VENTueeeeeeicencreieeneeetiesntasetsesssssstsesssessssssssssesssssssasssssesssessssssesssssssssssassessesssssaees 201

POSTING 10 MESSAGE FIEIAS....uueverereereirerssenseissiseisssissssssssssisssssssssssssssssssssssssssssssssassssssssssssssasssssssssssssssssssssssssssssssssssasssns 202

POSEING VAlUES IN ThE URL ...ttt sssississssssissessssssssssssssssssssssssssssssssssssns 203

Multiple Lines (EVENTS) Of INPULccvvrrrereienrinssrernsissenssssisssesssssssssssssssssssens 203

15 Java Messaging Service (JMS).......... . ..204
HOW I WOTKS oot ssssssssesssesssassssssssssssassssssssssssessssssssssssessssssssesssassssssssassssssssssssases 205

JIMIS EVENT c.coreeceereeeencnseesessesenssesssesssess s s ssseassasss e asssssesestassessesasesesassesssesesssssassessesssesssessesssesastssesssesssesssansessssssessnees 205
LIMIEATIONS careereeeerceecrceneeesemeeseneseseesesseessesesse s s s essessse s essesss s s ass s es st ess s s s e se s s s aasessessssansesesssesasessessss 205
PIEIEQUISITES w.euevrierrieisrinsissinseisssssissnsans 205

Creating @ JMS EVENE TADIE ...ttt s ssssssssssssssssssssassssssssssssssssssssssstsssassssssssssssssessasssssssssasssanees 207

JMS Column Information 208

Mapping JMS Data Types.....cccccveevrerrenresensernes 209

JMS Queue Agents.......cccveveuneen. ceeteeu et e s R AR R AR RS AR SRR RS R SRR SRR R SRS AR s R AR AR AR st 210

JNDI Properties For Connecting to a Remote Namespacevineenersesensesseesenns 211

Creating @ JMS QUEUE AGENT ... rrieieineiseiseisses 212

JIVIS TOPIC AGENTES wcuereeeteissisesisseissessississsesssssssssssasssssssssssssssessssasssssassssssessssanes 213

JNDI Properties For Connecting to a Remote Namespaceccccoeeureuneen. 214

Creating @ JMS TOPIC AGENT ... ceeiceerseieesesssesstssssstssessssasstssesssesestssssssessssssssssessessssssstasssssssssssssssssssssseees 215

MesSage DriVEN BEANS (IMIDB)cvieeiniseeississenesssess 215

IDBC TADIES «.coeereeeeeineeneiaseiseisesisssise s ssssssssesssessssesssesssassssssssesasssissssssasssssbesesssassssssssasssessssesssasssessssesssesssssssesasessssssasesssaes 217

CONEEXE TADIES ..ottt sa sttt bsse st s bbb bbbttt bnss 217

Event Tables ceetaetas et AR S R b s bR baes 217

Creating a JDBC Source Event or Context Table........enennrnneensersnnene 219

QUETY SOUICE .cuereeerenrreserssiesssessissessesssssssssssssssssssssesssassseses 220

EXQMPIE Of CONTEXT ..uuvvrrrtrrreereestsssesstsssasssssssasssssssssssssssssseses 220

Example of Event Using a Polling Query....... 220

POIING thE JDBC SOUICE ..uueeeerereerisstrssss s sssasssssssesssssssssssssasssnsssssasssassssssanns 221

STOTEA PrOCEAUIE SOUICE ..cueuerreerrereeseinsiesssississssssssssssssesssessssssssassssssssssssasssassssssssssssssssss 222

Example of Receiving Context Using a Stored Procedurenreenseenseesneenssennes 223

Example of Receiving Events Using a Stored Procedure.........oocceeveenrrnreesnsennes 223

MaPPING JDBC DAta TYPES .cuvvrrererrirerrinsensessesssisssnss 224

IDBC AGENTS ..orierrieerereereistireissssssssssssssssssssstssesssssssssssassssssssssssessssssssssssssssssssssssssssessassassassssssessssanes 224
ATETTDULES oottt st s bbb st s e s e e bbb a sttt 225

Creating @ JDBC AQENT ...ttt tasesssessstssssssesss s sastasssssssessasssssessssssssssesssesessassasssssssssssesees 227

17 JDBC Access to View Data........... «..228
CUASSPATN .t isssess s sssssssssssssssssssssssssssssssssssssssassssssssssasssssesssssssssssssssssssessssssssessssassssssssssssssssssssassessssnsassens 229

IDBC VIEW INTEITACES c.ouvverrreeerieeieeeiissesissesiisesssssssssesssssessssessssessssssssssessssssssssesssssssssssssssessssasssssssssassssessssssssssessssesssssessssessss 229

Data TYPE MAPPINGS ..ceceeerenenirreriesersesesssessessissesssssessssssassessessesssssssssssssssssssasessesstsssssssssssssssssesssssssssssssssasssssassssssssssssses 232
getColumns() Column Summary 232

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 8
DATA_TYPE Return Values........cccccconeeuee. ..233

JDBC ACCESSOI EXAMPIES ..ceeeerrererrrrsiensissessissssssasssessssssssssassssssssssassens . 235

JAV s R AR R bbbt .235

Example: Establishing a connection to the BAM Servercoecvneeennnens 236

Example: Querying the Contents of @ VIEW......eeereeenneenneenseenneenn. 238

Example: Querying a View’s Column SPeCifiCatioNsecuceeeernneceseceserssesssseesssessssessanes 238

Example: Querying Column Metadatac.cueweerrnnrneinsissrnssses 240

Example: Querying View Metadatacccooeereeunncs 241

T8 ODJECLS .cccurrricccccnnnnecsssssnsreecsssssssesssase 243
ODJECE STATUS ..ovrverreerrieeeiseiesssisssessesssssssssssessssssssssssssssssssssssssssssssssassssssssasssassssssssessssssssssssssssasssssssssssssssssessssssssssssesssassssssssasssssssss 244

ODJECE NAMESreereeirieesseisssssesssessssssisssassssssssssssssasssess 245
RESEIVEA WOIAS ..ottt ssessass s asssss s tessessassass st ssbes s besbassassass s sss s s besbesbasssssasssessstesbessessassassassanssnssnsens 245

ODJECE NAMESPACE. ... rtrrerrirrerrerssisssesessssisssassasssssnsessens 248

19 Operators and Constants . wee 249
Numeric Operators rreeeesnrensrsaenseaes .250

PrefiX OPEIAtOrSuvveeeresrestesseesssssesssesssssssasssssasssasssessans .250

Infix Operators ceettee bt it s a e Ae s e R A AR SRR bR AR RS At be SR AR bbb AR b R bR R bR e e R b Rens 250

STING OPEIATONS c.uvurereeeerirrerseiseissssissssssssssssssssssissassssssssssssssssssssssasssssssssssssssssanss 250
COMPATISON OPEIATONS...ucvuevrererrrireississssssessssesssissassssssssssssessssssssssssssssssssssssssssssssssssassasssssssssssessanes 251

LIKE OPEIATON.c.uuieeerererrenriasensessssesssasssssessessessessesssssssssssssssessessessesssssssssssssssessesstssesssssssssssssssessessessssssssssssssssasssssasssssssessssses 251

LOGICAl OPEIATOIS ... ceuveeenrerseriaeresseeisessssesssssesssesssssessssessssesssssssssassasesssssssasassasesssss s s sass s b bR ase s s bassssass 252
CONSTANTS..coucereeeercemeenereessressessessseesessesssesss s asseses s asses s s s ass s ss s s e s R AR R Rt R s assesatnes 252

20 PermiSSiONScceeecccccsssecssssnsssnssssnsssssassssssssssssssssssssssssssssases . cecceennnnness 253
APPIICALION Of PEIMISSIONS ...ttt sssassssssssssssssessens 254
ACCESSING POIMMISSIONS....citrrriririrenrisineisessisissssesssssssessisssssssessnssssss 255

Class Level Access Permissions ceetus et s RS R s RsReER bR R ARt 255

CrEATING PIMNISSION .eeieieererereiseissiseisisisesesssasesssssssssssssssessssssssssssssssssssssssssssssessssssssssssssssssssssssssssssassssssssssassassassssssssssssenss 258
GraNTiNG PEIMNISSIONScuvureerireisriserssiersessissesesssssesssssssssssssssesssassasssssssssssenss 258
PerMISSION RESTIICTIONS «..cuvenerreeeeeecmreenrerseeseeneesseeseeseessesasesssessesssesssessesssessetsssessessesssssasessssasessssssesssessesssssnsessesasesasessessnes 259

Permission Inheritance and Dependencies 259
Dependenciesrcnresensennns .259

27 Portal Server INtegrationccccccccssecccccssnssecssssssssecss 261
BEIOIE YOU ST w.eeureeeeeiceeeeieeeiesiseesseessssessssesssssessssessssssssssssssessssessssssssssassssssssssessssessssssssssessssessssssssssessssssssssssssessssesssnss 262
Integrating with BEA WebLogic Portal Serverccouveveuneee 263
Converting the [aVaJSRTO8.WANc.rrrneinsinssnsses 263

Deploying the lavaJSR168.war into WebLogic Portal Server 263

Integrating with IBM WebSphere Portal Server 264
INtegrating With JBOSS POITAl SEIVET ... eeeeirereseeseeseesssessssessssessasessssesssssssssssssssessssssssssssssessssessssssssasessanesssass 265

Creating Multiple Portlet Instances on a JBoss Portal Server 266

22 PrOCESSES wuuueeeeerrreeccssssssssnnsssssssssassssssssssssssssssssssssssssssessassssss . . ceeeee 267
HOW It WOTKS ..ottt isssssessssssssessssssssssssssssssenss .268

Creating and Using Processes............ ettt sttt sttt st s R st bR e st as 269

Event Streams ettt e Rttt as 269

CONLEXE SEAICN TADIE.c.. o esse e sssessssessseesssesssesssessssssassassssssssase s ssssesssesssassssssasesas .269

PrOCESS DEFINITIONS coouveverreererineeineeessesissessssesssesssseessssssssessssssssssesssssssssessssssssssessssessssssssssessssesssssssssessssessssssssssessssesssnse 269

PrOCESS DIAGIamMS...uucucicicinrinsenerseissisissesssssssssssssssssssssssssnsns 271

23 Query WindOoWsS.....cccceeeccnssccsessecsssssesossene . . w272
OVEIVIBW..c.eruriueeeerersesensesensessessesssssesssssssasessessessesssssssssssssssessessesstasssssssssssssssasessessessesssssssssssssesssssasessesssssessssssssssassasessessesssssssenes 273

Adobe LiveCycle ES Contents

Business Activity Monitoring Server Reference 9
Window TYPeS......ceveereererenns cetree s e et e ees 273
Window Declarations and References.........oercnrvnsssensenssennenns 274
IN-LiNI€ ettt asstse s ss s e s sssssssssssassssssssssasessssssstasessssssaas s s ssn s bR b s e R e R et E Rt R st R et E R a et st as 274
REFEIENCE DY NAME .ottt ssasesssssssssessssssssssesssssssssse s ssase s s s bsssasasessasesassssssssesssssssase 274
MUIEIPIE WINAOWS PEI QUETY ..cucurireeinresenssisssassesessssisssns 274
Extending One Window Definition with Another........... 275
RESTIICTIONS c..eeeeeerreirriseieississssssssessessssss st ssessssssssssssssssssssssssssssssones . 275
Event-Series Windows...... ceerns st tesrans . 276
EVENTS ClaUSe..eeeerereereesienessenssnssssassssssssanns . 276
CUITENT EVENT....ceceteseeseses s sssssssssasens . 277
TIME-SEIIES WINUOWS....ucvrreerrrisrnirsssssisnsisssess . . 277
RANGE Clause......oovvneerernernseerennns . . .278
Which Events Are INCluded? ... nencrnennsnesssisssssssssessssssssssssens 279
ORDER BY ClaUSE...vuirerrrrerrsirsisssssinsssessssssssssssans . 279
OUL-Of-Order ArfiVal.....oeeereeseeesiessiisssssessssssssssssssssssssssssssssssssssessssssanns .. 280
DeSCENAING ..cevurrrrnrrrrerrnerrseresensseesssesssssesasenens .. 280
NULL Value Timestamps eertertestes st aesaestestens . 281
INTEgEr TIME-SEIIES ...vvveerrrrrrerrennerserssrsesssessesssessesssssesssssenes . 281
WiINAOW PartitioNs....rneinrnerssissenssnsissens . 282
PARTITION BY Clausecocccomeeereerecenenns .. 282
View Update for a Simple GROUP BY........uveorreonrrerneesreserenne 283
View Update for a Partition with Frame REference ... enrenneeneenseesesssssssessssssssenns 283
View Update for a Partition with Operator Reference ... ceecnrecnsesneenseessesneens 283
Advantage of Partitions OVEr GrOUPSc.cerrissenssens ceerresrss s s bssasraes 284
Using Windows to Expire GROUP BY 284
Historical Results from Partitioned Views 284
Window Advancementeeeneeesseesseessesenns .. 285
SLIDE ClAUSE...ueesereetseersresstssessssstsssasssssssssasssssassssssssssassssssssssasssssssssssssassanssasssensans .. 285
Tumbling Windows ettt st es st saes ettt s s beees 286
Trailing Tumbling Windows......... . ceerese st saesaens 286
TUMDIE FUNCHIONS «.cuverieeriireinseesississssssissns 287
Window Update REfErENCE ...ttt ssssssssssssssssssasssasees 288
REFERENCE ClAUSE c...cuvveeeeeeereeeseesseesssssssesssessssssssssssasssasssssssssssssssssssssssssasssssssssssssssssssssases 288
WINAOW INIIAHIZATION ceevverrierereirreessetssisesssssissessssssesssessssssssesssasssessssssssesssssssssssssssssssssssssssssnes 288
INITIALIZE Clause.....ovceereeereeernereneens . cretrse et s s aa s s 289
ANOTNET EXAMPIE ouvererreeirriereseisses 289
24 Reportlets . cersnsseecceess 290
CrEATING REPOITIETLS ..uceererete sttt s ssss s ss st s b sss s s bbb e bR bRttt b s asnbnnses 291
REPOITIET ALLIIDULES ..o assssssssssssssssssssssessssssssssssesssssssssssssssssssssessssssssssssessssssssssssassssssssassssssssssssases 291
EXEErNal REPOITIET ATLIIOULES ..ouceeeeeeceteeeeteetes sttt ass s s b st sassasssss s bas s s s s ass s es st bassassassassassessntas 293
REPOIMIET VIEWS ...ttt sssssassassassssssssssssssassassssssssssssessessassassassanssnsens veerseesrssasaaseasanssaseses 295
25 ROIES ..ccuerrescnsicscnnnecssnnsessnssessnssasssnsssssassane . cessessssssssssssssssssecss 296
OVEIVIEW....ueereteriseisrssesessssssissanns ceetetues it ettt AR AR et bR AR AR ARt b A e Rt b et 297
CrEATING FOIES..u.eurreenrrereriiserssetssseessseessesssssesssessasesssssessasessssesasssesssse b s e s R R AR RS RRR bR R b0 .. 298
ROIE ATLIIDULES c....eeeveetrrerrtnetsssss st sssstsssssssstes s sassssssassbessssssassbesssesssssssssessasssssssssassbasssessansssssssssasssenssnssssssessanssasssensenssaness 298
26 Rules . ceeess 299
Creating Rules.......ccvervrrrrrrrrennn. ceerere s R bR R bR e es 300
Rule Attributes . ettt bt e R e A bR AR A bbb s R tans 301

RUIE CONAITION ettt asiessasessastasssasessassessssesasssassasassasssssssssssasssssssssssasassssassssesssstassssssnssstassssesassssssssssassssasns 302

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 10
RUIE ACTION ...ttt isssesssessasssssssssasssssssessssssssssssssssssssssssnssssssssaness 302

SIPECITIC OCCUITENCES .ouveevereerensirssisssssissstssssssss st sasssssssssasssessassssssssssasssassssssassssssssssssessssssssssasssassssssssssensanssssssesssnssenees 303

Monitoring Alerts ceeteretss it et R e bR AR R e AR e E AR A e AR A AR R AR R et s R e en 303

SPECTIC ABIES oo b sssssssss s sssssssssssesssassssesssassssssssasssasesssbesasssesssssbssas e ssssssssasssasassssssesssssses 304

MONITOIING ThE SYSTEM LOG c..uvurierririineinsinsissensessssissssessssisssessess 304

27 SAleSFOrCE uuierccnniesscnsnessnnsesssnssesssssessssssssssssssssssssssssssssssssasses . . ceeess 305
Creating @ SAIESTOICE AGENT ...ttt ssssssssssssssssssssssssss s sass s sssss s s s sss s s s s sssassssssssssesssssssnns 306
Importing Salesforce EVENts and CONTEXLScovrrrvercnrirnrinssnsisssens 307
SaleSfOrce FIAttENING FUNCHON. ... eeeeereeeeseceseessseessse s sssssssssessssesssssssasessssesssssessasessasesssssssssessasssssssessasesssssssssnens 309
SAlESTOrCE PICKIiSt FUNCLION c.oeveeeeeeeeeeceeesecessississssississssssssssssssssssssssessssssssesssessssssssssssssssssssssssssssssssssssessssssssssssssssssssss 310
Salesforce AdMINIStration CONSOIE ... st sessasssssssssssssssssssens 312

28 SAP CONNECLIVILY .cceeerrccsccnssnessscnnsssncssssssssssssnsssssssssssssnes . w..313
Creating an SAP Agentceeenieneeeennene eeetetuee i et e e R e b AR R ARt e bt bR e ARt en bt 314
IMPOITING ODS ODJECLS ..ourvrreriertreressisstssssstssassssssssssssssssssssassssssssssanees 315
IMPOITING OLAP CUDESevrreeereenseernerrisesessesssesssssesssessssessssessssssssasessssssssssessassssssssssnesssssssssessasessasssssssessssesssssssasessasesssass 317

29 Scenarios . . R A £ -
CrEATING SCENAIIOS ..vuveivcirersirseissiseissiseisssassssssssssssssssssssssassssssssssssssssssanss 319

SCENAMIO ATLITDULES «.ouverriesetre st issnsensens 319

DEIETING SCENAMIOS .uuevurerrirrtrsrersisssssssssissssssssstssassssssssssassssssssssassanees 320

30 SELECT .iiiiiiiieceeececenssns 321
SYNEAX wrururerreuruserssessnsssessessssssssssssssssssssssssesssassssssssssssssssssssssssassssssssssssssssssasssssssssssssssssssssasssssasssssssssssssssssssssssssssssssessnss .322

SEIBCE LiStuuruurierurrrersisrersrsssissesssssssssssssssssssssssssssssssssssassssssssssssens .322

CASE Expression . ceetetu et sttt AR R e A AR R AR A AR bR AR R R AR e bR Rkt ne 323

FROM ClAUSE ..ccvereernsrssesisstsssasssssssssssssisssssssssssassssssssssssssssssssssssssssasssssssssassssssssssssssessasssssssessassssssssssassssssssssssssasssssssssssssssssanees 325

VICW CONSTIAINTS. ..o vureerereiceerasenseasessesessesssessessessessesssssssssssssssessessessesssssesssssssssessessessesssssesssssssasessssssssssssssssssssssasessessessssseses 325

JOUN OPEIATIONS .o ssseasessesseasesssssesssessessessesssssssssssssasessasstssesssssesssssesssssseasessesssssssssssssssssssasessessessssseses 325

[NNET JOINS woererrereeerrercieisessesenssssesssssssssesssssessssssssesssssssssssssssessssssssssssssssssssssasssssssssssassssssssssssssssssasssssasssssassssssssssnss .326

OULET JOINS.ouitririririnrenseiseissiseisssssissnsssses 326

NESTEA JOINS .ttt ssassssssssssssssssessssssssssssssssssssssssssssssssssssns 326

Table Expressions ettt Re e b e Re e Aee AR AR R AR ARt R e bRt n e 327

SYNTAX cervriirrimrirnirrerneenisessesestssesssessss s sssesss s sss s s sastass s sase st b s s as R et b RS R SRR bbb 327

Restrictions reeeeeust sttt st ARt R RS s AR SRS E SRR A SRR E SRR SRS E SRS E SRR E SRR s E SRR E RO R e e e R s e R et R e R R et 327

"HAVING” EXGIMPIE c.cceetetertsrsesisssssstestsstssessssssssssassassssssessesssssassassassasssssassssssessassassassassassasssssssssessessessassassassassssssesssses 327

WHERE ClAUSEouvuiverierereississsassssssssssssssssssssesssssssssssssassssssssssssssasssssssns 328
PrEAICATES ..oucveevererireirsrissississssssisssasssssssssssssesssssns .328

ALIASES.c.vureereerrssesssss s s besssss s s s s s b s et s s bbb s e R AR R AR R e SRR AR RS R AR s Rt en 328

GROUP BY Clause ceeeeseesu e iR AR AR AR R A RS R AR AR AE RS AR ARt 329

ALIASES.c.vueterrertsetsssss s ssssss st ss s st s b s s bbb bR R AR A AR A e R AR a AR bR RS R e AR bbb R et ee 330

Derived Views............... ceeteeeis RS R RS RS RERRERRRRRR SRR SRR AR AR RS R RS R R R ARt 330

STALETUI VIEW SEIMANTICS ...vuvrveereerinsresssisssessstssns 330

ORDER BY ClAUSE ...euvvurisierrssissessesssssssessens 331

31 Users......... . . cesesesssssssssnssasssssss 332
SYSTOIM USEI ccueereeenrcenieneieseastiesssesestsssssesss s sssesssssssssstasssssesss s assesss b ssse st as st bbbt e s s e e b s assesstans 333

USEE DELAIIS TAD ..curveeirieeeneississineinesseissessssssssssssssssssssssssssssssssssssses 333

DEIIVETY PrOfil@S Tab ..ouceeeeereeeeeesseeseeesseessseessssssssnsssesssssssssssssssssasssssssssssases 334

EoM@i ettt sss st e ssss s s s s R R AR R AR bR R e R bR bR bR n R s 334

WED SEIVICE ettt sttt sss s sss s s st b st s ess bt sss bbb ass s et s bR s bbb e aes bbb a s bt b st asn bt e 334

ACCESS PEIMISSIONS TaD ...ttt sttt sss st s s sssssssbesssssssssbssses e s s s s sess b s st ass s b sass s sssssasssensens 335

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 11
32 TIBCO RENAEZVOUS ..ccevreeecccnnssnecssssssssnesss .337
HOW L WOTKS oottt sisssssesssssssssssssssssssssesssssssssssssssssssssssssassssssssssssessssssssssssesssssssssssssssssssssesssassssssssassssssssssssases 338

TIBCO RENAEZVOUS TADIES ... isses 338
LIMNITATIONS ceeeeeerereeereresiereesieeseasesiesseasasssssssessassssssasssssssesssssasessssssssasesssssssessssessssssasssssssssssssssasssssssssessssessssssssssssasssssssens 338
PIEIEQUISITES w.cuueververrieinrinsisninseisesssisssssssssssssesssnsans 338

Creating a TIBCO Rendezvous Event Table..... . ensinsnessssssisssesssssssssesssnns 341

TIBCO Column Information.... 341

Mapping TIBCO Rendezvous Data Types............... 342

TIBCO RENAEZVOUS AGENTS....cuiireirrinreisseesiesssissassssssssssssssssssssssssssssssssssssses 344
PIEIEQUISITES ..vuevrierrieinnennisninseiesssissssssssssssssessnsans 344

ATLIDULES oot iseesssiss s sssssssssssssssssssssssssssssasssasssssssssssssssssssssssssssssssssssessssssssssssssssssnnes 344

Creating a TIBCO Rendezvous AQeNt.......ccrereensensrnssessenseenns 345

33 User-Defined FUNCHIONSccccercnnicssnnnccssnnicssnnsesssnsecsssssessssssessssssssnssessossase .346
UDF RESTIICTIONS...cuvurerreerrennianessensessessssssssssssssssssessesssssessssssssssssssssssssssssssssssssssssssassassassssssssssssseses 347

Creating @anNd USING @ UDF ... iiississ 347

MANIFEST FIIES .vuvverererrrnreerernsinsesinsississesssssssasssasssssssses .348

34 VieWs ..ceeeccccnssnccsccnnens «eeess 350
Creating VIEWS......ccenseicenennesseseasesennne .350

COPYING @ VIEW wceieeerenrirneiseisiseisssessessesssssssssssssssesssassssssssssssssses 351

VW ATEIIDULES ... verereceeinssessesserssassssssssssessasssns 352

VIEW CONSTIAINTS cucvureieeerrireiseississssssssessessesssesssssssssssssssssssssssessssssssassssssssssssssssnss 353
SYNCNIONIZEA JOINS oottt sttt st sssssbssesasessssebssesases st et st bbb st st as s basesasasenss 353
RESTIICTION ottt ss s asssssssesssssssessssssssasesssssssssstssssssstssssssssssssnsssassassssssssssnsssans .353

EXAMIPIE oottt sasss s s sss s s ass s s s s b s R AR AR AR e ARt 353
CONSOIIAATEA EVENTS.....vvrrerrererniisseeseisssissasssasssssssssssssssssssssssssssesssss 355
AGGIEGATE VIBWS....urueereureereiernersessissesssssssssssesssssssssssssssessssssssssssssssssssssssessssssssssssssssssssssassssssssassasssssssssssssssssssssassassssssssssssssssnss 355
Updating Views Through EVENt Propagationisssisisses 356

STALEIESS ANA STALETUI VIBWS ..ottt st ssssssssss s ssssssssassssssssssssssssssssssssssssassssssssssasssessasssssssessens 356

VIEW INITTAIIZATION oottt ssssss s bss s sassbss s sesssssssssassbassssssass s sesssass s sasssasssessasssassssssasssansssssanes 357
Maintaining Events in Stateless VIEWs..........cceeeneeeneceseeeseessnecssnens 358
Persisting VIEWS 10 @ Database ... ieniniiniississesses 359

ViIiEW PEISISTENCE ATLIDULEScuuveerereirirerseississississssssisssssessssissssssssssssssssssssassess 359

VIEW COIUMNS 1O PEISIST c.uuvuurerierereressissnessens 360

ENabling Drill BACK tO DETQAIL ...ttt iesssasssssssssssssssssssssssssasssssssssssssesssanses 361

35 WED SEIVICES .cueeiiiiccsnnnnessssnsrenssssnssssesss 362
WED SEIVICE EVENTS....eereerceeeeeinseississssssissssssssssssssesssassssssssssssasssessssssssesssessssssssssssssssssssssssnes 363

WED SEIVICE EVENT ATIIDULEScerrererrrrerrerssississeissssssissssssssssissess 363

Creating @ WED SEIVICE EVENT... st isssessssssssses 364

WED SEIVICE CONTEXL.cuuirieirrirsrerernsisssesssssssssssssassssssssssssssassssssssns 366

Creating a Web Service Context Table.................... 367

OULPUL COIUMINS cocueereeeeeeeereesseesseesssesssssssssssssssssssssssssssssassssssssssssassssssssssssssssssssssssssssssssssassssssssssssassssssssssssasssassssssssasssasssss 368

[NPUL COIUMINS c.couteeeeereeeeseeeseeesssseessssassssssssssssssssssssssssssssssssassssssssssssassssssssesssassssssssesssssssasssssssssssssssssasssassssssssasssssssssssases 368

STriNG REPlacemMENT TEMPIATES.....cocvirrirrerriiiniesssissississsassssssisssnes 369

WED SEIVICE AGENTS.uuiriieirrierireississsesssssssssssssssssssssssssssssssssssans 370

WED SEIVICE AQENT ATLIIULES ...t sssens 370

Creating @ WED SEIVICE AGQENT ... ieississsssissssssssiesssssssssssssssssssssssssessassasssasses 371

WED SEIVICE EXTEINAI PrOCESSES ...uuvervreerernstseenstsstssanssissssssasssssssssasssassssssssssssssssssssasssssasssssssessasssssssssasssssssssasssasssessanes 371

EXEEINAl PrOCESS ATLIIDULES.....oo e issssssssssesssessssssssessssssssssssesssssssssssssssssssssssssasssssssssssssssssssssssssases 371

Creating @n EXTEINQAI PrOCESSciirnsiniissississsisssssessses 372

Adobe LiveCycle ES Contents
Business Activity Monitoring Server Reference 12
IMplemMenting the EXTEINAI SEIVICE .iriesneissssississsssissns 372

IMESSAGE TIEIAS ..cvureererrreeretseres st sstssssss s s s st ssssss s bes s bass s ass e b s s e ass bR b ess e st as e s b ass e s sntans 372

WED SEIVICE WSDL.uocooiirireiieeiseiasssisseissessssissesssessssssssesssessssssssessssssssssssesssassssssssessssssssasssasssessssssssesssassssssssesasessssssssssasans 373

36 XML/XSD . teseessseessssesssssessssessssessssessssnnssssnasssnnsssnnsssanes 375
About XML and XSD Files in Business ACtivity MONITOINGccvvrrnrerernerssineessssssssssssssesssssnnes 376
DEPENUENCIES ..uceevereerersissierississsisssasssns 376

WHIETE SPACE ettt sss s sssssssssssssssssssbsssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssansssssssnsensens 376

ESCAPE CNATACLELS .euveeveeeeetestesrssissstsssss st ssss s s sasssss s s ssss s sbssassbess st asssess s sassssssasssessssssasssessasssassssssasssassssssanns 376

CRATACLET DALA ..vveeeeeeerreseeneseseessssssssssssssssssssssssssssssssssessssssssssssesssssssssssssssssssssssssssssssssassssssssssssassssssssssssassssssssssssssssssssss 377

Uploading XML Files eeesee R R RS RER AR RS R RS R AR R R RSt 377

FrOmM @ COMMANGA LINE.uuuieeeeieeeneceeeesececnsresseessessasesssesssessssesssessssssasesssessssssssesssessssssssssasessssssasssssessssssasesssasssssssseses 377

FIOM @ WEID BIOWSETuceueeeeeeceneenecaseiaseeaseiassease e sissesassssssssssesssessssssssesssessssssssesssetsssssssesasessssssasesasessssssasesssasssssssseses 378

DefiNiNg @an OBJECT WIth XIML.......vrieererrissessinssesses 379
Example: Create USEr ... nnrnsensiissssssesssssssssens .379

Defining Multiple ODJECTS WIth XIVILc.cceuueeeeeeneesecineresnesssesssseesssssssnessssssssssessssssssssssssessasssssssessssesssssssassssssesssnss 380
Example: Batch command 381

Altering an EXisting ODJECT With XIML ... eeeeereeseeeseesecrseeseeeessssessecsssssassassessssssassssssssssesssessssssssesssessssssssessssssass 382
DEPENUENCIES ..ucveriereerersisrisrississessasssssassns 383

[SSUING COMMANAS WILR XIML ...cuvureeireisresesnsissessssssisssasses 383

Example: Enabling an Object and Its DEPendenCiesrericnsicnrnsienssnssssssssnssenssnssnees 383

Business Activity Monitoring XSD files..... 383
Glossaryceeeeeccenne ceeees 390
Index... . ceees 393

1

Introduction

This document provides detailed descriptions of each of the objects and features of Adobe® LiveCycle® ES
(Enterprise Suite) Update 1 (8.2) Business Activity Monitoring. The specific topics covered include:

“Access Filters” on page 15 describes the filters that restrict the data a user sees without having to
define a new view or cube for each user.

“Agents” on page 23 describes the objects that know how to receive or retrieve information from
external sources.

“Alerts” on page 27 describes the notifications of exceptional events sent to users or external systems.

“Business Activities” on page 41 describes the container objects that collect the scenarios that identify
exceptional business conditions.

“Context” on page 43 describes context data, how it flows into the system, and how to create it.

“Cubes” on page 50 describes multidimensional data cubes and how to create them.

“Data Types” on page 55 describes the supported SQL-99 data-types and their semantics.

“Dimensions” on page 69 describes dimensions and levels for use by cubes.

“Events” on page 76 describes event data, how it flows into the system, and how to create it.

“Flat Files” on page 81 describes how the system uses text files to source event data.

“Formulas” on page 108 describes how to construct formulas in the Business Activity Monitoring.

“Functions” on page 114 describes C-SQL functions that may appear in commands and rule formulas.

“HTTP Post” on page 197 how to use HTTP to post events to an event stream.

"Java Messaging Service (JMS)” on page 204 describes how the system uses JMS to source event data.

“JDBC” on page 216 describes how the system uses JDBC interfaces to retrieve context data, receive
event data, and to allow other Java applications to access the business views in memory.

“JDBC Access to View Data” on page 228 describes the application programming interface (API) that
allows JDBC 2.0 applications to retrieve data from a view, and to retrieve the metadata that describes
the views in the installation.

"Objects” on page 243 describes the details that all Business Activity Monitoring objects have in
common, including name, optional description, and status.

“Operators and Constants” on page 249 describes the supported operators and constants.

“Permissions” on page 253 describes the controls that identify which users may access, create, and edit
Business Activity Monitoring objects and user accounts.

"Processes” on page 267 describes how Business Activity Monitoring uses and presents business
process diagrams and statistics.

"Query Windows” on page 272 describes query windows, which are sets of rows used when making
calculations regarding the current event window.

“Reportlets” on page 290 describes objects that provide information about an event that puts the
event into context.

“Roles” on page 296 describes how to use roles to assign permissions to a set of users.

“Rules” on page 299 describes the objects that analyze business views looking for metrics that meet
specific conditions.

13

Adobe LiveCycle ES Introduction
Business Activity Monitoring Server Reference 14

e “Scenarios” on page 318 describes the collections of rules, alerts, and reportlets that identify
exceptional business conditions in a business view.

e “SELECT” on page 321 describes C-SQL select statements that manage information in the Business
Activity Monitoring.

e "“TIBCO Rendezvous” on page 337 describes how the system uses TIBCO Rendezvous for event data.

e “Users” on page 332 describes the accounts by which each user is known to the system.

e “User-Defined Functions” on page 346 describes user-defined functions (UDFs) for use in formulas.

e “Views” on page 350 describes the data models that provide a real-time picture of a business activity.

e “Web Services” on page 362 describes how the system uses Web services to retrieve context data.

o “XML/XSD” on page 375 describes how to create Business Activity Monitoring objects with XML.

e "“Glossary” on page 390 define common terms used throughout Business Activity Monitoring.

Access Filters

Access filters allow different users to see different rows of the same view or cube, depending on the criteria
specified in the filter. These filters restrict the data a user sees without having to define a new view or cube
for each user. For example, consider this view of total sales by region:

Total Sales Region

763000.00 West
489500.00 Central
522950.00 South
650740.00 East

By defining an access filter that says, for example, “OrderTotals.Region=Employees.Region’, you can limit
users to see only the rows that apply to their business region. As such, a user from the Central region
looking at the view would see:

Total Sales Region

489500.00 Central

The filters are logical expressions similar to the Where Clause of a view definition. (See “Access Filter
Conditions” on page 16 for a complete description.)

Access filters are defined on a view-by-view and cube-by-cube basis, and are applied to users and roles
having Filtered/Read-Only permission on the view or cube. For details about how access filters work, see
“Access Filter Behavior and Restrictions” on page 18.

Applying access filters to a view or cube requires that you first create the filter, and then assign it to users
or roles, as described in these sections:

e “Creating a View Access Filter” on page 19

e “Creating a Cube Access Filter” on page 20

e "“Assigning an Access Filter to Users and Roles” on page 21

For detailed information about views, see “Views” on page 350; for cubes, see “Cubes” on page 50.

15

Adobe LiveCycle ES Access Filters
Business Activity Monitoring Server Reference Access Filter Conditions 16

Access filter conditions are logical expressions that are applied to each row in the view, or dimension level
in a cube. A user looking at the view or cube sees those rows where the expression evaluated to true. At a
minimum, each filter should contain some condition that evaluates data found in the view or cube. For
example, the following simple condition shows only the rows in OrderTotals that are in the East business
region:

OrderTotals.Region='East'

The filter previously described must be assigned to each user or role in the East region to limit their access.
A more powerful expression is one that names the users. The CURRENT_USER() function returns the login
name of the user looking at the view. You can include that function in the filter condition to apply the filter
to specific users. For example, this condition also identifies two users, and as such, only these two users
would see the results for the East region:

OrderTotals.Region="'East' AND
(CURRENT USER()='Skyler' OR CURRENT USER()='Nina')

Note: Access filters are logical expressions that can include Boolean operators (AND, OR, and NOT), and
can use parentheses for grouping.

A limitation of the two examples above is that they have literal values hard-coded into the expressions: the
region name and the user names. Using literals is problematic because it requires you to edit the filters
whenever the names change. Further, you would need one for each region.

A more powerful expression is one that can be applied to all users by dynamically retrieving information
about the user and applying it to the view.

In addition to the current view, access filters can retrieve data from a context table. If you define a context
table that contains information about the users, you can compare that information to the data in the view
to create a dynamic context filter. Consider this filter that uses an Employees context table:

OrderTotals.Region=Employees.Region AND
CURRENT_USER () =Employees.User Name

Now you can apply the filter to many users and roles, and only those users assigned to the same business
region as the data will see the data.

Note: To use dynamic look-ups you must provide the information in an external context table.

Context tables usually support events by providing additional information about the event. When used in
an access filter, a context table provides information that supports the filter: namely, information about
the current user. As such, a “users” context table must have at least one column that contains the user
name that matches the login name that the user uses to log in to Business Activity Monitoring.

Be aware that CURRENT_USER() returns the user’s login name as defined in Business Activity Monitoring, in
the same character case, and as it appears in the BAM Workbench. As such, it is important that the
character case match exactly. (Note that some DBMS provide case-insensitive compares, so this might not

Adobe LiveCycle ES Access Filters
Business Activity Monitoring Server Reference Summary 17

be an issue to your installation.) To avoid mismatches, you might want to enter the names in the context
table in a single case, and then use UPPER() or LOWER() in the filter expression, such as the following:

UPPER (CURRENT USER ())=Employees.User Name

Note: You cannot use UPPER() or LOWER() on the reference to the Employees context table. See
“Context Column Limitations in Queries” on page 46 for details.

Similarly, all text columns referenced in a filter need to be aware of case issues.

To use a context table in an access filter, add the table to the filter's workset when defining the filter. See
“Creating a View Access Filter” on page 19 for details.

In summary, a “users” context table must include:

e One row for each user that will be assigned a Filtered/Read-Only access permission. If the user is not
found in the context table, the filter will most likely fail to find any rows for that user.

e Atleast one text column that contains the user login name. If the DBMS provides case-sensitive
matches, enter the names exactly as defined in Business Activity Monitoring, or at least with the same
characters in the one text-case if you plan to use UPPER() or LOWER() in your filters.

e One column for each reference in the filter, and the data types must match. For character values, the
strings in the view must exactly match the strings in the context table.

Also be aware that if the context table data is cached, the filters can fail if the user data is not in the cache.
In other words, if you add a user to the database, you might also want to invalidate the context table cache
before the user attempts to look at filtered views or cubes. If the user is not found in the context, the filter
returns false.

Adobe LiveCycle ES

Access Filters

Business Activity Monitoring Server Reference Access Filter Behavior and Restrictions 18

Access filters are applied only when a user with Filtered/Read-Only permission on a view looks at or
requests data from the view, or defines a new view on top of a such a view. The filters do not affect users or
roles with Read-Only or Read-Write permission on the view, nor do they apply to users receiving reportlets
sent as an attachment to alert notifications.

Specifically:

The default access permission to the classes of View and Cube objects is No Access for all new users.

Before any user can see the results, they must be assigned — directly or as a member of a role —
Read-Only or Read-Write permission on the classes of View and Cube objects (all views and cubes) at
least Filtered/Read-Only permission on the specific view.

When a user is assigned multiple access filters to the same view or cube — perhaps as the result of
being a member of multiple roles each with assigned filters — the user sees those rows where any of
the filters is true for the row.

For example, one filter might restrict a user to see on “West” region data, but another might allow the
user to see all results for a specific family of products. The result is that the user will see all results for the
family, regardless of region.

Reportlets always include all data from the view that they reference, regardless of any access filters
associated with the view.

Users who receive reportlets as part of alert notifications always see the entire view referenced by the
reportlet.

When a user with filtered access to a view creates a new view on top of the filtered view, the new view
inherits that user’s filtered results, but not the filter definition.

Subsequently, anyone else looking at the derived view sees the results as filtered for the creating user.
For example, if Sklyer can see only Total Sales from the “West” region, and he creates a new view called
WrapUp derived from the Total Sales view, anyone else with permission to look at WrapUp sees the
data for the West region, regardless of their own access permission to Total Sales.

Similarly, when a user with filtered access to a view creates a rule based on the view, the rule inherits
that user’s filtered results.

As such, that rule only sees events that match the users access filter condition, and any subscribers to
the alert associated with the view only receive alerts for the filtered events.

Adobe LiveCycle ES Access Filters
Business Activity Monitoring Server Reference Creating a View Access Filter 19

Creating a View Access Filter

To create an access filter, you must have Read-Write permission on the view.

» To create an access filter:

1. In the BAM Workbench, Workbench tab, Views list, select the view that will have the filter.

2. Select the Access Filters tab to see the list of filters currently associated with this view.

Tables and Views

OrderTotals Permissions. .. | Edit This View. .. ‘ Delete This View |
={_] Events
[+ Context:
= ontents m Join Relationships Reference Data Access Filters
ED Yiews

30DayOrders Edit Access Filker... Create Access Filter..,

elete Access Filter |
aWeekDrders

aweekordarsivg /¥, Object Name Description 7 Status
InventoryChangeDetails LimitToDepartment Shews anly those producst whase Family matches a product name A ﬂ
OrderChangeDetails - . N

OrderProduct Totals Limit ToRegion Cnly show orders that match the current user's region, % j

OrdersalescrandTotal

Supplieralternates

3. Click Create Access Filter to create the new filter.

4. Add a context table to the Workset by clicking Add Context. This example includes the Employees
context table to retrieve information about the current user.

5. In the Edit Access Filter dialog, assign the filter's name and optionally provide a description. Define the
filter condition following the instructions in “Access Filter Conditions” on page 16.

Workset el Conizds, ‘ Filker Name: |LimitTDReginn | Skatus| Enabled w
s

Filter Description: Only shows orders that match the current user's reqion,

Family = Filter

e
b

Product
Region OrderTotals Region=Employees, USER_REGION -
AMND *
+ -
Takal_ty LPPER{CURRENT _USER())=Employees USER_NAME 5 = o
Average_Qty _I ﬂ =| = | ==
-

Al robal colan

==l

USEr_name Mare Funckions

user_level bt
user_depk
USEr_region

6. Save the access filter.

You can now assign the filter to users having Read-Filtered access to the view.

Adobe LiveCycle ES

Access Filters
Business Activity Monitoring Server Reference

Creating a Cube Access Filter 20

Creating a Cube Access Filter

You must have Read-Write permission on the cube.

» To create an access filter:

1. In the BAM Workbench, Workbench tab, Cubes list, select the cube that will have the filter.

2. Select the Access Filters tab to see the list of filters currently associated with this view.

Tables and Yiews

OrderCube Pettissians. . | Eait this cube. ‘ Dekete cube... |
B Events
[f_] Context 1 ~
% \':ar\lu:“ Reference Data ‘ AccessFilters l Results
% Dimensions Edt Access Fier. . Create Access e, . | Delete Access Filer |
[l Cubes
LE 1, Object Name Description 57 Status
D 1AR Files LimitToDepartment Shom crly those products whass Famiy' matches & produc cetegury 2 ﬂ
] Use Defined Functions
[Bemdiks LinitToWestRegion Show anly data from the "West' business region, A ﬂ
D Process Defintions

3. Click Create Access Filter to create the new filter.

4. In the Configure Cube Filter dialog, assign the filter's name and optionally provide a description.

5. Define the filter condition per the details in “Access Filter Conditions” on page 16.

» To define a simple filter

e Choose the dimension, level, and value a shown in the following illustration:

Create Smple Fikers (Optional)
Chanse the Dimension Member and Yalue to alow through the fiker

"L ocation Dimensions” Region = "West'

"l acation Dimensions" V| Add >>|

| Region

v
| it 3 | Remove

» To define a context filter

1. Choose the Use Context Filters option.

2. Choose the context table and identify the column that contains the user’s name and the column that
maps to a dimension level, as show in the follow illustration.

Note: This filter is the same as the one shown in “Context Filters” on page 16.

Use Conkext Filkers
Create Cortext-based Filkers

Choose a Context and Columns: Choose a Dimension and Member:
Choose a Function: Employees b | "Product Dimensions" W |

| cURRENT_UsER() v| USER,_MAME v | | NEEWE | Family

Adobe LiveCycle ES Access Filters
Business Activity Monitoring Server Reference Assigning an Access Filter to Users and Roles 21

3. Save the access filter.

You can now assign the filter to users having Read-Filtered access to the view.

Assigning an Access Filter to Users and Roles

To perform this procedure:
e You must have Read-Write permission on the view or cube.

e The filters must already be defined. See “Creating a View Access Filter” on page 19, for details.

» To assign an access filter to a user or role on a view:
1. In the BAM Workbench, Workbench tab, click the Views folder in the Workset to list all of the views.

2. Select the view to assign the filtered read permission, and click Permissions.

Yiews

Permissions... Mewy Yiew. ., | Delete View(s) |
/1, Dbject Name Description 57 status
30DayOrders Tracks order averages for 30 davs, A j
SueckOrders Tracks orders totals For each of the previous 8 weeks, A ﬂ
BweekOrdersfivg Averages orders for the previous & weeks, by week, A j
InventoryChangeDetails Detailed information about a product quantity change. A j
OrderChangeDetails ‘Wrap-up of an order event and associated conkext, A ﬂ
OrderProductTotals Tatal sales by product, A j
OrderSalesGrandTotal Totals the total sales and sales targets. A ﬂ

OrderTotals Tokals the sales totals,

Supplierflternates & list of alternative suppliers for a product, and how many of the pr... A

L4

3. Select one or more users or roles who will have the filtered access, and click Change Permissions.

Adobe LiveCycle ES Access Filters
Business Activity Monitoring Server Reference Assigning an Access Filter to Users and Roles 22

4. Choose the Filtered/Read only permission, and choose one or more access filters to use.

When multiple filters are assigned, the user sees the rows that meet any of the conditions. For example,
when one filter shows only rows that are in the user’s department classification, and another shows
rows applicable to their business region, the user sees the row if either condition is true.

Basic Advanced

" Mo Access
{% Filtered | Fead anly

r Lirnit ToDepartrent
¥ LimitToRegion

 Read only
{” Read and ‘Write

Save the assignments and the permissions are immediately put into effect.

Agents

Agents are Business Activity Monitoring processes that know how to receive or retrieve information from
external sources. When an agent locates new event or context information, it passes that data to an Events
and Context table for use by the Business Views.

Application Server
Environment

JDBC Agent
Agent

Event and Context

Web Services

JMS Agent

Flat File
Agent

TIBCO Rend.
Agent

DBMS Web
Application

Java
Application

Flat
File

TIBCO Messaging
Application

Note: One agent may support multiple event or context tables.

While an agent knows how to communicate with an external source, event and context tables know what
information is desired. As such, most of the event and context tables define the details that tell the agent

what to look for.

» In This Chapter:

e “External Sources” on page 24

e "“Creating Agents” on page 25

e "Editing Agents” on page 26

23

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Agents
External Sources 24

Business Activity Monitoring provides agents to several external context and event sources. Some events
stream (are pushed) into the system as they happen. Other events are loaded (pulled) as the result of a
request, such as to a database or from a text file. Context data, however, are always pulled from the source.
Table 1: Sources and Agents summarizes the available sources and identifies the source agent they
support.

Table 1: Sources and Agents

Event Event Context

External Source Agent Push Pull Pull
Java Database Connectivity JDBC (see page 216) No Yes Yes
(JDBC), usually from a
Relational database (RDBMS)
Java Messaging Service (JMS) | Java Messaging Yes No No
from a Java application Service (JMS)

(see page 204)
Text file Flat Files (see No Yes No

page 81)
TIBCO Rendezvous (RV) froma | TIBCO Rendezvous Yes No No
business application using (see page 337)
TIBCO message streams.
Web services from a Web Web Services (see Yes No Yes
application over an HTTP page 362)
connection
JDBC agent used to access the | ERP No Yes No
database for a SAP system
Salesforce system. Salesforce No Yes Yes

Adobe LiveCycle ES

Agents

Business Activity Monitoring Server Reference Creating Agents 25

These steps summarize how to create an agent. For details about creating agents of specific types, see the
descriptions of those types.

Note: For JBoss implementations, you must configure a corresponding JNDI definition in a

celequest_context-ds.xml file. For more information, see the JBoss deployment instructions in
the installation guide.

Before you create an agent, you must have create permission for agents (see “Creating Permission” on
page 258 for details) and the connection specifications for the specific agent type.

» To create an agent:
1. Open the Administration Console tab of the BAM Workbench.

2. Select Agents.

3. Click New Agent.

4. Choose the source type for the Agent (as described in Table 1 on page 24).

5. Fillin the details for the specific source type. For details, see

“Flat File Agents” on page 89

“JMS Queue Agents” on page 210

“JMS Topic Agents” on page 213

“TIBCO Rendezvous Agents” on page 344

“Web Service Agents” on page 370

Save the object as enabled, and it will immediately be ready to receive events or context.

Note: See “Creating an SAP Agent” on page 314" for information on creating an ERP agent.

Adobe LiveCycle ES Agents
Business Activity Monitoring Server Reference Editing Agents 26

These steps summarize how to modify an existing an agent. For details about agents attributes, see the
description of the specific source.

Before you create an agent, you must have Read and Write permission for the agent (see “Accessing
Permissions” on page 255 for details).

» To edit or alter an agent:
1. Open the Administration Console tab of the BAM Workbench.

2. Select Agents.
3. Double-click the agent to alter.
4. Fillin the details for the specific source type.

Save the object as enabled and it will immediately be ready to receive events or context.

4 Alerts

Alerts are the notifications of exceptional events sent to users or external systems. An alert may come in
the form of a simple message indicating that an event has occurred, or it may more detailed, including
information that indicates the cause and possible courses of action.

Each alert message is comprised of text that describes the exceptional incident to the subscriber. This is
the text that appears in the BAM Workbench and in any other device identified by the subscriber’s delivery
profile. How the message is rendered depends on the device that displays it to the subscriber.

» In this Chapter:
e “Creating Alerts” on page 28

o “Alert Attributes” on page 29

e “Message Subject and Body Text” on page 30

e "“Alert Subscribers” on page 31

e “Managing Alert Notification Messages” on page 32

e “Alert States” on page 33

e “Consolidating Multiple Messages” on page 34

e “Setting an Alert to Invoke an External Web Service” on page 34

o "“Alert Reportlets” on page 36

e "“Reportlet Filtering” on page 36

27

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Creating Alerts 28

To create an alert you need these permissions:

e Create permission for business activities (see “Creating Permission” on page 258 for details)

e Read and Write permission on the business activity that will contain the alert

e Read Only permission on the view or cube that will feed the alert

There are three ways to create alerts with the BAM Workbench Scenario Modeler:
e Stand-alone
e Associated with a rule

e Clone an existing alert

» To create a stand-alone alert:

1. Select an existing Business Activity.

2. Select an existing scenario to contain the alert.
3. Select the Alerts folder.

4. Click the New Alert button.

5. Choose the data source that will feed the alert.

e If the scenario has a “default view’, that one appears selected by default. Choose another source to
monitor by clicking Select Data Source.

e Foraview, choose the view.

e For a cube, choose the dimension level in a cube. Optionally you may also apply a filter that further
restricts the data that the cube feeds to the alert.

e If the source contains data, that data appears to provide a sample of what to expect. When the
source is empty, the form displays just the column names and the message “No Data Available.”

6. Fill in the fields in the Alert Definition form.

» To create an alert associated with a rule:

1. Follow the instructions for “Creating Rules” on page 300.

2. Fill'in the fields in Step 2 of 2: the Alert Definition form.

» To clone an existing alert:

Copy the definition of an existing alert to a new alert.
1. Edit the alert you want to clone.
2. Change the alert name, and change the other attributes that differ from the original alert.

3. Choose “Save as New Alert”.

Adobe LiveCycle ES

Alerts

Business Activity Monitoring Server Reference Alert Attributes 29

Note: It is recommended you modify the notification settings that control the maximum number of
alerts that can be sent within a specified time interval. For more information, see “Setting
Alert/Notifications Limitations” on page 119 in Using Business Activity Monitoring Workbench.

Every alert has the following attributes:

Attribute

Description

Alert Name

Status

Importance

Description

Data source

Subscribers

Subject

Body

Identifies the alert object. The name can contain letters and numerals only.
This name must be unique among alerts within the same scenario. See
“Object Namespace” on page 248 for details.

Specifies if the rule is enabled (receiving new event information) or
disabled.

Note: When the containing scenario is disabled, you cannot make the alert
enabled. The scenario must be enabled before the alert may be
enabled.

A hint about how important a message is. Values are HIGH, NORMAL
(default), or LOW. Messages arriving in the BAM Dashboard are sorted into
folders corresponding t the importance level. Further, e-mail messages are
flagged accordingly with the “Importance” mail header field per mail
standards.

Optional description that may contain any text characters.

View or cube dimension level that defines the columns in the alert. Note
that this should be the same source as the associated rule, or one derived
from that source; otherwise, the generated alert might not contain valid
information.

Users who receive the alert. See “Alert Subscribers” on page 31 for details.

Text message that is the subject of the alert, similar to an e-mail subject line.
Can contain column references to the underlying business view.

Text message that is the body of the alert. Can contain column references to
the underlying business view, and can contain acknowledgements and
reportlets. For details about acknowledgements, see Acknowledgements,
for reportlets, see “Reportlets” on page 290."

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Message Subject and Body Text 30

Each alert message is comprised of text that describes the exceptional incident to the subscriber. This is
the text that appears in the BAM Workbench, BAM Dashboard, and in any other device identified by the
subscriber’s delivery profile. How the message is rendered depends on the device that displays it to the
subscriber.

The Subject and Body alert attributes define the text of the message. Each attribute contains static text
and fields. When the alert generates the message, it replaces the fields with the values from the columns of
the same name in the business view row that caused the alert.

For example, consider this default message definition:

Subject: NOTICE -- A customer has opened a problem ticket.
Body: CUST_NAME is a TIER tier customer and has opened problem ticket number TICKET.

When the alert is activated, it generates a message similar to this e-mail:

From: Business Activity Monitoring
Date: 3/05/2003 07:45 PM
Subject: NOTICE -- A customer has opened a problem ticket

Acme Works is a HIGH tier customer and has opened problem ticket

number 0703.

Note: You can include any valid HTML code in the body of the message. If you reference an external
object, such as a graphic, make the reference to a HTTP server; do not reference a local file
because it will not be included in the message.

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Alert Subscribers 31

When you define an alert, you can also declare one or more Users to receive the alert notification. By
clicking the Add/Remove button next to the subscribers list in the Alert editor, you can designate
individual users and Roles to receive the alert, or identify columns in the alert’s view that provide lists of
users, roles, or e-mail addresses to receive the notification.

Subscribers! | Name Subscriber Type |Subscription | Profile
Userdddresses User/Role List column YA Default
Wijay ser Cptional ser-specified
Zaphod ser Cptional IUser-specified
Jason ser Mandatory User-specified

The Alert Subscribers dialog has two tabs:
e Individual Subscription tab is where you choose the users and roles to receive the notification.

e Mandatory subscribers always receive the notification. These users or roles cannot voluntarily
unsubscribe to the alert in the BAM Dashboard; rather, they must be removed from this dialog.

e Optional subscribers receive notifications, but they may unsubscribe using the BAM Dashboard.

Select subscribers to receive this alert:

| Individual Subscription Data-Driven Subscription

all Users and Roles Mandatory Recipients
|5Estem Jason ﬂ
Vijan Mandatary -
Diaz
Masi j
Jason
R.ama Cptional Recipients
Tarun
Zaphod ﬂ
Wijaw
Cptional - =
=

e The Data-Driven Subscription tab is where you identify columns in the view that contain the names or
addresses of users or roles to receive the notification. A column may contain either a list of users and

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Managing Alert Notification Messages 32

roles, or a list of e-mail addresses to receive the notifications. Each list of values in a column is separated
by a comma or semi-colon, and each item may optionally be enclosed in quotes (").

Select subscribers to receive this alert:

Individual Subscription Data-Driven Subscription

Columns in this alert's view may identify subscribers to receive this alert, &
column may lisk email addresses, ar it may lisk User names and groups of users
(b Role) ko receive this alert, Separate each value in the list with a comma or
semicolon. Optionally enclose walues in quotes ("),

Data-driven Recipients (User or Raole); I Userfddresses « I
Data-driven Recipients (Email Addresses); I < MNone = - I

Note: Data-driven subscriptions are mandatory: the users, roles, and e-mail addresses that receive
them cannot “unsubscribe!” Further, users who receive these subscriptions as a result of an
e-mail address list do not see them in the BAM Dashboard list of subscriptions.

When the column contains multiple instances of the same, exact e-mail address, only one message is sent.
However, slight differences in the entries will generate one message for each instance. For example, these
to variations of the same address myname@lava.com and "Me" <myname@lava.com> generate two
messages.

Users receive alert notifications the devices identified by their delivery profiles in the “Delivery Profiles
Tab” on page 334. For details about using the Alert Manager in the BAM Dashboard to view, subscribe and
delete notifications, see “Interacting with Alerts” on page 139.

Alerts remain in the Alert Manager list until deleted specifically by the user or automatically by the system.
The system removes messages after a count of days specified by the system administrator in the Systems
Settings dialog box, as described in “Working with System Settings” on page 108 in the BAM Workbench
documentation.

Also, you can control the maximum number of alerts that can be sent within a specified time interval. For
more information, see “Setting Alert/Notifications Limitations” on page 119 in the BAM Workbench
documentation.

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Alert States 33

Business Activity Monitoring provides two kinds of alerts:

e Stateless alerts are one-time notifications about the business condition when the condition happens.
Stateless alerts are said to be fired when the rule condition is met. For example, a stateless alert might
fire a notification to a warehouse manager when a product inventory count falls below a specific
threshold. Note that every subsequent change in inventory levels for that product also sends a
notification as long as the inventory count remains below the threshold.

e Stateful alerts have a status that is raised or acknowledged as long as the business condition exists, and
which is lowered when the condition does not exist. With a stateful alert, warehouse managers receive
the alert when the inventory falls below threshold, and do not receive another until the alert is lowered,
presumably after inventory levels have been restored above the threshold. When multiple parties have
interestin an alert, one may choose to handle the raise alert and acknowledge it. This is done by clicking
the Acknowledge link in the message body. The alert’s creator places the link in the message body
when creating the alert. See Acknowledgements for details.

Acknowledge

p (Acknowledge

Lower

Raise

By combining a stateful alert with a Holds for time period, you can delay the notification. For example, only
alert the warehouse manager when a product’s inventory count has remained below a threshold for one
day: “the alert condition holds for 1 day”. This way the manager doesn't receive the notification if the
inventory drops within a day of being restocked.

You can monitor the alert’s state and generate new alerts when conditions demand. For example, if an
alert has not been handled in a timely manner, a new alert can be sent to more significant users, in effect
escalating the original alert. To test for these states, use the IS_RAISED function. See “Monitoring Alerts” on

page 303 for details.

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Consolidating Multiple Messages 34

Events may contain multiple rows of information. When the event meets a rule condition, that rule
generates one alert for each row of the event. Often it is desirable to send only one message describing all
of the alerts. This is called a consolidated alert.

For example, consider a new purchase order entering the system (an event). If the quantity of items
in-stock is insufficient to fulfill the order, an alert might note that condition. When multiple line items on
the order have insufficient inventory, each generates a new alert. To send just one notification instead, use
a consolidated alert.

» To create a consolidated alert:

On the Create Rule form, check the Consolidate multiple messages from same alert option.

You can configure an alert message to invoke an external Web service.

The procedure in Business Activity Monitoring requires you to independently create a packaged Java
function that constructs the Web service message based on the alert payload. Specifically, this function
determines which data elements in the alert payload are mapped to the inputs expected by the Web
service. This function is then uploaded to Business Activity Monitoring as a user-defined function (UDF).
The Web service is specified in a Web service profile that calls the UDF. The Web service profile can then be
set as a subscriber to the desired alert.

Note: Creating this function requires programming expertise. For more information, see “About the
Web Service User-Defined Function” on page 35.

» To configure an alert to invoke a Web service:

1. Create a new alert, as described in “Creating Alerts” on page 28.

Note: Do not subscribe any users to the new alert at the moment. You will add subscribers later.

2. Create afunction that constructs the Web service message using parts of the alert data, and package as
aJAR.

For more information, see “About the Web Service User-Defined Function” on page 35.

3. Upload the JAR as a user-defined function in the BAM Workbench.

For more information, see “Creating and Using a UDF” on page 347.

4, Create a new user and save it.

Note: You must create and save the new user so you can change the default dashboard profile
properties.
5. Edit the new user as follows:
e In the Edit User dialog box, click the Delivery Profiles tab.
e Open the default dashboard profile.
e Deselect the Automatically add this profile... option.
o Click OK.

Adobe LiveCycle ES

Alerts

Business Activity Monitoring Server Reference Setting an Alert to Invoke an External Web Service 35

6. For the new user, create a Delivery Profile as follows:

In the Edit User dialog box, select the Delivery Profile tab.

Click the Create New Profile button.

In the resulting dialog box, for Profile Type, select Web Service.

For Profile Name, enter an appropriate value.

For Web Service URL, enter the endpoint for the WSDL.

For Method, specify the desired method (operation) to be invoked in the Web service.
Supply Username and Password, as required.

For UDF, select the JAR you uploaded for this Web service invocation.

Ensure that the Automatically add this profile... option is unselected.

Click OK.

7. Return to the configuration for the alert you created in step 1 above.

8. Add the user you just created as a subscriber.

9. Click Save.

When the alert fires, the Web service will be invoked.

The function you create must extend the com.celequest.api.function.webservice.
IAlertWSMessageConstructor class.

This function receives as input a DOM element that describes the alert data generated by Business Activity
Monitoring and which conforms to the alertMessage.xsd (included in the SBAM_HOMES$/samples
directory). It generates as output an AXIS message containing the SOAP that is sent to the Web Service.

com.celequest.api.function.webservice.lAlertWSMessageConstructor interface:

package com.celequest.api.function.webservice;
import com.celequest.api.function.*;

import org.apache.axis.Message;

import org.w3c.dom.Element;

import java.lang.Exception;

public interface IAlertWSMessageConstructor extends IUDFunction

{

public Message constructMessage (Element alertData, String wsdlURI,
String soapOperation) throws Exception;

}

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Alert Reportlets 36

Alert Reportlets

Reportlets describe the contents of a view and present that information in a report that is attached to the
alert message. Frequently reportlets provide information about an event that puts the event into context.

» Toinclude reportlets in the body of the alert notification:
1. Open the Add Reportlet dialog.

2. Select the reportlet from the list.

3. Choose OK to add it to the alert.

Add Reportlet Help

Select repartlet ko add to alert:

&| Name | Description
IrventoryChangeDetails Details about an inventory changes event
InventoryDistribution Location of inventory by warehouse
LowInvenkorySuppliers Showes suppliers For a low inventory,
Send as: /| Infine reportlet data = |

Reportlet data based op | Event Data

Reportlet data jis: |,.:.,|| data in the reRnrtIet wiet k'l iZhange Relation... |

Inline reportlet data

e —————
HTML File Atkachment All data in the repartlet view i

Texk File Attachment "

Send As

Alerts displayed in the BAM Dashboard embed the reportlet as an in-line, HTML table. The Send as option
specifies the format of the reportlet to attach to the alert notification sent to user subscription profiles. The
reportlet can be embedded in the body of the message, or included as an attachment in one of the
available formats.

The next section, “Reportlet Filtering” on page 36, describes Reportlet data based on and Reportlet data is
options.

Reportlet Filtering

When you create the reportlet, you identify the view or cube from which the reportlet draws its data.
However, the data that appears in the reportlet depends on the type of the source (stateless or stateful),
and how the rows of data are filtered as specified on the Add Reportlet dialog. In general,

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Reportlet Filtering 37

e Reportlet data based on specifies whether a reportlet’s stateful source should include data based on all
events, or just those that have met the rule condition.

e Reportletdata s limits whether the rows in the reportlet’s source include only those related to the event
that activated the alert, or all previous event data also in the source.

To better understand how these settings affect the reportlet data, consider these two views that track and
report on product orders. The OrderDetails stateless view is a summary of each order event, while the
OrderAggregates stateful view tracks the average quantity for each product ordered.

SELECT prod_name, AVG (ord_gty) |
COUNT (*) AS Ct
FROM OrderDetails
GROUP BY prod_name

Reportlet view

OrderAggregates

SEND ALERT BigOrder
WHEN ord gty>3000

(OrderEvent ‘;> <E£Qduct)

SELECT prod name,ord gty
FROM OrderEvent, Product
WHERE OrderEvent.prod id=

Product.prod id

Rule view

OrderDetails

Now consider these events:

prod name ord gty

nails 1000
plywood 1000
nails 4000
nails 4000
plywood 5000

After the events have entered the stream, the OrderAggregates view has these values:

prod name AVG(ord gty) Ct

nails 3000 3
plywood 3000 2

By default, a reportlet using the OrderAggregates view shows the details for both products, regardless of
which product event might have generated the alert. Further, even though only the last three events met
the rule condition of ord_qty greater than 3,000, the reportlet shows the results from all events, which
might not be what you intended.

The two filtering options on the Add Report dialog alter the results by filtering the results that appear in
the reportlet.

The Reportlet data is option causes the reportlet to show one of the following:

e All of the data in its view or cube face

e Only those data related to the event found by the rule

To show only the event-related data, you must define the relationship between the event and reportlet

sources. For example, if you want the reportlet to only show the result for “products” in both views, define
the relation by picking the prod_name column from both views. This tells the reportlet to show only those

Adobe LiveCycle ES Alerts
Business Activity Monitoring Server Reference Reportlet Data Based On Option 38

rows in the OrderAggregates view whose prod_name value matches the name in the OrderDetails view.
Then, the reportlet shows the nails value only when the rule generates the alert.

prod name AVG(ord gty) Ct
nails 3000 3

Similarly, when working with cube face, you pick columns that best identify the event to the reportlet. For
example, this illustration shows PROD_NAME in the rule view being joined to the PRODUCT dimension in
the reportlet cube:

Set Rule-Reportlet Join Help

Only show rows in the reportlet that match data in the rule source,
Identify the matching colurns.
Joins Show the products that match
&dd Join To Group | the one in the event that
triggered the alert.

Rule ¥iew Reportlet Yiew

change_time w || change_time L ﬂ

A variation would be to link the product family instead of the product name. In that case, the reportlet
shows all of the products in the same product-family as the one that triggered the event.

The Reportlet data based on option specifies whether a stateful view should include data based on all
events, or just those that have met the rule condition. Following the example above, the OrderAggregates
view AVG(ord_qty) column has a value of 3,000 for “nails” after both events have be processed. This is what
happens when the setting for this option is Event Data. However, the rule condition says to generate an
alert only when the order quantity is greater than 3,000. To track only events that have met the rule
condition, change the setting for this option to Rule Filter of Event Data. Then the reportlet shows 4,000 as
the average because 4,000 is the average of the two events greater than 3,000.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Alerts

Reportlet Data Based On Option 39

These illustrations show the view results on the example data when you use the two reportlet filtering
options. Notice that the first event does not pass the rule filter, and does not appear in those views.

Events

prod_name ord_qty

All data in the
reportlet view

Only data related to the
event (prod_name)

Event Data

prod_name ord_qty Ct

nails 1000 1

prod_name ord_qty Ct

nails 1000 1

Rule Filter of
Event Data
(ord_qty>3000)

prod_name ord_qty Ct

prod_name ord_qty Ct

Similarly, the second event also does not pass the rule filter. Notice though that the view that shows event
related data now only includes the plywood event.

Events

prod_name ord_qty

nails 1000
plywood 1000

All data in the
reportlet view

Only data related to the
event (prod_name)

prod_name ord_qty Ct

prod_name ord_qty Ct

Event Data nails 1000 1 plywood 1000 1
plywood 1000 1

Rule Filter of prod_name ord_qty Ct prod_name ord_qty Ct

EventData |77 "7 | T T

(ord_qty>3000)

The third event now passes the rule filter, and as such, appears in the bottom views. And once again, nails
is the product in the event-related views.

Events

prod_name ord_qty

nails 1000
plywood 1000
nails 4000

All data in the
reportlet view

Only data related to the
event (prod_name)

prod_name ord_qty Ct

prod_name ord_qty Ct

Event Data nails 2500 2 nails 2500 2
plywood 1000 1

Rule Filter of prod_name ord_qty Ct prod_name ord_qty Ct

EventData @ |77~ "7~ | T T

(ord_qgty>3000)

nails 2000 1

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Alerts

Reportlet Data Based On Option 40

The third nails event also passes the rule filter.

Events

prod_name ord_qty

nails 1000
plywood 1000
nails 4000
nails 4000

All data in the
reportlet view

Only data related to the
event (prod_name)

prod_name ord_qty Ct

prod_name ord_qty Ct

Event Data nails 3000 3 nails 3000 3
plywood 1000 1

Rule Filter of prod_name ord_qty Ct prod_name ord_qty Ct

EventData @ | 77"~ | T T

(ord_qgty>3000)

nails 4000 2

nails 4000 2

The final event again changes the event-related views. Notice that all events are reflected in the upper-left
view, while only those that passed the rule filter are in the lower-left view.

Events

prod_name ord_qty

nails 1000
plywood 1000
nails 4000
nails 4000

plywood 5000

All data in the
reportlet view

Only data related to the
event (prod_name)

prod_name ord_qty Ct

prod_name ord_qty Ct

Event Data nails 3000 3 nails 3000 2
plywood 3000 2

Rule Filter of prod_name ord_qty Ct prod_name ord_qty Ct

EventData |~ T~ T T

(ord_qty>3000)

nails 4000 2
plywood 5000 1

nails 5000 1

Business Activities

A business activity is a collection of possible scenarios that identify exceptional business conditions. Each_
scenario contains rules that identify specific possible conditions, and the alerts and reportlets to send to
key personnel when the condition is found to exist.

—Business Activity
—Scenario
Rule
Rule
Rule
Alert
Reportlet

—Scenario

Rule
Alert

__—Business Activities are collections of
possible scenarios.

Scenarios identify exceptional
conditions within a business activity.

You must have at least one business activity before creating any scenarios, rules, alerts, or reportlets.

Tips:

e Deleting a business activity deletes its contained scenarios, and all of the scenario’s objects.

e Disabling a business activity disables its contained scenarios, rules, alerts, and reportlets.

» In this Chapter:

e "“Creating Business Activities” on page 42

e "“Business Activity Attributes” on page 42

e "“Deleting Business Activities” on page 42

41

Adobe LiveCycle ES Business Activities
Business Activity Monitoring Server Reference Creating Business Activities 42

You need Create permission for business activities (see “Creating Permission” on page 258 for details).

» To create a new business activity

1. Open the Scenario Modeler.
2. Click New Business Activity...

3. Fillin the fields of the New Business Activity dialog.

Every scenario has the following attributes:

Attribute Description

Name Identifies the business activity. The name can contain letters and numerals only.
This name must be unique among business activities and users; you cannot have a
user with the same name as a business activity. See “Object Namespace” on
page 248 for details.

Status Specifies if the business activity is enabled (receiving new event information) or
disabled. When an activity is disabled, all of the objects it contains are also disabled,
including the rules, alerts, and reportlets.

Description Optional description that may contain any text characters.

You need Read and Write permission on the business activity.

Note: Deleting a business activity deletes its contained scenarios and all of the scenario’s objects.

» To delete a business activity:

1. Open the Scenario Modeler.
2. Inthe tree view, select the Business Activities folder.
3. Inthelist of business activities, select the activity to remove.

4. Click Delete Business Activity.

6

Context

Context supports event processing by providing meaningful information about the event. Contexts are

the business information stored in databases, data warehouses, or are provided by Web Services. Context

tables receive data from Agents that know how to communicate with information sources. When you
define a context table, you also instruct the agent how to identify the information from the source.

In this Chapter:

“How It Works” on page 44

“Creating Context Tables” on page 45

“Editing Context Tables” on page 46

“Context Column Limitations in Queries” on page 46

“Caching Context Queries” on page 48

43

Adobe LiveCycle ES Context
Business Activity Monitoring Server Reference How It Works 44

When a business view requires context information, it does so based on some information already in the
view. For example, a view that is processing a purchase order might have received a product identification
number along with the event data. If the view also requires the suppliers of that product, it would retrieve
the supplier names from a context table that contains the names that matches the ID. In the view
definition, a WHERE clause would join the context table to the event, similar to the following:

WHERE event.product id = context.suppliers of product id

When the view performs this join, it passes the ID from the event to the context table. If the matching
supplier data are already in the context cache, the table uses that data and passes it to the business view. If
the data are not already in memory, the ID is passed — either as an SQL query or by value for a stored
procedure — to an agent, which sends data to the DBMS or Web service for processing. The result of the
query is then loaded into the context table and subsequently included in the business view.

The context table contains data that match some
ID in the view. The data comes from a cache,

. . which originally comes from some external
Business view

Data for query source, such as a DBMS.
£
Context cache Query for the context
@ Context
<«
Event Result source
Context

The context source may be databases accessed through a JDBC or business applications accessed through
Web Services. For details about these type of sources, see “JDBC Tables” on page 217, or “Web Service
Context” on page 366.

Adobe LiveCycle ES

Context

Business Activity Monitoring Server Reference Creating Context Tables 45

Every context table has a name, description, status attribute, and agent. These are defined in the following

table.

Attribute Description

Name Identifies the table and is the name accessed by the Business Views that depend
on this table. This name must be unique among views, events, context, and
consolidated events. See “Object Namespace” on page 248 for details.

Description (optional) Description of the table.

Status Whether or not the object is enabled (able to receive and pass data) or disabled
(not receiving or passing data).

Agent The agent that retrieves the context information, and passes the data to the event

Disable context
after errors

or context object. See “Agents” on page 23 for information about agent types.

Count of consecutive errors to receive before the system disables this context.
Once disabled, a context must be re-enabled manually.

Before creating a context table, you must have Create permission for tables (see “Creating Permission” on
page 258), and Read Only access permission on the agent that will feed the table.

» To create a context table:
1. Open the BAM Workbench tab.

2. Click New Context...

3. Choose the source type, each type has its own specific attributes.

For details, see:

e "“JDBC” on page 216

e “Web Services” on page 362

4. Fill in the fields in the New Context form.

Save the table as enabled and it will immediately be ready to receive context.

Adobe LiveCycle ES Context
Business Activity Monitoring Server Reference Editing Context Tables 46

Editing the attributes of a context table causes the object to lose state, and possibly invalidates dependant
views. For example, if you remove a column, any view or rule that references that column becomes invalid.
(However, if you redefine the column in the table, the dependant views are automatically revalidated.)

1

Before editing a context table, you must have Read and Write permission for tables (see “Accessing
Permissions” on page 255), and Read Only access permission on the agent that feeds the table.

» To edit a context table:
1. Open the BAM Workbench tab.

2. Select the event or context object.
3. Chose Edit This Context.

4. Change the definitions in the Edit Context form. Note that each type has its own specific attributes. For
details, see
e "“JDBC” on page 216

e “Web Services” on page 362

Save the table as enabled and it will immediately be ready to receive events or context.

Context can be retrieved with no limitations from a JDBC query source. However, the following limitations
apply when retrieving context from a JDBC stored procedure source or a Web service source:

e When the context column is referenced as part of a query, somewhere in the WHERE or FROM clause it
must appear in an equality expression and then only as an atomic predicate (no other operators on the
same side of the equal sign). For example, the following is permitted:

WHERE context column = 10*event column

But the following is not permitted because the left-side predicate, which contains the context column, is
an expression that includes an operator (/):

WHERE context column/10 = event column

e The required atomic reference may not appear in a disjunct (OR) expression. The following fails:
WHERE (context column = event column OR A > B)
However, it may appear in a conjunct (AND) expression:

WHERE (context column = event column AND A > B)

Adobe LiveCycle ES Context
Business Activity Monitoring Server Reference Context Column Limitations in Queries 47

e Oncethereis at least one equality reference in the query, you may use the column in any other way. For
example, the following two queries are permitted:

WHERE (context column = event column AND

context column/10 = other event column)

WHERE ((context column = event column AND
context column >= other event colum) OR
(A > B))

But the following fails because there is no equality reference in the query:
WHERE context column >= event column

e The required equality expression may not reference another context column in the same table. For
example:

tl.context column = tl.other context column
e However, the equality expression may reference a context column in another table, for example:

tl.context column = tZ2.other context column

When making a query to a Sybase database, be aware of these limitations:
e All names, including tables and columns, are case-sensitive.

e All queries must be in the form SELECT * FROM table only; you cannot include any SELECT clauses.
To filter the results, load them into a business view, and then filter that view.

Adobe LiveCycle ES Context
Business Activity Monitoring Server Reference Caching Context Queries 48

Caching allows you to store the results of context queries in memory. Subsequent requests for the same
information are then retrieved from memory instead of impacting the DBMS with a redundant query.
When caching is active, and a view requests context, it searches the cache first. If the desired data are not
in the cache, Business Activity Monitoring issues a query to the database if on-demand caching is enable;
however, if prefetch caching is enabled, Business Activity Monitoring issues a query to the prefetch cache.
(See the following sections “On-Demand Caching” and “Prefetch Caching” for a description of these
caching methods.)

The context cache has these parameters:
e Cache data for this context

Either cache or do not cache context query results to the recent query cache. This parameter must be
set to enable the remaining parameters to be set. You must also add at least one invalidation schedule
when selecting this parameter.

e Enable prefetch

Either enable or disable context prefetch. This caches the entire external context table into memory
from the external data source and becomes a replacement for the external query source.

e Number of results to cache

Count of query results to cache in memory. Each set of results may contain one or more rows of context
related to the event.

e Invalidation schedule

Identifies when to invalidate the cache and discard all information currently in the cache.

Field Information Data Caching

;’_ache data For this context

[Enatble prefetch

Mumber of result sets ko cache: |10

Irvealidation Schedule: Description &dd Schedule. ..
Ak 6:00 AM on every Monday
Ak 2:07 AM on every 15t Edit Schedule. .
Remove Schedule...

On-demand caching occurs when you have selected “Cache data for this context” on the data caching tab
and have not selected “Enable prefetch.” With on-demand caching, the recent-query cache is created that
maintains results on a least recently used (LRU) basis. This cache keeps track of when each result set was
last requested. When the cache is full, it keeps the most recently accessed rows and discards those that

Adobe LiveCycle ES Context
Business Activity Monitoring Server Reference Prefetch Caching 49

have not been accessed in the longest period of time. If data is requested that is not in the recent query
cache, the data is retrieved from the external data source.

Note: Rows containing frequently requested data will remain in the recently query cache the longest
to reduce impact on the database. However, if details about the information can change often,
define an invalidation schedule to account for the changes and thereby invalidate the cache.

When a scheduled invalidation occurs, the recent query cache is cleared and updated on subsequent
queries. If context data is not rapidly changing, it is best to invalidate the recent query cache less often. For
example, if the context is fairly static, you might want to invalidate the cache weekly or monthly. However,
if the context database is updated nightly, you might want to invalidate the recent query cache nightly as
well to ensure the latest data.

On demand caching can deliver better performance than if no caching is used. However, you might be
able to improve performance further by using prefetch caching.

When you enabling the prefetch cache, the entire external context table is cached into memory from the
external data source and becomes a replacement for the external query source. The recent query cache
functions as described in the previous section, “On-Demand Caching”; however, when data is requested
that is not in the recent query cache, the data is retrieved from the prefetch cache instead of the external
data source. When an invalidation occurs according to your specified invalidation schedule, the recent
query cache is cleared and a query is issued to the external data source to update the in-memory copy of
the context table. The recent query cache is updated from the prefetch cache on subsequent queries.

When enabling the prefetch data cache, you should consider the following:

e More memory is used because the information from the external data source is stored in memory, and
an index is built for each column.

e The prefetch cache is only updated at the scheduled invalidation time. If data is not in the prefetch
cache, no data is returned. Updates to the external data source are not reflected in the prefetch cache
until after the next scheduled invalidation.

The prefetch cache retries up to 5 times to refresh on the invalidation schedule if an exception occurs. If it
cannot refresh from the external data source, the recent query cache is then used until the next scheduled
refresh.

7

Cubes

A cube is a set of data organized by dimensions and measures for the purpose of aggregating different
subsets of the larger set of data. When rendered as a Dashboard Object, cubes allow you to quickly choose
categories that “filter” data to show the results that meet your selection. For example, a cube of “sales”
data might provide aggregations of the same data by product, by time, or by sales region dimensions.
Looking at the cube you might choose to view the total sales of a product (Nails) within a business region
(West) during a fiscal quarter (Q1):

West Q1 January Hardware Nails 120,000
West Q1 March Hardware Nails 98,000
218,000 Total

Further, by quickly removing the product dimension specification, you switch the classification to see all
sales for that region and quarter:

West Q1 January Hardware Nails 120,000
West Q1 March Hardware Nails 98,000
West Q1 March Hardware Screws 97,000
West Q1 January Lumber Studs 137,000

452,000 Total

Or for all sales during the month of March:

West Q1 March Hardware Nails 98,000
West Q1 March Hardware Screws 97,000
East Q1 March Lumber Plywood 92,000
South Q1 March Hardware Nails 98,000

385,000 Total

Or for all West region sales of the Lumber family of products:
West Q1 January Lumber Studs 137,000
137,000 Total

Note: See Example: Detail of a Cube Chart and Cube Tables in the Using Dashboard documentation for
details about viewing and working with cube data.

In this Chapter:

e "Measures” on page 50

e “Dimensions” on page 51

e “Creating Cubes” on page 52

Measures are the central value that are aggregated and analyzed. In the above examples, Total sales is the
aggregate value. In each example, the Total is measuring the sum of all sales in the set. Measures are built
with the C-SQL Set functions, including SUM, AVG, MIN, MAX, STD_DEVIATION, and VARIANCE. For more
information about measures, see “Measure Columns” on page 52.

50

Adobe LiveCycle ES Cubes
Business Activity Monitoring Server Reference Dimensions 51

A dimension is a ranked order of classifications that from the highest to lowest level each describe smaller,
more distinct sets of related data. In the examples present in the introduction to this chapter, the business
region is one level of a geographical dimension, the quarter and month columns are each levels of a time
dimension, and the product family and product name are part of an inventory dimension. In the time
dimension, months are smaller sets of fiscal quarters, just as product name is a smaller set of the product
family level. The following tables presents some examples of dimensions.

Time Geography Inventory Security Taxonomy
year continent classification type kingdom
quarter country type rating phylum
month region manufacturer company class

week state model cusip order

day county configuration family
hour city genus
minute district species

For information about dimensions, see “Dimensions” on page 69.

Note: You can limit user access to data in the cube with an access filter. For details, see “Access Filters”
on page 15.

Adobe LiveCycle ES Cubes
Business Activity Monitoring Server Reference Creating Cubes 52

Cubes are similar to business views in that they aggregate event data, but they do so across different
dimensions. The view that a cube aggregates is a fact table: a view or event table in an event stream that
contains one or more columns to measure (aggregate), and which also contains columns that identify the
dimensional elements associated with the event. For example, you could imagine a fact table containing
an event similar to the following:

Cost Quantity Product State Month

200.00 1600 Nails California January

However, in practice the dimensional elements are stored in Dimensions (special context tables) and
referenced by IDs, like this:

Cost Quantity prod id region id ddim id

200.00 1600 100 7 39

This illustration shows a cube built from the OrderDetails fact table and which measures total sales across
various business regions, products, and time:

OrderCube SUM(prod_cost*order_qty)
(OrderDetaiIs) Products Location DateTime
order_id prod_id region_id ddim_id
prod_id prod_name region_name ddim_year
region_id prod_family region_state ddim_qtr
ddim_id region_city ddim_mon
order_qty ddim_week
prod_cost ddim_dom
total_sale ddim_dname

» To define a cube:

1. Choose the fact table and columns to measure.
2. Specify how to measure them (aggregate formulas to use).

3. Choose one or more dimensions that classify the measurements.

Measure columns define the aggregations that the cube calculates. A cube must have at least one
measure column, and may have more. Each measure column defines an expression that contains a C-SQL
Set function that aggregates other columns from the fact table. For example, to determine the “total sales”
from the OrderDetails fact table, a measure column might be defined as:

SUM (OrderDetails.prod cost*OrderDetails.order gty) AS TotalOrderSales

Adobe LiveCycle ES Cubes
Business Activity Monitoring Server Reference Dimension Columns 53

Dimension columns categorize the measurements. A cube must have at least one dimension, and may
have more. Further, the data in the fact table must be able to identify a unique element in each associated
dimension. For a complete discussion, see “Dimensions” on page 69. (Note that while the mathematical
term “cube” implies three dimensions, a database cube can have any number from one or more.)

Before creating a cube, you need:
e Create permission for Views, Cubes, and Dimensions.
e Atleast Read-Only access to an existing fact table (business view).

e Atleast Read-Only access to the Dimensions to include. See “Creating Dimensions” on page 74 for
details.

e Adimension with Geo Categories enabled if the cube will be used for Geography charts.

The following procedure describes how to create a cube.

» To create a cube:
1. Open the Workbench tab of the BAM Workbench, select the Cubes folder, and click New Cube.

2. ldentify a name, and optionally provide a description of the cube.

3. Choose the Fact Table that contains the data to measure, and which contains columns that identify the
dimension elements.

4, Define one or more Measure Columns.

e Click Add Measure Column to define a column.
e Name the column in the Measure Name field.

e Define the measure formula with a C-SQL Set function in the Aggregate Expression field. The
function should reference a column from the fact table. For example, the following SUM()
expression totals the product of the cost and quantity columns:

SUM (OrderDetails.prod cost*OrderDetails.order gty)

For more information about C-SQL expressions, see “Formulas” on page 108.

5. Define one or more Dimension Columns.

e Click Add Dimension to define a column.

Adobe LiveCycle ES Cubes
Business Activity Monitoring Server Reference Dimension Columns 54

e Choose the dimension to include from the Dimension column drop-down list. This list includes all
dimensions that you have at least Read-Only access to.

Dirnension Column Information

C_hc-c-sg I:hn_a -_:c-lumnslc-n whiu_:h this cube should be able to drill-down, and the Add Dimensian
dimension it is associated with,

Dimension Dimension Primary Key Fact Column Foreign Key

Product Dimensions » | | PROD_ID | | prod_id o

DateTime Dimensions
|Location Dimensions
‘Product Dime 5

o Identify the key columns in the dimension and in the fact table. See “Key Columns” on page 73 for
more details about the keys.

The data type for the key in the fact table must be the same for the key in the dimension (context
table). You cannot, for example, mix integer and decimal types; both must be either integer or
decimal.

6. Save the cube and you can immediately begin building Dashboard Objects on top of it.

Data Types

Business Activity Monitoring and C-SQL supports the following SQL-99 data-types and their semantics,
each of which is described in detail in the following sections of this documentation:

C-SQL Data Type Data Type Category
BOOLEAN Boolean

DECIMAL Numeric

DOUBLE PRECISION Numeric

INTEGER Numeric

INTERVAL Date-Time
TIMESTAMP Date-Time

VARCHAR String

C-SQL provides means for converting data of one type to another type. See “Data Type Conversion” on

page 56 for details.

In this Chapter:

e "Data Type Conversion” on page 56

o “Numeric” on page 57

e “String” on page 60

e "“Date-Time” on page 61

e "“Boolean” on page 68

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Data Type Conversion 56

In Business Activity Monitoring there are two ways to convert values from one data-type to another:
explicit casting and implicit casting.

Any C-SQL argument may contain CAST() to convert the data-type of a value. For example, you can cast a
character string of numerals into a numeric value and use the result as an argument to FLOOR():

FLOOR(CAST('1234.56' AS DECIMAL))

C-SQL automatically attempts to convert a data-type to the correct type for the argument where the value
is encountered. For example, if C-SQL encounters the VARCHAR ‘1234.56’ in the FLOOR() argument, it
automatically converts the value to a DOUBLE PRECISION numeric before truncating the decimal digits.
For example:

FLOOR('1234.56"') << Implicit cast to DOUBLE PRECISION.
Similarly, when a value of one data type is compared to a value of different type, C-SQL first converts one

of the values to match the other. In the following example, C-SQL converts the VARCHAR string to a
BOOLEAN before evaluating the expression:

'true' = TRUE << Implicit cast to BOOLEAN.
Context also affects casting. For example, because the following arithmetic add operator expects numeric
arguments, and even though both values are characters, the values are first cast to numeric:

20 4+ 13! << Both cast to numeric to match operator data type.

Note: The value must be convertible to the required type or the expression will result in an incorrect
data-type error.

The following table shows which types are convertible, and the order of precedence assigned to each
possible data type conversion, where zero (0) is the highest precedence and a million (1,000,000) is the

lowest:

DOUBLE
To\ From VARCHAR BOOLEAN TIMESTAMP PRECISION DECIMAL INTEGER
VARCHAR 0 10 10 10 1,000,000 1,000,000
BOOLEAN 1 0 — — — —
TIMESTAMP 2 — 0 — — —
DOUBLE 3 — — 0 1 3

PRECISION

Adobe LiveCycle ES Data Types

Business Activity Monitoring Server Reference Numeric 57
DOUBLE
To\ From VARCHAR BOOLEAN TIMESTAMP PRECISION DECIMAL INTEGER
DECIMAL 4 — — 1 0 1
INTEGER 5 — — 2 2 0

In the comparison example present in the previous section (“Implicit Cast”), C-SQL converts the VARCHAR
to a BOOLEAN because the precedence level for that conversion is 1, as opposed to 10 for converting the
BOOLEAN to a VARCHAR. Similarly, in the FLOOR("1234.56") example C-SQL converts the string to a
DOUBLE PRECISION because DOUBLE PRECISION has a higher precedence than DECIMAL, even though a
decimal might seem to be more appropriate to the value.

See the descriptions of the individual C-SQL data types for the specific details about converting those
types.

C-SQL has three data types for numeric values.

Type Description Bits Minimum value Maximum value
INTEGER Signed 32 -2,147,483,648 2,147,483,647
integer
DECIMAL Decimal — 1 digitsTotal count of DECIMAL 256 digits Total count of
digits, both before and after the DECIMAL digits, both before
decimal separator is 256. and after the decimal

separator is 256.

DOUBLE IEEE 754 64 +/-4.94065645841246544E-324 +/-1.79769313486231570E-
PRECISION floating point 308

Total count of DECIMAL digits, both before and after the decimal separator is 256.
To express a DOUBLE PRECISION as a literal, use scientific notation, such as 7e24.

The C-SQL numerics map to these data types in other support systems:

Support System Numeric Data Types
C-SQL/ JDBC INTEGER DECIMAL DOUBLE PRECISION
Java int BigDecimal double

Oracle Number(p=38) Number(p=38) Number(p=38)

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Data Types
Combining Numeric Types 58

Support System Numeric Data Types
SQL-Server Int(32 bit) Decimal(p=38) double
Numeric(p=38) real(4 bytes)
Money(64bit)
SmallMoney(32bit)
Sybase Int(32 bit) Decimal(p=38) double
Numeric(p=38) real(4 bytes)
Money(64bit)
SmallMoney(32bit)
MySQL TINYINT DECIMAL DOUBLE
SMALLINT NUMERIC REAL
MEDIUMINT
INT, INTEGER
BIGINT
PostgreSQL SMALLINT DECIMAL DOUBLE PERCISION
INT, INTEGER NUMERIC REAL
BITINT

Where p is precision

When combining two different numeric types, the result is the type with higher precedence based on the
“Order of Precedence” on page 56. For example, adding a INTEGER to a DECIMAL results in a DECIMAL

sum.

Casting a fractional number to an integer silently truncates the fraction (rounds down) to fit the target. For
example, forcing a DOUBLE PRECISION into an INTEGER truncates the fractional part of the value.

Casting numerics to types of different storage size is permissible provided that the target is large enough
to hold the result; otherwise the conversion fails with an “Number out of range” error. For example,
attempting to put a floating-point type of a larger storage size into a location of a smaller size results in an

error.

When casting numerics to strings, be aware of the following:

e For DECIMAL numbers, the result is zero-padded in the decimal values to match the precision and scale
defined for the column. So, for example, if a column is defined as precision 5 and scale 4, a value of 1.1

in the column is cast as ‘1.7000.

e For DOUBLE PRECISION numbers, the ‘e’ is cast to upper case. So, for example, +1e11 is converted to

"1.0E17".

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Decimal Precision Results 59

All decimal numbers have two components:
e Precision

The count of digits, both to the left and right of the decimal point. The maximum is 256. The minimum
is 1.

e Scale

The count of digits of the fractional component. It is less than or equal to the precision. When no scale
is specified, the default is 2.

In instances where a value has greater scale or precision than the target storage, such as a database field
with a smaller precision, Business Activity Monitoring truncates decimals and rounds down the result to
make it fit.

When casting a Decimal value, you can declare the precision and scale as follows:

DECIMAL (precision, scale)

For example,

CAST('4.012345', DECIMAL(5,4)) --> 4.0123

When casting from a decimal formatted column to a string, the result is zero-padded on the decimals to
match the scale. For example, when column is precision 5 and scale 4, implicitly casting a value of 1.1 in the
column to a string results in '7.7000'".

In multiplication, the resulting precision is the sum of the precisions, and the scale is the sum of the scales.

PrecisionResult = MIN(PrecisionLeft+PrecisionRight, 256)

ScaleResult = MIN(ScaleLeft+ScaleRight, 256)

For example, the result of (4.55%1.414) is precision 7 (3+4) and scale 5 (2+3).

In division, the results are:

ScaleResult = MIN(MAX((ScalelLeft+PrecisionRight-ScaleRight+1),2), 256)

PrecisionResult = MIN((PrecisionLeft + ScaleRight + ScaleResult), 256)

For example, the result of (4.55/1.414) is scale 4 (2+4-1) and precision 10 (3+3+4).

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Addition and Subtraction 60

For addition and subtraction, the results are:

PrecisionResult = MIN((MAX(PrecisionLeft - Scaleleft,
PrecisionRight - ScaleRight) +
MAX (ScalelLeft, ScaleRight) + 1), 256)

ScaleResult = MAX(ScalelLeft, ScaleRight)

For other functions and operations, the result is determined by the value with the largest precision and the
value with the largest scale — the results may be determined from the same value.

PrecisionResult = MIN(MAX(Precision[i]), 256)

ScaleResult = MIN(MAX(Scale[i]), 256)

The C-SQL VARCHAR data type maintains character string values.

Type Description Padding Minimum Size Maximum Size
VARCHAR Variable No 1 character Infinite characters. Note that an
length (default), may be error occurs if you attempt to
null. store a value into a DBMS that is

larger that the size of the
column defined in the table.

Though the maximum size limit for string values is infinite, try not to exceed 255 characters because that is
the limitimposed on many DBM systems. However, to improve performance, assist data storage, and aid in
string compares, it is good to declare an appropriate maximum width when defining a VARCHAR column.
The width should be big enough to hold the maximum length of any string result inserted into the field.
Text that is longer than the maximum width will be truncated when the string is stored.

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Third Party Data Types 61

The C-SQL/JDBC string type VARHCAR maps to these data types in other support systems:

Java Oracle SQL-Server Sybase MySQL PostGreSQL
String Char Varchar(8k) Varchar(8k) CHAR CHARI[nN]
Varchar VARCHAR VARCHARI[N]
Varchar2(4k) BINARY
VARBINARY
BLOB
ENUM
SET

To concatenate two strings, use either CONCAT() or the || operator. See “CONCAT” on page 122 for details.

To express a String as a literal, enclose the text in single quotes (). To include a single quote, include two;
for example:

'Couldn''t’ Returns: Couldn't

When combining a string with another data type, or when expressing a string where another data type is
expected, automatically converts the string to the new type based on the “Order of Precedence” on
page 56. Additionally:

e Allleading and trailing spaces are stripped.

e If the string contains an invalid character or invalid formatting, an error occurs. An invalid character is
one that is inappropriate for the target data type. For example, ‘hello’ cannot be converted to an
INTEGER.

e Formatting that is not consistent with the definition of a literal data value of the target type is invalid.
For example, for a string to implicitly convert successfully to a TIMESTAMP data type, the source string
must be contain in the default C-SQL date format. See See “Date-Time" on page 61. for details about
formatting strings for date-time types.

Date-time data types store date and time-of-day of that date as a single value (a number). There is no
facility for directly accessing a date-time as its internal, numeric representation. Instead, to access

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Converting Between Date-Time and Strings 62

date-time values in a meaningful way, C-SQL provides several functions for manipulating the values, and
provides literal constructs for representing the values in expressions.

Function Description

TIMESTAMP Literal A character string representation of a date-time value. Can be any
combination of year, month, day-of-month, hour, minute, second, and
fractional seconds.

INTERVAL Literal A character string representation of an interval: a span of time comprised of
years and months, or of days, hours, minutes, and seconds.

Note: Date-time values are in the time-zone of the locale of the server running Business Activity
Monitoring.

Convert a date-time to a character string (VARCHAR) with TO_CHAR(), and convert a string to a date-time
with TO_DATE(). Both of those functions allow you to specify the format of the string.

Including a TIMESTAMP Literal in a string an argument automatically converts the value to a string using
the default date-time format, which is “yyyy-MM-dd hh:mm:ss.SSS". For more information about
converting between date-time and string values, see “Data Type Conversion” on page 56.

A date-time is stored internally as a number representing the date-time in milliseconds. As such, you need
to be careful when comparing two date-time values. For example, this comparison is only true when both
dates have exactly the same milliseconds:

first date = second date
If exact granularity is not important, consider first converting the date-time values to strings that represent
just the date portion:

TO_CHAR (first date, "yyyy-MM-dd") = TO_CHAR (second date, "yyyy-MM-dd")
Note that according to the “Order of Precedence” on page 56, comparing a string to a date-time first casts

the string to a date-time before the comparison occurs. Consider this example where birth_date is a
date-time value. If birth_date has a time associated with it, the comparison will never be true:

'2003-02-18"' = birth date

A more exact comparison is to first cast birth_date to a string without a time:

'2003-02-18' = TO_CHAR(birth date, "yyyy-MM-dd")

The DATE_ADD() and DATE_DIFF() functions add and subtract intervals of years, months, days, hours,
minutes, and seconds on date-time values. See the descriptions of those functions for details. Some query
clauses, however, require a INTERVAL Literal (described below).

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Third party data types 63

The C-SQL date-time type maps to these data types in other support systems:

Support System Date-Time Type

C-SQL/JDBC Date-time
Java Date
Time
Timestamp
Oracle Date(YMDHMS)
SQL-Server Datetime(YMDHMS .xx)
SmallDateTime (YMDHMS)
Sybase Datetime (YMDHMS.xx)
SmallDateTime (YMDHMS)
MySQL DATE
DATETIME
TIMESTAMP
TIME
YEAR
PostgreSQL TIMESTAMP

The TIMESTAMP literal represents a date-time value as a character string. To express as date-time as a literal
value, prefix the data with the word “TIMESTAMP”, and enclose the entire data in single quotes ('), for
example:

TIMESTAMP '2003-03-05 19:45:23.123"
The format of the string is “yyyy-MM-dd hh:mm:ss.SSS”, where S (the fractional seconds) are optional and

may be from zero to nine digits of precision. See “Date-Time Formatting” on page 66 for details about the
formatting characters.

An INTERVAL literal identifies a span of time comprised of years and months (year-month intervals) or of
days, hours, minutes, and seconds (day-time intervals). You cannot combine year-month and day-time in
one interval declaration. Intervals are applied to date-time values to calculate the a span of time from that
instance. Typically they are used in expressions to offset date-time columns and TIMESTAMP literals, such
as when declaring the range from a date or time in Query Windows. For example, the following query
window totals of all events arriving in the last hour (implicitly applied to the arrival time of the latest event
to arrive):

SUM(Qty) AS Total Of Qty OVER (RANGE INTERVAL 'l' HOUR PRECEDING)

When applying an interval to a date-time, the interval is added to or subtracted from the value. For
example, if the current date-time is 5 March 2003 at 7:45p.m., adding an interval of 1 year to that date

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference INTERVAL Literal 64

results in 5 March 2004 at the exact same time. Note that calendar arithmetic follows Gregorian calendar
rules—see “DATE_DIFF” on page 128 for details.

A year-month INTERVAL uses either, or combines both, of the date-time fields YEAR or MONTH. The
possible definitions are:

INTERVAL 'yy' YEAR [(<precision>)]

INTERVAL 'mm' MONTH [(<precision>)]

INTERVAL 'yy mm' YEAR][(<precision>)] TO MONTH [(<precision>)]
The following examples define intervals of 3 years and of 10 months, respectively:

INTERVAL '3' YEAR

INTERVAL '10' MONTH
You can define a fraction year interval by expressing the result in total months, such as 46 months, or by
combining the field. For example, to identify an interval of 3 years and 10 months:

INTERVAL '3-10' YEAR TO MONTH

Note that you may specify a value of zero (0) for either field. The following iintervals are each 2 years:

INTERVAL '2-0' YEAR TO MONTH
INTERVAL '1l-12' YEAR TO MONTH
INTERVAL '0-24' YEAR TO MONTH

The <precision> argument is an ANSI standard that declares the maximum count of digits in the integer.
By default, the <precision> is 2. As such, the following two declarations of 100 month intervals each fail:

INTERVAL '100' MONTH (2) << ERROR, precision is less than value size.
INTERVAL '100' MONTH << ERROR, default precision is 2.
To use more than 2 digits, declare a precision in the following manner:
INTERVAL '100' MONTH (3)
When using both fields, apply the precision on the YEAR field only; the MONTH field uses its default
precision of 2. For example, the follow is erroneous because the month is greater than the default.

INTERVAL '100-123' YEAR(3) TO MONTH << ERROR, month is 3 digits

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference INTERVAL Literal 65

A day-time INTERVAL is comprised of a combination of days, hours. minutes and seconds. The possible
definitions are as follows, and where .nn is a fraction of a second:

INTERVAL 'dd' DAY

INTERVAL 'dd hh' DAY TO HOUR
INTERVAL 'dd hh:mm' DAY TO MINUTE
INTERVAL 'dd hh:mm:ss[.nn]' DAY TO SECOND
INTERVAL 'hh' HOUR

INTERVAL 'hh:mm' HOUR TO MINUTE
INTERVAL 'hh:mm:ss[.nn] HOUR TO SECOND
INTERVAL 'mm' MINUTE
INTERVAL 'mm:ss[.nn 1 MINUTE TO SECOND
INTERVAL 'ss[.nn 1 SECOND

Here are some examples of day-time intervals:

INTERVAL '27 23:59:59.999999999' DAY TO SECOND
INTERVAL '100 10:10' DAY (3) TO MINUTE

Each of the day-time fields also have a precision argument, such as:
MINUTE (<precisions)
The <precision> argument is an ANSI standard that declares the maximum count of digits in the integer.

By default, the <precision> is 2 (except for fractional seconds whose default is 9, see below for details). As
such, the following two declarations of 100 hour intervals each fail:

INTERVAL '100' HOUR(2) << ERROR, precision is less than value size.
INTERVAL '100' HOUR << ERROR, default precision is 2.
To use more than 2 digits, declare a precision in the following manner:
INTERVAL '100' HOUR(3)
When declaring precision for SECOND with a fractional component, specify two precision values separated
by a comma. Consider the following examples:

INTERVAL '12.345' SECOND (2, 3)
INTERVAL '12.123456789' SECOND (2, 9)
INTERVAL '12.123456789' SECOND

Notice that the last two examples above have the same effect because the default is (2, 9) for SECOND.

When using multiple fields, express the precision on the first field only. The remaining fields use their
default. For example, the precision in the following example applies to the minutes only and does not
affect the fractional seconds:

INTERVAL '100:23.123456789' MINUTE (3) TO SECOND

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Data Types
Date-Time Formatting 66

The TO_CHAR() and TO_DATE() functions both have arguments that define the format of the date-time
string. The format date pattern string is identical to the one used by the Java SimpleDateFormat class,
which uses these letters in patterns:

Letter Date-time Component Presentation Examples
G Era designator Text AD
y Year Year 1996; 96
M Month in year Month July; Jul; 07
w Week in year Number 27
W Week in month Number 2
D Day in year Number 189
d Day in month Number 10
F Day of week in month Number 2
E Day in week Text Tuesday; Tue
a Am/pm marker Text PM
H Hour in day (0-23) Number 0
k Hour in day (1-24) Number 24
K Hour inam/pm (0-11) Number 0
h Hour in am/pm (1-12) Number 12
m Minute in hour Number 30
s Second in minute Number 55
S Fraction of a second (one S Number 978
always returns an integer of 0 to
9 digits)
' escape for text Delimiter
" single quote Literal '

Some letters have multiple results, depending on the number of consecutive letters in the format. The
result will be the value that best fits the pattern. For numbers, if the pattern is bigger than the value, the
result is padded with leading zeros (0). See the examples in Table 1: Date and Time Pattern Examples for

details.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Data Types
Date-Time Formatting 67

The examples in the following table, modified from the Java SimpleDateFormat class documentation,
show how date and time patterns are interpreted in the U.S. locale. The given date and time are
2001-08-04 12:08:56 local time in the U.S. Pacific Time time zone.

Table 1: Date and Time Pattern Examples

Date and Time Pattern Result

'd Myy' 4801

'dd MM yy' 040801

‘ddd MMM yyy' 004 Aug 2001
'dddd MMMM yyyy' 0004 August 2001

"yyyy.MM.dd G 'at' HH:mm:ss z"

2001.08.04 AD at 12:08:56 PDT

"EEE, MMM d, "yy"

Sat, Aug 4, '01

"h:mm a"

12:08 PM

"hh 'o"clock' a, zzzz"

12 o'clock PM, Pacific Daylight Time

"K:mm a, 2"

0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa"

02001.August.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z"

Sat, 4 Aug 2001 12:08:56 -0700

"yyMMddHHmmssZ"

010704120856-0700

Adobe LiveCycle ES Data Types
Business Activity Monitoring Server Reference Boolean 68

C-SQL follows the SQL-99 use of three-valued logic (TRUE, FALSE, and UNKNOWN) to support NULL value
semantics. For example,

WHERE OnSale IS TRUE
WHERE (Age >= 21) IS UNKNOWN

When using Boolean operators to evaluate the truth of an expression, the values are evaluated as
described in the following truth tables follows:

NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN
AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN
OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
IS TRUE FALSE UNKNOWN
TRUE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE
UNKNOWN FALSE FALSE TRUE

Note: TRUE is greater than FALSE in comparisons.

Dimensions

Dimensions are ranked orders of related data and are used by Cubes to categorize measurements. These
measurements are ranked by level and value.

In this Chapter:

“What are Dimensions?” on page 70

“Level Hierarchy” on page 70

“Alias Names” on page 71

“Order By” on page 71

“Geo Categories” on page 72

“Key Columns” on page 73

“Creating Dimensions” on page 74

69

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Dimensions
What are Dimensions? 70

A dimension is a ranked order of classifications that, from highest to lowest level each describe
decreasingly smaller sets of related data. The following table presents some examples of dimensions
where the top level of each list contains the largest set of related items, while the bottom contains the
smallest, most specific set:

Time Geography Inventory Security Taxonomy
year continent classification type kingdom
quarter country type rating phylum
month region manufacturer company class

week state model cusip order

day county configuration family
hour city genus
minute district species

Cubes categorize measurements by dimensions, and within dimensions by levels and values. For example,
a location dimension can filter the results to show the measurements for all cities in a state. The illustration
below shows several locations filtered by state name, which limits the measurements to just three cities:

Add Dimension Filters: East New York Rochester
Location Dimensions | = East R. Island Tug Hollow
ctate - Central Missouri Parman

Central Ohio Toledo
Califorria | v Central Texas Austin
add Filtar West Nevada Reno
West California Lodi
itk (Al West California Ojai
State = 'Califarniz’ k&l\ West California Pasadena
South Florida Wallaby Ranch
South Georgia Rising Fawn
[-
Delete Filker Edit Filter

Dimensions draw their values from context tables, where each dimension level is one column in the table,
and each row is a unique dimension element. In the example shown in the illustration above, the region
names are in one column, states in another, and cities in a third. When you create a dimension, you identify
the existing source context table and the columns to include, and you arrange the columns into the level
hierarchy.

The level hierarchy is what enables “roll-up” and “drill-down” in cubes. When a user is viewing data for one
level, they can “roll-up” to see a higher level of measurements, or “drill-down” to see the data categorized
at the next smaller level. For example, when looking at the results for a state, the user might choose to
roll-up to see the measurement for all states in the region. Alternatively, the user might click on the results
to see the results for each city in the state. The level hierarchy defines the levels in the dimension.

Dimensions

Adobe LiveCycle ES
Alias Names 71

Business Activity Monitoring Server Reference

The following illustration shows four columns in the source file, but only three contain dimension level
data. These three are selected and arranged in the containing hierarchy of largest to most-specific levels.

Note: If you have selected “Use this for Geography Charts’, a Geo Categories column is displayed. For
information about Geo categories, see “Geo Categories” on page 72.

Selected Fields:
Arrange Fields ko Form a hierarchy From largest (kop) ko smallesk
conkained subset (bokbom):

Available Fields:

Select Fields Far your hierarchy:

Column Mame |Data Type Levelltulumn Mame |nlias Mame |Drder By Col...
REGIOM_CITY Varchar 1 REGION_NAME [egion [REGION 1A = | Up
REGICOMN_ID Inkeger b
- oI
REGICH_MAME Varchar == State REGION_ST
— 3 REGION_CITY - -
archar ity |REGION_CIT = | R

After identifying the columns, you can optionally assign alias names that the users will see when they work
with the cube. This illustration shows the filter level alias names as they appear in the Dashboard.

| 1

Levelll:nlumn Mame |nlias Mame

I REGION NAVE [eegon

Alias names that users
see when choosing
filter levels in the cube.

Select a Filker Level | =

Select a Filker Lewvel

2 REGION_STATE [Spate
3REGIONCITY o,

Fegion

State %
I City

In the BAM Dashboard, dimension values are presented in their sort order (as provided by the server). For
example, a list of month names appears in alphabetical order, starting with April and ending with
September, rather than in the order they occur in a year. To specify another order, use the Order By Column
field. This field identifies another column that contains the values to use for sorting. For example, instead

Adobe LiveCycle ES Dimensions
Business Activity Monitoring Server Reference Geo Categories 72

of using the “month name” column, use the “month number” column, as shown in the following
illustration.

Level | Column Name |Alias Mame |Drder By Column |
1 DDIM_YEAR frear |DDIM_vEAR =

2 DDIM_QTR_MAME Jquarter |oDIM_QTR_MAME - |

I~

DDIN_MOMN_NO

Seleck a Filker | _WEEK_MO Select a Filker | =
April January =
Augusk Februarsy
December tMarch
Februarsy april
January REW
Default order by I Order as sorted by I
month name. month number.
March Augusk (.
EW o Sepkember
Movember - Cctober -

Also, if your Order By column field has multiple values that correspond to a single value in the dimension,
the miminum value of the Order By column will be used for the sort order. In such cases, you should be
careful when selecting the column to use for sorting values. For example, using month names as the sort
order for quarters could produce unpredictable results because the months would be sorted by
alphabetical rather than numerical order.

Geo Categories enable geographic information to be used in cubes. A geo category setting specifies the
level of accuracy that the BAM Dashboard should use for the column. For example, if a column contains
the names of states or provinces, you would assign it the geo category “State/Province.” The available
categories are:

e Not Used

e Country

e State/Province
o City

e Address

e Postal Code

Use the “Not Used” category for a column that you do not want to map on a Geography chart or does not
match an available category. For example, a column of REGION_NAME that contains data such as North,

Adobe LiveCycle ES Dimensions
Business Activity Monitoring Server Reference Key Columns 73

South, East, and West cannot be mapped to a geographic location, and you would assign this column to
the “Not Used” geo category.

Selected Fields:
Arrange fields ko Form a hierarchy From largest (bop) ko smallest conkained subset
(boktom):
Level ColumnMame Alias Name Order By Colu... Geo Categories
1 REGION_MAME o emion REGION_MAM | | Mok Used w
2 REGION_STATE [pate REGION_STA % | | State/Provino »

3 REGION_CITY g REGICN_CITy v § Mok Used
Mot Used
Counkry

State‘F‘rwince I

Skreek
Postal Code

Geo Categories to
assign to columns.

To use the context as a dimension, your event data must identify the unique dimension element (row) that
it belongs to. In the location context data, the most unique value in each element is the city name;
however, while that name could be used for identification purposes, for performance reasons it is better to
use a number. As such, the locations context data should have an integer ID as follows:

region id region name region state region city

1 West Nevada Reno

2 South Texas Austin

3 East New York Rochester
4 Central Ohio Toledo

5 West California Pasadena

Then the fact table that provides the value for the cube to measure also includes the key value to identify
the associated dimension. For example, this order record is associated with Ojai, California, in the West
region:

order_id region id total sales

102341 7 120000

Note: The data type for the key in the fact table must be the same for the key in the dimension (context
table). You cannot, for example, mix integer and decimal types; both must be either integer or
decimal.

When you define the dimension, identify one or more key fields that may be used to identify the specific
level. You can choose any column that is not already a dimension level because levels are automatically
assumed to be potential keys. The illustration below shows one column, REGION_ID, because all the other
columns in the dimension are assigned to levels. Later, when you define the cube, identify the key column
in the dimension that maps to the key in the fact table. In this example, they happen to have the same

Adobe LiveCycle ES
Business Activity Mon

Dimensions
itoring Server Reference Creating Dimensions 74

name; however, that is not a requirement. Furthermore, you may assign an alias name to the column to
make it easier to identify.

Select Key Fields: (Optional)

|
Column Name | Key Field |A.Iias Name Identify keys in the I

Dimension editor.
REGION_ID 3 [rEGIoN T _I

Dimension Column Information

T Clhoose_ thn_a Fulumns_on whi_ch this cube should be able Jo dril-down, and the 2dd Dimension
dimension it is associated with.

Dimension Dimension Primalﬁ Key Fact Column Foreign Key
Product Dimensions || FROD_ID w || prod_id v ﬂ
Location Dimensions | | REGION™ v |[rEGIon 10 | Map dimensions to facts in
the Cube editor.
DateTime Dimensions * | | DDIM_ID w | [DDIM_ID

For information about defining cubes, see “Creating Cubes” on page 52.

Befo

re creating a dimension, you need:

e Create permission for Views, Cubes, and Dimensions.

e Atleast Read-Only access to the Context table that provides the dimension elements.

Note: Turn on caching for the context table for optimum performance. When caching is off,

performance for cubes can be slowed dramatically. See “Caching Context Queries” on page 48
for information about controlling the cache.

» To create a dimension:

1. Open the Workbench tab of the BAM Workbench, select the Dimensions folder, and click New
Dimension.

2. ldentify a name and optionally provide a description of the dimension.

3. Choose the Context Table that contains the dimension elements.

4. (Optional) Select “Use this for Geopgraphy Charts” if you plan to implement geography maps. This adds

a

Geo Categories column to the Selected Fields list.

5. Define the levels of the hierarchy:

Add fields to the hierarchy from the Available Fields list.
Order the levels from largest set (top) to smallest (bottom).
Identify one or more Key Columns to include.

Optionally assign Alias Names to the levels.

Adobe LiveCycle ES Dimensions
Business Activity Monitoring Server Reference Creating Dimensions 75

e Optionally assign Geo Categories to each level, if you selected the “Use this for Geography Charts”
check box. The possible categories are:

e Not Used

e Country

e State/Province
e City

e Street

e Postal Code

Save the dimension, and you can immediately use it in Cubes.

10

Events

Events drive Business Activity Monitoring internal processing. Events are data produced by external
business applications that record transactions, identify changes in business state, and synthesize the

details about the business activities. Business Activity Monitoring receives events in event tables. Business

views built on the tables then aggregate the event information and drive the Rules that look for

exceptional business conditions.

In this Chapter:

“How It Works” on page 77

“External Sources” on page 77

“Event Properties” on page 78

“Creating Event Tables” on page 79

“Editing Event Tables” on page 79

76

Adobe LiveCycle ES Events
Business Activity Monitoring Server Reference How It Works 77

Events come to Business Activity Monitoring from business applications, databases, and text files. Usually
Agents automatically receive or retrieve the event data and load it into an event table. Alternatively, you
can manually load events from text files with the BAM Workbench. As events arrive they are processed and
their data are passed to the business views. The views then aggregate the data and might retrieve context
data relative to the event.

Business Business

Tl

Contex

Events stream into the event table from business
applications, databases, of text files. The events
then flow into business views.

EventUpload

Note: Events are processed in the order that they are received in the system. When one agent has
received a large quantity of events, any new events received by other agents are queued behind
the first set and are not processed until the first set is completely processed.

Business Activity Monitoring provides agents to access several external event sources. Some events stream
(are pushed) into the system as they happen. Other events are loaded (pulled) as the result of a request,
such as from a database or a text file. The following table summarizes the available sources and identifies
the source agent they support. (See “Agents” on page 23 for details about how they retrieve and receive
event data.)

Event Event

External source Agent push pull
Java Messaging Service ~ Java Messaging Service (JMS) (see Yes No
(JMS) page 204)

Text file (XML or flat) Flat Files (see page 81) No Yes
TIBCO Rendezvous (RV) TIBCO Rendezvous (see page 337) Yes No
HTTP Post action HTTP Post (see page 197) Yes No
Salesforce Salesforce (see page 305) No Yes
Web service None. (See “Web Service Events” on Yes No

page 363.)

Adobe LiveCycle ES

Events

Business Activity Monitoring Server Reference Event Properties 78

Every event table has a name, description, and status attribute, and most have an agent. The following
table describes the attributes.

Attribute Description

Name Identifies the table and is the name accessed by the Business Views that
depend on this table. This name must be unique among views, events,
context, and consolidated events. See “Object Namespace” on page 248
for details.

Description (optional) Description of the table.

Status Whether or not the object is enabled (able to receive and pass data), or
disabled (not receiving or passing data).

Agent An agent that receives or retrieves the event information, and passes the

Log event data for
recovery

Process events in
the order of arrival

data to the event table. See “Agents” on page 23 for information about
agent types.

When on, logs event data that arrived after the last checkpoint started.
This “recovery” log is used to restore the state of the system in the event of
an abnormal shutdown of the servers. See Working with Checkpoint and
Recovery for complete details.

Choose this option when events must be processed in the order received.
When off, events may be processed out of order.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

Adobe LiveCycle ES Events
Business Activity Monitoring Server Reference Creating Event Tables 79

Before creating an event table, you must have Create permission for tables (see “Creating Permission” on
page 258), and Read only access permission on the agent that will feed the table.

» To create an event table:
1. In the Workbench tab of the BAM Workbench, click New Event...

2. Choose the source type.

3. Each type has its own specific attributes. For details, see the following related sections:
e "“Flat Files” on page 81
e "HTTP Post” on page 197

e “Java Messaging Service (JMS)” on page 204
e "“JDBC” on page 216

e “Salesforce” on page 305

e "“TIBCO Rendezvous” on page 337

e “Web Services” on page 362

4, Fill in the fields in the New Event or New Context form.

5. Save the object as enabled.

The object is immediately ready to receive events or context.

Editing the attributes of an event table causes the object to lose state, and possibly invalidates dependant
views. For example, if you remove a column, any view or rule that references that column becomes invalid.
(However, if you redefine the column in the table, the dependant views are automatically revalidated.)

"

Before editing an event table, you must have Read and wrlte permission for tables (see “Accessing
Permissions” on page 255), and Read only access permission on the agent that feeds the table.

» To edit an event table:
1. In the Workbench tab of the BAM Workbench, select the event or context object.

2. Chose Edit This Event or Edit This Context.

3. Change the definitions in the Edit Event form.
Each type of event has its own specific attributes. For details, see the following sections:
e “Flat Files” on page 81
e "HTTP Post” on page 197
e “Java Messaging Service (JMS)” on page 204
e "JDBC” on page 216

e “Salesforce” on page 305

e "“TIBCO Rendezvous” on page 337

Adobe LiveCycle ES Events
Business Activity Monitoring Server Reference Editing Event Tables 80

e "“Web Services” on page 362

Save the object as enabled and it will immediately be ready to receive events or context.

11

Flat Files

Aflatfile is a text file that contains the information about one or more events. Each line in the file is usually
one event record — one row in the event table — and the data in the row map into the columns in the
event table. The rows may be formatted as fixed width, delimited, or XML files.

In this Chapter:

“How It Works” on page 82

“Flat File Event Tables” on page 82

“Flat File Agents” on page 89

“Delimited Files” on page 93

“Fixed-Width Files” on page 94

“XML Files” on page 95

Note: Fixed-width and delimited files may contain multiple rows for the same event. See “Multi-Row

Events” on page 84 for details.

81

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How It Works 82

Flat file events are loaded in “batch” mode into the flat-file event table, though events are processed
individually as they are loaded into the table. There are two ways to load flat-files into the event tables:

e Automatically

The Flat File Agents periodically looks to see if the associated file exists. When the file is found, the
agent retrieves it and passes it to the event object for event processing.

e Manually

The Upload Event File button in the event-detail page in the BAM Workbench loads a manually
selected file when chosen. For details, see “Upload Event File Option” in . Using Business Activity

Monitoring Workbench.
Flat files can be loaded as events
automatically by agent, or manually by
Event File Upload button
Event table

File to look for. . Flat file Looks for file. -
B e — agent -
= — Retrieves found file

mmmmmmmn Passes file contents
to event table. and deals with file.

Looks for file. N
Upload button J =
Passes file contents p

— Retrieves found file
to event table. contents and leaves
file alone.

Event table

Flat Files event tables receive event files from Flat File Agents or from the Upload Event File Option in the
BAM Workbench of the BAM Workbench. The three flat-file formats are:

e "“Delimited Files” on page 93
e "“Fixed-Width Files” on page 94.
o “XML Files” on page 95

Before creating an event to a flat-file event table, you need:

e Permissions — Create permission for tables (see “Creating Permission” on page 258), and Read Only
access permission on the agent that will feed the table.

e Fixed-width and delimited files — (optional) A sample file that contains data in the format of the actual
events. Use the sample when you create the event to ensure that the fields map correctly into the event
table. Note that this is optional; you can create the event without a source, but having it greatly assists
you with event table creation.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Flat Files
Flat File Event Tables 83

e The schema of the XML files to load. Specifically, you need to know the names of the attributes that
contain the event column information, and the XML path to the element that contains the columns for
each event. See “XPaths” on page 95 for details. The following table describes the attributes.

Attribute Description

Name Identifies the event object. This name must be unique among views, events,
context, and consolidated events. See “Object Namespace” on page 248 for
details.

Description Optional description that may contain any text characters.

Status Whether or not the event object is enabled (monitoring for events) or disabled

Log event data for
recovery

Process events in
the order of arrival

File Agent

Start import on row

Use this row for
column names

Skip rows

Allow short rows
Delimiter

Escape character
Text qualifier

Number formats

(not monitoring for events).

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. See Working with Checkpoint and Recovery
for complete details.

Note: To improve input/output performance, point the recovery log file
directory to a disc different from the one that feeds this agent.

Note: Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on. To join
events in a view, the events must be processed in order: Leave this option
off to join the events.

An existing file agent that retrieves events and context from a text file. Create an
agent with the BAM Workbench Administration tab. See “Flat File Agents” on
page 89 for details.

For fixed-width and delimited files, identifies the row of the text in the source file
that contains the first data to import. Default is 1, the first row. Use this option if
the text contains unnecessary introduction or header information.

For fixed-width and delimited files when using a sample, this option identifies a
row in the sample that includes the column names. These names identify each
column in the Column Information details. When this option is not specified, the
default names are Field1, Field2, etc.

For fixed-width and delimited files identifies the rows to ignore in the source file
before importing event data. For example, if the file contains some title and
header information, the source might actually start on the third row of the file. In
such a case, you would specify 2 as the count of rows to skip.

For delimited files only. See “Delimited Files” on page 93 for details.

For delimited files only. See “Delimited Files” on page 93 for details.

For delimited files only. See "Delimited Files” on page 93 for details.

For delimited files only. See “Delimited Files” on page 93 for details.

Number formatting specifications. Default is comma (,) thousands separator and
dot (.) decimal separator.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Creating a Flat-File Source Event 84

Attribute Description

Column information For fixed-width and delimited files details about each column in the table,
including the name, data type, and formatting applicable to the type.

Event Key For fixed-width and delimited files, identifies key field columns for multi-row
events. See “Multi-Row Events” on page 84 for details.

Field information For XML files, identifies the source elements and how they map into the event
table columns. See “XML Field Information” on page 96 for details.

Clear State Interval This tab contains several options for clearing persisted event data that is
propagated from the event in the views, objects, and dashboards that depend
onit.

The three options are:
* Do Not Clear State— This is the default. Data persists.

« Clear State on a Schedule— Select to clear the state on a schedule.
Selecting this option activates the scheduling feature positioned to the right.

» Always Clear State (Every Event)— The state is refreshed each time the
event is updated.

Use the following procedure to create a flat-file source event.
» To create a flat-file source event:

1. Open the Workbench tab in the BAM Workbench.

2. Choose New Event and select Flat-file as the source type.

3. (Optional for fixed-width and delimited files.) |dentify a sample file to assist in mapping the columns. This
file is a sample of the real data file. Data from this file appears in the next step to assist you as you map
the event data into the table.

4. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.
5. Identify the event Attribute.

6. Define the format-specific Column Information. For details about the source type, see:
e "“Delimited Files” on page 93
e "Fixed-Width Files” on page 94.
e “XML Files” on page 95

Save the file source as enabled and it will immediately be ready to receive event messages.

A fixed-width or delimited file may contain multiple rows for the same event. For example, a “purchase
order” event might contain one row for each line-item in the order. When this event is loaded into the

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Multi-Row Events 85

event table, each row is treated as part of the same event; the system does not treat each row as a new
event.

To identify the rows as containing data for the same event, each row must have some identifying data that
is unique to the event. For example, this sample data contains line items for 3 purchase orders where each
order identified by the POID column. The first order has 3 items, the second has one, and the third has 2:

POID, ITEM NO,ITEM NAME, ITEM QTY,ITEM COST,ITEM TOTAL
0697,1,Smoke Shifter,100,5.00,500.00

0697, 2,Nano Webber,50,6.00,300.00

0697,3,Locking Rail Key,25,7.50,187.50

0698, 1,Nano Webber,50,6.00,300.00

0699,1,Foo Bar Stool,100,60.00,6000.00

0699, 2,Can of Levers,250,1.50,375.00

When defining the column information for this event, you identify the POID column as the key field by
choosing Event Key. Each event may have one or more Event Key fields, as shown in the following
illustration.

Event Key

POD: |[varcHar v || width: 4 ¥ O
ITEM_MO |[nrEGER 8] [1ja o O
ITEM_MAME |[warcHaR s | width: 60 ¥ O

In the file, the rows for each event must appear together, and the data in the Event Key fields must be
unique to the event. As soon as the data in one of the fields is not the same as the previous row, that field’s
row is a new event. For example, the following sample is treated as three separate events, even though the
last row has the same Event Key value as the first two rows:

POID,ITEM NO,ITEM NAME,ITEM QTY,ITEM COST,ITEM TOTAL

0697,1, Smoke Shifter,100,5.00,500.00

0697,2,Nano Webber,50,6.00,300.00

0100,1,Foo Bar Stool,100,60.00,6000.00

0697, 3,Locking Rail Key,25,7.50,187.50

Note: If any row contains invalid data, that row is discarded and does not affect subsequent rows. For
example, the third row in the following sample contains a character (‘X") where an integer is

expected. In this sample, the third row is discarded, and the fourth is included as the third row in
the event:

POID, ITEM NO,ITEM NAME, ITEM QTY,ITEM COST,ITEM TOTAL
0697,1,Smoke Shifter,100,5.00,500.00

0697, 2,Nano Webber,50,6.00,300.00

0697,X,Foo Bar Stool,100,60.00,6000.00
0697,4,Locking Rail Key,25,7.50,187.50

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Time Zones for Flat File Events 86

Flat File events (delimited and fixed) have the option to specify a date format for a timestamp field. In
addition to the date format, you can also specify a time zone. This allows you to specify how the server
interprets the timestamp value in the field; that is, the timestamp can be assumed to be in the same time
zone as the application server or another specific time zone. This is useful when the application serveris a
different time zone from the one in which events occur, and you want the timestamp to display in a View
for that time zone. The default is the server’s time zone.

Data Type Formatting Eve

TIMESTAMP % | [ywwy-MM-dd HH:mmiss, 5;Server Time Zone w

Timestamp set to
server time zone.

The following table shows examples of a timestamp with different formats and time zones. Note that
when the time zone is set to GMT+5:30 and GMT+13:00, the View result for the timestamp shows the date
as 2006-10-25 instead of the field value.

Field Value in Flat File Timestamp Format View Result

2006-10-26 09:49:12.976 yyyy-MM-dd HH:mm:ss.S; Server 2006-10-26 09:49:12.976
Time Zone

2006-10-26 09:49:12.976 yyyy-MM-dd HH:mm:ss.S; Server 2006-10-26 09:49:12.976
Time Zone

2006-10-26 09:49:12.976 yyyy-MM-dd HH:mm:ss.S; 2006-10-25 21:19:12.976
(GMT+5:30) Chennai,
Kolkata,Mumbai ...

2006-10-26 09:49:12 yyyy-MM-dd HH:mm:ss; 2006-10-25 13:49:12.0
(GMT+13:00)Nuku'alofa

» To set the format and time zone for a flat-file event:
1. Click the Edit This Event... tab for the flat-file event.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Time Zones for Flat File Events 87

2. In the Column Information tab, find the field with a TIMESTAMP data type and select <Change
Formatting> under Formatting.

Column Information Clear State Interval

Field Name Data Type Formatting

|Timestamp ||TIMESTF\MF‘ i | | < hange Farmatting = W

The Custom Date Format window displays.

Custom Date Format Help

Letter Date-time Component

G Era designator AD =

Y ‘fear 1996,;96

il Month in year July; ul;07;7

d Day in maonth 10 |

h Hour in am/pm {1~12) 12

H Hour in day {023} o

m Minute in hour 30

s Second in minute 55 =
Cancbice of - o

Diate/Time: Format: |

Custom Format: |

Sample: |2006-12-Dl 10:21:05.95

Time Zone: | Server Time Zone A |

3. Select a format from the Date/Time Format drop-down menu or create a custom format.
4. Select a time zone from the Time Zone drop-down menu.
5. Click OK.

The timestamp format and time zone displays in the Formatting column of your timestamp field.

Data Type Formatting Eve

RS o Hrimss. 5. 0GHT £ 08:00) Perth

Timestamp set to
Perth time zone.

» To create a custom time format:

1. Open the Custom Date Format window.

2. Select <Custom Format> from the Date/Time Format drop-down menu.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Time Zones for Flat File Events 88

3. Build your custom format in the Custom Format field by entering date-time component letters.

Use the list displayed in the date format list for the available definitions. The Sample field will display a
sample of your format as you build it.

DatefTime Format: | «cyskanm Farmat > w

Custom Farmat: |E MMMiddfyeyy G hemes, S a UTC

Sample: |Fri Decf01/2006 AD 10:49:6. 144 AM UTC

4. Click OK to apply the custom format to your timestamp field.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Flat File Agents 89

A flat file agent retrieves event messages from a text file.

Note: You cannot retrieve context from a file agent because there is no query logic as summarized in
the following table

Event push Event pull Context pull

No Yes No

The flat file agent searches for files in a specified location on a defined interval. The name of the files to
search for may include * and ? wildcard characters. When the agent locates a file, it retrieves the events and
then either deletes, moves, or renames the source file. When multiple files are located in the named
location, the agent processes them in filename order.

Before creating a flat file agent, you need:

o Create permission for agents (see “Creating Permission” on page 258 for details).

e Arunning File agent program (see “Configuring the File Agent Program” on page 90)

A file agent has the following attributes:

Attribute Description

Name Identifies the agent and is the same name as defined by the agentName

element in the agent’s TestAgent.xml configuration file. See “Configuring
the File Agent Program” on page 90 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events), or disabled
(not monitoring for events).

Use the following procedure to create a flat file agent.

» To create a flat file agent:
1. Open the BAM Workbench Administration Console.

2. Click New Agent...
3. Choose Flat-file as the source type
4. Fillin the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately begin monitoring for events.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Configuring the File Agent Program 90

The File Agent is a stand-alone Java program that runs on a host (possibly different than the BAM Server
host), gathering events from a text file. When it finds event data, it passes the data to the BAM Server for
processing.

The agent has two XML configuration files:

o TestAgent.xml (based on VCAgent.xsd) defines the connection information, such as how to locate the
BAM Server and how those servers can locate the file agent.

e FileAgent.xml (based on FileAgent.xsd) identifies the text file and what to do with the file when
finished uploading its data.
To start the agent, run the cqagent.jar file in Java and pass the TestAgent.xml configuration file as an
argument as follows:
java -jar ..\cgagent.jar TestAgent.xml
Optionally, you can identify the logging configuration file directory and logging level by including logging
properties. The following example sets the logging level to all messages:

java "-Dcom.celequest.property.Logging Directory=C:\logs\agents"
"-Dcom.celequest.property.Detailed Log File Level=Al1"
-jar ..\cgagent.jar TestAgent.xml

The TestAgent.xml file has the following configuration attributes and elements:

Attribute Description
serverPort (Optional: default 80) HTTP port on the application server that is running the
(attribute) BAM Server, and which the agent uses to communicate to the server. This is the

same port that users use to connect to the BAM Workbench.

pinglnterval (Optional: default 20 seconds) How often the agent tests to see if the BAM

(attribute) Server is running. When the server is not running, the agent will not gather
events.

agentName (Required) Identifies this agent and is the same Name to use when creating the

agent in the Administration Console. This name must be unique among agents.
See “Object Namespace” on page 248 for details.

serverHost (Required) Name of the host machine running the BAM Server. If they are
running on the same machine as the File Agent, specify localhost as the name.

agentimplClass (Required) Agent implementation class. Do not change this value; currently
com.celequest.agent.FileAgent is required.

agentlmplConfigFile (Required) Identifies the configuration file for the implementation (the text file
component), usually FileAgent.xml.

agentPort (Required) Port used to communicate to the agent on the agent’s host. Used for
communication by the server to the agent for disable and enable status
changes. Use any valid port number, such as 5050.

Adobe LiveCycle ES Flat Files

Business Activity Monitoring Server Reference Configuring the File Agent Program 91
Attribute Description
pollinginterval (Required) How frequently (in seconds) to look for new events.
loggingDirectory (Optional: default is configuration file directory) Directory in which to log file

information. The log filename is agentName.log.

The following example names the event agent as “orderStatusEvent’, identifies the implementation
configuration file as FileAgent.xml, and sets the server port to 8080:

<?xml version="1.0" encoding="UTF-8" ?>

<VCAgent xmlns="http://www.celequest.com/3"
xmlns:xsi="http://www.w3.0rg/2001/xmlSchema-instance"
xsi:schemalocation="http://www.celequest.com/3 VCAgent.xsd"
serverPort="80"

<agentName>flatFileEvent</agentName>
<serverHost>localhost</serverHost>
<agentImplClass>com.celequest.agent.FileAgent</agentImplClass>
<agentImplConfigFile>FileAgent.xml</agentImplConfigFile>
<agentPort>5050</agentPort>
<pollingInterval>20</pollingInterval>

</VCAgent >

This file configures the text file component (the implementation) of the File Agent. This file’s actual name
and location are identified in the TestAgent.xml file, and it is usually located in the same directory as that
file. This configuration file has four configuration elements, though most configurations use the
<filename> and <fileDisposal> elements only.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Configuring the File Agent Program 92

The FileAgent.xml file has the following configuration elements:

Element Description

filename The name and location of the source text file that contains the events. The file is
assumed to be in the same directory as the configuration file unless you identify
another location in the filename. You may use relative or complete file path
specifications. And the filename may include * and ? wildcard characters.

On UNIX systems use a slash to separate directory path names, such as
events/file*.txt.

On Windows systems use two back slashes to separate directory path names, such
as events\\file*.txt.

type Identifies the source as a STREAM or FILE. Use FILE when the entire text file must be
uploaded atomically (all or nothing), such as for an XML file. Otherwise, use STREAM
to upload lines in batches defined by the buffersize element.

buffersize (optional: default is 4,000+EOL) Count of characters to buffer or send in batch to the
server. The actual size sent is the buffersize plus the remainder of the line of
characters that span the limit. Use this setting to avoid uploading excessively large
amounts of event text at one time.

fileDisposal (optional) What to do with the source file after uploading its data. Choices are:
delete — (default) Deletes the file after upload.
move — Moves the file to a directory specified by the target attribute.
rename — Renames the file by adding the extension attribute to the filename.

Both move and rename overwrite any existing files of the same name in the target
location, without warning or error.

This example identifies the source text file as orderStatusData.txt in the events\ subdirectory on a
Windows host and moves the finished file into the .\done\ sibling directory:

<?xml version="1.0" encoding="UTF-8" ?>

<FileAgent xmlns="http://www.celequest.com/3"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:schemalocation="http://www.celequest.com/3 FileAgent.xsd">
<fileName>event\\orderStatusData.txt</fileName>
<fileDisposal>

<move target="..\\done\\" />

</fileDisposal>

</FileAgent>

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Delimited Files 93

In a delimited file, each field (column) is separated by a character, typically a comma. For example:
0703,00001,Assigned, 13,2003-03-05 14:23:00,Sridar
0706,00004,0pen,13,2003-03-05 19:50:00,
0706,00004,Resolved, 13,2003-03-05 19:50:00,Niku

Note: Delimited files are also called comma separated value (CSV) files.

Column Information Clear State Interval

Field Mame Message Name Data Type

MessageField

The field separator character, escape character, and text qualifier are each customizable.
e Separator character — Separates each field in the row; usually a comma character (,).

e Escape character — Precedes characters that are not to be used as a separator; usually a back slash
character (\). For example, if the separator character is a comma, and the text contains a real comma,
then the real comma is “escaped” with a preceding back slash. For example, the comma after
“Altadena” is not a field separator:

123 Buena Loma Dr,Altadena\, CA,91001

e Text qualifier — Text strings are further bounded by this character, usually a double quote("). Use this
option when text strings are qualified to be different from other data types. For example, this event has
text fields that contain numerals, but one of the fields (data value 13) is numeric:

"0706","00004", "Open",13,2003-03-05 19:50:00,""

Source rows that do not contain enough data to fill the row generate an error. To permit the data without
generating an error, turn on Allow Short Rows. For example, this text generates an error when the third
row in imported unless short rows is allowed:

1,2,3,4,5,6
1IIIII
1

When the First row contains field names option is selected, the names in that row appear as the column
names. Otherwise, assign the names manually. Additionally, for each column, assign a data type and
optionally declare a data format.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference Fixed-Width Files 94

In fixed-width files, each field (column) is the same predefined width in each file row, similar to a
spreadsheet table. For example:

070300001Assignedl3 2003-03-05 14:23:00Sridar
0706000040pen 13 2003-03-05 19:50:00
070600004Resolvedl3 2003-03-05 19:50:00Niku

To import a fixed-width file, you need to identify the column positions that begin each field of data with
the Set Field Widths dialog. When you provide a sample, the sample data are shown and you click the
columns to indicate the start of a field.

Click ko add a column break. Click again ko remove it

0 10 20 30 40
070300001issigned|l32003-03-05 14:23:003ridar
070600004 pen 13j2003-03-05 19:50:00

070600004Resolved|l32003-03-05 19:50:00M1ikn

If you do not have a sample, you need to identify the starting position of each column in the text.
Remember too that the first field starts at position zero (0).

Column Information Clear State Interval

Field Mame Message Name Data Type

MessageField

Once the column positions have been defined, you can assign names and declare their data types and
formats.

When the First row contains field names option is selected, the names in that row appear as the column
names. Otherwise, assign the names manually. Additionally, for each column, assign a data type and
optionally declare a data format.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference XML Files 95

Business Activity Monitoring supports the generation of a data stream from data sources in XML format.
However, Business Activity Monitoring views and events are in table format (that is, rows and columns)
while XML data is hierarchical. This requires that the flattening of the XML in an event stream, where the
hierarchical data is mapped to tabular data. The process for flattening XML is described in the section
“How XML Files are Flattened” on page 98.

To define an XML-based event stream in a Business Activity Monitoring application, an application
designer must specify the columns that will be output on the event stream. Each column in the stream has
aname, a type, and a source. Each column has a source specified as an XPath expression, meaning that
the column will be filled by finding elements that match the given XPath, and taking the value of the
element in the XML input to use as the value of the column in an output row. Each column XPath should
either specify an element or an attribute. Usually, a column XPath that specifies an element matches only
atomic elements in the input document; that is, elements that contain only text and no other elements (for
details, see “Evaluating Elements” on page 105).

The mapping of the hierarchical XML data to a table is accomplished by having the source for each column
in the table specified as an XPath expression. The columns in the table are filled by finding elements that
match the given XPath, taking the value of the elements in the XML input and using the value in the
column of an output row. Each column XPath specifies an atomic element or an attribute. See the
following section, XPaths for more information about how XPaths are used to locate rows and columns.

When defining the event’s Field Information, XPaths locate the columns and rows in the XML file as follows:

e Schema XPath specifies a compound element; that is, an element that is composed of other elements.
All the data for an event row is contained within the elements specified by the schema XPath, and the
XPath expressions for the column source are relative to the schema XPath. If a an XML document
contains multiple elements that satisfy the schema XPath, a table is generated for each such element
and the output of the document is defined as the union of the output of the elements matching the
schema XPath. A Schema XPath is an absolute path to the element in the XML structure, and as such
always begins with a slash (/) followed by the root element and path to the column element; for
example, “/problem_tickets/ticket/ticket_id” is such a schema XPath.

e Relative XPath identifies a column element or attribute relative to the row element. When the column is
a child element of the row element, the XPath is either just the element name, or it begins with “child::".
For example, these are valid Relative XPaths from the previous example:

ticket id
child::status
customer/customer name
child::customer/customer name

To locate an attribute, put an at-symbol (@) before the attribute name, like this:
customer/@cust id

Note: The XPath standard for locations defines additional XML node mappings not supported by
Business Activity Monitoring events.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference XML Field Information 96

Each column in the event table is defined as a field in the XML event editor. Each field has the following

attributes:
Attribute Description
Field Name Name of the column in the event table.

Relative XPath Element in the XML file that contains this field’s data. See XPaths” above

for details.
XML Data Type Data type of the XML element. See below for details.
Business Activity Data type of the column in the event table. See “Data Types” on page 55
Monitoring Data Type for details.
Formatting Formatting of the decimal, string, or date-time value.

The XML data types map to Business Activity Monitoring Data Types as follows.

XSD Data Type

anyURI Varchar

base64Binary Varchar

Boolean Boolean

byte Integer

date Timestamp (time portion zero'ed out)

dateTime Timestamp Note the fractional part of a second is supported up to 9 significant
digits

decimal Decimal

double Double

duration Varchar (as a string)

ENTITIES Varchar

ENTITY Varchar

float Double

gDay Varchar (as a string) Defines a part of a date - the day (DD)

gMonth Varchar (as a string) Defines a part of a date — the month (MM)

gMonthDay

Varchar (as a string) Defines a part of a date — the month and day (MM-DD)

Adobe LiveCycle ES Flat Files

Business Activity Monitoring Server Reference XML Data Types 97
XSD Data Type
gYear Varchar (as a string) Defines a part of a date — the year (CCYY)
gYearMonth Varchar (as a string) Defines a part of a date — the year and month (CCYY-MM)
hexBinary Varchar
ID Varchar
IDREF Varchar
IDREFS Varchar
int Integer
integer Integer
language Varchar
long Decimal
Name Varchar
NCName Varchar
negativelnteger Integer
NMTOKEN Varchar
NMTOKENS Varchar (as a single string)

nonNegativelnteger Integer

nonPositivelnteger Integer

normalizedString Varchar
NOTATION Varchar
positivelnteger Integer
QName Varchar
QName Varchar
short Integer
string Varchar
time Varchar
token Varchar
unsignedByte Integer

unsignedint Decimal

Adobe LiveCycle ES Flat Files

Business Activity Monitoring Server Reference How XML Files are Flattened 98
XSD Data Type
unsignedLong Decimal
unsignedShort Integer

As stated in the introduction to this section, the mapping of the hierarchical XML data to a table is
accomplished by having the source for each column in the table specified as an XPath expression. The
columns in the table are filled by finding elements that match the given XPath, taking the value of the
elements in the XML input, and using the value in the column of an output row. For example, the following
XML document has the XPaths: a/b, a/c, a/d.

Note: The examples in this section always give the absolute XPath for a column. However, when
configuring an XML event, you will use an absolute schema XPath and column events will be
XPaths that are relative to that schema XPath.

<a>1
0
<cs>l</c>
<d>2</d>

The resulting table has one row:
0,1,2

In this next example, the document is slightly more complicated and has the XPaths: a/b, a/c/d a/c/e/f.

<a>
0
<c>
<d>1<d>
<e>
<f>2</f>
</e>
<d>
</c>

The resulting table also has one row:
0,1,2

In these examples, both XML documents result in a table with one row because each XPath expression
matches exactly one element. The resulting table has one row, where each column is filled by the value of
the element that matches XPath that defines the source for a column.

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 99

In some cases, more than one element can match an XPath expression for a column source. In the
following example, the XPaths are a/b and a/c, which match more than one column.

<a>
0
1
<c>2</c>
<d>3</d>

It looks like the resulting table should be:
0,2
0,3

However, the resulting table is really:

0,2

0
ll
1

w N W

12

This is because all four elements are children of a single parent element <a> and the source for the
columns in each row is specified by the XPaths a/b and a/c. This means that 0,2 is no more correct than 0,3
and both rows should be in the table. In this case, the resulting table is created through a cross product of
the of the elements.

To ensure that when XML is flattened the correct result is produced for all cases, Business Activity
Monitoring does the following:

e Strip the input XML of all extraneous elements so that values are not duplicated where such
duplication is not necessary, which would result in duplicate rows in the output.

e Relationize the document that has been stripped of extraneous elements.

To accomplish the last task, the document is distributed into a number of intermediated of tables, where
each table has a primary key (pk), parent foreign key (parent_fk), and a value. The final result table is

Adobe LiveCycle ES

Flat Files
Business Activity Monitoring Server Reference

How XML Files are Flattened 100

created through a key join of all these intermediate tables. For example, the following XML document can
be relationalized into eight intermediate tables a, a/b, a/b/c, a/b/d, a/b/b/d/e, a/b/d/f, a/b/d/f/g, and a/h.
<a>

<c>0</c>
<d>
<e>l</e>
<e>2</e>
<f>
<g>3</g>
</f>
</d>

<c>4</c>
<d>
<e>5</e>
<f>
<g>6</g>
<g>7</g>
<f/>
</d>

<h>8</h>
<h>9</h>

Next primary keys (pk) are assigned to each element in a depth-first traversal of the document.

<b pk='1'>
<c pk='2'>0</c>
<d pk='3'>

<e pk='4'>l</e>
<e pk='5'>2</e>

<f pk='6'>
<g pk='7'>3</g>
</f>
</d>

<b pk='8'>

<c pk='9'> 4 </c>
<d pk='10"'>
<e pk='11'> 5 </e>
<f pk='12'>
<g pk='13'>6</g>
<g pk='14'>7</g>
<f/>
</d>

<h pk='15'>8</h>
<h pk='16'>9</h>

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Flat Files
How XML Files are Flattened 101

Now the tables are key joined using the primary keys assigned to each element. The SELECT statement
that defines the final output table for the event is:

SELECT a/b/c.value, a/b/d/e.value, a/b/d/f/g.value, a/h.value

FROM ((((((a/
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

/a/b on /a/b.parent fk = /a.pk)
/a/b/c on /a/b/c.parent fk = /a/b.pk)
/a/b/d on /a/b/d.parent fk = /a/b.pk)

/a/b/d/e on /a/b/d/e.parent fk = /a/b/d.pk)
/a/b/d/f on /a/b/d/f.parent fk /a/b/d.pk)
/a/b/d/f/g on /a/b/d/f/g.parent fk = /a/b/d/f.pk)
/a/h on /a/h.parent fk = a.pk

The same join can also be accomplished by using the primary key of each table.

SELECT /a.pk, /a/b.pk, /a/b/c.pk, /a/b/d.pk, /a/b/d/e.pk, /a/b/d/f.pk,
/a/b/d/f/g.pk, /a/h.pk

FROM ((((((/a
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER
FULL OUTER

The resulting table is:

0,1,3,8

JOIN
JOIN
JOIN
JOIN
JOIN
JOIN
JOIN

/a/b on /a/b.parent fk = /a.pk)

/a/b/c/ on /a/b/c.parent fk = /a/b.pk)

/a/b/d on /a/b/d.parent fk = /a/b.pk)

/a/b/d/e on /a/b/d/e.parent fk = /a/b/d.pk)
/a/b/d/f on /a/b/d/f.parent fk /a/b/d.pk)
/a/b/d/f/g on /a/b/d/f/g.parent fk = /a/b/d/f.pk)
/a/h on /a/h.parent fk = a.pk

In cases where elements do not have the same child elements, a full outer join is used to generate the
table because defining the output with an inner join would not produce the desired results. For example,
the following document does not have a <d >child element in the first element, and the second
element has a <d> element but no <c> element.

<a>

<c>0</c>

<d>1</d>

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 102

The annotated document is

<b pk="1">
<c pk='2"'>0</c>

<d pk='3"'>1</d>

The select statement is:

SELECT /a/b/c.value, /a/b/d.value

FROM ((/a
FULL OUTER JOIN /a/b on /a/b.parent fk = /a.pk)
FULL OUTER JOIN /a/b/c on /a/b/c.parent fk = /a/b.pk)
FULL OUTER JOIN /a/b/d on /a/b/d.parent fk = /a/b.pk

The SELECT statement with the primary key projection is:

SELECT /a.pk, /a/b.pk, /a/b/c.pk, /a/b/d.pk

FROM ((/a
FULL OUTER JOIN /a/b on /a/b.parent fk = /a.pk)
FULL OUTER JOIN /a/b/c on /a/b/c.parent fk = /a/b.pk)
FULL OUTER JOIN /a/b/d on /a/b/d.parent fk = /a/b.pk

The final result is:

0,null
null,l

When elements in a document contain attributes, the attributes are represented as columns in the
intermediate table. For example, in the following document, the column XPaths are: a/@b, a/c/@d, and a/c.

<c d='1'>2</c>
<c d='3">4</c>

The primary keys are assigned to the elements as follows:

<c pk='1’ d='1'> 2</c>
<c pk='2’ d='3'> 4 </c>

The select statement is:

SELECT /a/@b, /a/c.d, /a/c.value
FROM /a FULL OUTER JOIN /a/c on /a/c.parent fk

/a.pk

The select statement with primary keys is:

SELECT /a/@b, /a/c.d, /a/c.pk

FROM /a FULL OUTER JOIN /a/c on /a/c.parent fk /a.pk

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 103

The resulting table is:

0,1,2
0,3,4

When an XML element has two children with the same tag name, a simple unpredicated XPath expression
returns a set of nodes. For example, in the following document the XPath expression /a/b returns two
rows:

<a>
0
1

The rows returned are:

0
1

In XPath expressions, you can use index predicates to find a node or a specific value in a node. For
example, the expression /a/b[1] returns 0, and the expression /a/b[2] returns 1. That is, each XPath returns
one row. The expression /a/b[3] returns nothing because there is no third child in the element <a>. In the
following example, the XPath /a/b/c[1] returns two rows.

<a>

<c>0</c>
<c>l</c>

<c>2</c>
<c>3</c>

The rows returned are:

0
2

This is because the XPath /a/b/c[1] specifies the first child in the element , and there are two child
elements in the parent element <a>.

Elements in a document that do not match any column XPath or doe not have any children that match a
column XPath are ignored. For example, given the following document and the XPath /a/b/c, only a single
row will be returned.

<a>

<c>0</c>
<d>
<es>l</e>
<e>2</e>
</d>

<a>

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 104

Only one row is returned because the /a/b/d element does not match the column XPath /a/b/c, nor does it
have any children that match. Therefore, after the first pass the document becomes:

<a>

<c>0</c>

<a>

In the following document also produces one row.

<a>

<c>0</c>

<d>1</d>

The above document produces only one row because the second /ab element matches the column XPath;
however it does not have any children that match. Therefore, this document also becomes the following
after the first pass:

<a>

<c>0</c>

<a>

The same process also occurs with attributes. Given the XPath /a/b/@id, the following document, produces
only one row after the first pass because the second element does not have an id attribute.

<a>
<b id='0' name='oracle'/>
<b name='ibm'/>

Thus after the first pass, the document becomes

<a>
<b id='0' name='oracle'/>

Index predicates make it possible to overcome a particular problem where one row needs to be returned
but the XML contains two children tags with the same name that contain different values. For example, the
following document contains two occurrences of the tag <keyword>:

<sales>
<sale>
<id>0</id>
<amount>$125</amount>
<keyword>Salesforce </keywords>
<keyword>SAP</keyword>
</sale>
</sales>

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 105

For the schema XPath /sales, the column XPaths are:

sale/id
sale/amount
sale/keyword

This returns two rows:

0, $125, Salesforce
0, $124, SAP

However, there was only one sale, so only one row should have been returned: 0, $125, Salesforce. That is,
you wanted to create a view on top of the event SELECT SUM(amount) FROM sales, and you only needed
one keyword. In this case, you could provide the following XPaths:

sale/id
sale/amount
sale/keyword[1]

This would return the row: 0, $124, Salesforce. However, if you need both keywords, you would need to use
a different method than using index predicates.

Index predicates can occur at any level within an XPath expression, not just the last level. For example, the
expression /a/b[2]/c returns two rows given the following document:

<a>

<c>0</c>
<c>l</c>

<c>2</c>
<c>3</c>

The two rows returned are:

2
3

In certain cases elements will return a value of null when evaluated by Business Activity Monitoring:

e The element is empty. For example, there is one /a/b element in the following document, which
Business Activity Monitoring defines as null:

<a>

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 106

e The element has children but no text. For example, the following document contains an element <c>,
which has a child element <d> but does not contains any text.

<a>
0
<c>
<d>1</d>
</c>
<c>2</c>

The output from this document given the XPaths /a/b, a/b/c, and /a/b/c/d would be:

0, null, 1
0, 2, null

If an element is not an atomic element and contains a child element, it will return the text from the
element as well as the child. For example, the following document contains the element , which is not
atomic, and a child element <c>:

<a>
hello
<cs>world</c>
com

The column XPaths /a/b and /a/b/c would return the following rows:

hello
, com, world

You should be aware of the following when XML is flattened:

e ltisillegal to mix predication. For example, the set of XPaths /a/b[2], /a/b are illegal. This is because the
semantics that Business Activity Monitoring uses to flatten XML state that as soon as index predicates
are used with a given XPath prefix, all elements matching that prefix are implicitly rewritten by
appending the index. Each element must be either written with the index predicate or without it. By
writing a given XPath prefix in one column with an index predicate and in another column without an
index predicate, all elements corresponding to that prefix become ambiguous.

e Inaflatfile event, every match to the schema XPath defines a new event, which may define any
number of rows. For example, a flat file event stream with the schema XPath /a/b and the column XPath
c will generate two events from the following document, both with one row.

<a>

<c>0</c>

<c>l</>

However, for an XML document coming through JMS, one document always generates one event. (This
rarely makes a difference.)

e Whitespace is illegal in an XPath expression. The server will not allow you to save an event with
whitespace in the XPaths. The following xpaths are illegal:

Adobe LiveCycle ES Flat Files
Business Activity Monitoring Server Reference How XML Files are Flattened 107

e b/c
e b/c[1]
e b/c[1]

e If you specify more than one column with the same XPath, you will always get the same value in both
columns, and it will not cause the flattener to generate more rows. For example, The following
document returns the result 0,1,1 given the schema /a and the columns b, ¢, c.

<a>
0
<c>1
<a>

The semantic query is:

SELECT /a/b.value, /a/c.value, /a/c.value

FROM
(/a FULL OUTER JOIN /a/b ON /a/b.parent fk = /a.pk)
FULL OUTER JOIN /a/c ON /a/c.parent fk = /a.pk

12

Formulas

All formulas in Business Activity Monitoring are expressions in the C-SQL language, a derivative of ANSI
SQL. Some of the formulas are simple expressions, such as field expressions that define the values in
business view columns. Other expressions are more complex and represent entire components of the
C-SQL query statement (SELECT), such as the WHERE, WINDOW, and JOIN clauses.

All formulas in Business Activity Monitoring accept Operators and Constants that can manipulate the
values, and they can accept most C-SQL Functions to further process results.

Note: For detailed descriptions of each of the C-SQL SELECT statement, operators, and functions, see
“SELECT” on page 321.

» In this Chapter:

e "Functions” on page 109

e "“Function Types” on page 109

e "Function Categories” on page 111

108

Adobe LiveCycle ES Formulas
Business Activity Monitoring Server Reference Functions 109

Functions return values that are system information, such as the current time, manipulations of data, such
as converting a string of characters to upper case, or are evaluations of sets of data, such as the total of all
prices in a set of purchase orders.

C-SQL functions can be used in most formulas in Business Activity Monitoring. However, some are limited
by the operations allowed in the formula’s context. The next section “Function Types’, describes the types
of functions and tells where they are allowed.

If you are looking for a function for a specific task, see “Function Categories” on page 111 to see what tasks
the functions can perform.

For a detailed description of each function, see “Functions” on page 114.

C-SQL has five types of functions: Scalar, Set, Rank, Moving Set, and Tumbling Set. The type distinctions
determine where you may include the function in a formula.

Scalar functions operates on a single item and provide a single result. For example, the ABS() function
returns the absolute value of a (single) number. Scalar functions may appear in any C-SQL expression. The
scalar functions are:

ABS DISPLAY_MONEY LPAD SIGN
CAST EXP LTRIM SQRT

CEIL FLOOR MOD SUBSTRING
CHARACTER_LENGTH GREATEST POSITION TIMESTAMP_DIFF
CONCAT IS_RAISED POWER TO_CHAR
CURRENT_TIMESTAMP LAST_DAY PRIOR_VALUE TO_DATE
CURRENT_USER LEAST ROUND TRUNC
DATE_ADD LOG RPAD UPPER

DATE_DIFF LOWER RTRIM

Adobe LiveCycle ES Formulas
Business Activity Monitoring Server Reference Set 110

Set functions perform aggregations on sets of business view rows and produce a single results for the set.
For example, SUM() provides the total of all the rows in a column in a view. A set function may only be used
in the Select List of a SELECT statement: the field definitions of a view.

Note: A set function may reference another set function, but the results are the same as if only the
referenced (inner) function was expressed alone. For example SUM(AVG(Order_Total)) has the
same result as AVG(Order_Total).

AVG MAX PREV STD_DEVIATION
COUNT MIN SUM VARIANCE
CURRENT

Note: NULL is ignored when computing set function, moving set function, and rank function values.
For example, the average of (3, NULL, 3) is 3, not NULL, and it is not 2.

Rank functions compute the scalar result for a column in each row in a set, with respect to the entire set. A
rank function may only be used in the Select List of a SELECT statement.

NTILE RANK RATIO_TO_REPORT

Moving set functions are special case set functions that performs calculations on a set of the latest rows in
a view. The set of rows to include is determined only when a new event arrives. At that time, only the latest
rows that meet the set criteria are included in the calculation. Moving set functions are defined by
applying “MOV_" to an existing set function. For example, to calculate a moving average, use MOV_AVG().
A moving set can be determined by a count of events or as a duration of time. The following example
calculates the mean average of Order_Total for the last twelve hours. As new orders are inserted into the
view they are included in the calculation; however, orders older than 12 hours are excluded.

SELECT MOV_AVG (Order Total, HOUR, 12) FROM Purchase Orders

Note: Moving set functions are a shorthand way to express a simple query window. See
“MOQOV_function” on page 150 for a complete description.

MOV_AVG MOV_MAX MOV_SUM MOV_VARIANCE

MOV_COUNT MOV_MIN MOV_STD_DEVIATION

Tumbling set functions are special case set functions that perform calculations on a windowed set of the
rows in a view. The set of rows to include is determined when a new event arrives, and the set empties

Adobe LiveCycle ES Formulas
Business Activity Monitoring Server Reference Function Categories 111

when full. Tumbling set functions are a shorthand way to express a tumbling window query. For more
information, see “Tumbling Windows"” on page 286.

TUMBLE_AVG TUMBLE_MIN TUMBLE_STD_DEVIATION
TUMBLE_COUNT TUMBLE_SUM TUMBLE_VARIANCE
TUMBLE_MAX

Function Categories

These are the categories of C-SQL functions:

Alerts
IS_RAISED

Conversion

CAST
DISPLAY_MONEY
TO_CHAR
TO_DATE

Date and time

CURRENT_TIMESTAMP
DATE_ADD
DATE_DIFF

GREATEST
TIMESTAMP_DIFF
LEAST

LAST_DAY

TO_CHAR

TO_DATE

Math

ABS
CAST
CEIL
EXP
FLOOR
LOG
MOD
POWER
ROUND
SIGN
SQRT
SUM
TRUNC

Adobe LiveCycle ES Formulas
Business Activity Monitoring Server Reference Function Categories 112

Ranking

NTILE
RANK
RATIO_TO_REPORT

Rules

IS_RAISED
CURRENT_USER

Statistical

AVG
COUNT

GREATEST

LEAST

MAX

MIN

MOV_AVG
MOV_COUNT
MOV_MAX

MOV_MIN

MOV_SUM
MOQOV_STD_DEVIATION
MOV_VARIANCE
NTILE

RANK
RATIO_TO_REPORT
STD_DEVIATION
TUMBLE_AVG
TUMBLE_COUNT
TUMBLE_MAX
TUMBLE_MIN
TUMBLE_SUM
TUMBLE_STD_DEVIATION
TUMBLE_VARIANCE
VARIANCE

Text and String

CAST
CHARACTER_LENGTH
CONCAT
DISPLAY_MONEY
GREATEST

LEAST

LOWER

LTRIM

LPAD

POSITION

RPAD

RTRIM

Adobe LiveCycle ES Formulas
Business Activity Monitoring Server Reference Function Categories 113

SUBSTRING
TO_CHAR
TO_DATE
UPPER

Time-Series and Aggregation

AVG

COUNT

MAX

MIN

MOV_function
MOV_AVG
MOV_COUNT
MOV_MAX
MOV_MIN
MQOV_SUM
MOQOV_STD_DEVIATION
MOV_VARIANCE
STD_DEVIATION
TUMBLE_AVG
TUMBLE_COUNT
TUMBLE_MAX
TUMBLE_MIN
TUMBLE_SUM
TUMBLE_STD_DEVIATION
TUMBLE_VARIANCE
VARIANCE

Views

CURRENT
IS_RAISED
PREV
PRIOR_VALUE

Functions

C-SQL functions may appear in commands and rule formulas where an expression is accepted. For a
general discussion of functions, a list of the Function Categories, see “Formulas” on page 108. This

document describes each of the following C-SQL functions in detail.

C-SQL Function

Description

ABS

AVG

CASE

CAST

CEIL

CHARACTER_LENGTH

CONCAT

concatList

concatSet

COUNT

CURRENT

CURRENT_TIMESTAMP

CURRENT_USER
DATE_ADD
DATE_DIFF

DISPLAY_MONEY

EXP

FLOOR

Returns the absolute value of a number.

Returns the average value (arithmetic mean) of a set of

numeric values.

The CASE expression is described in detail in “CASE
Expression” on page 323.

Converts a value from one Business Activity Monitoring

type to another Business Activity Monitoring type.

Returns the smallest integer, rounded up from zero,
greater than or equal to a number.

Returns the length of a string.

Returns a string that is the concatenation of two
characters or strings.

Returns a string that is the concatenation of a list of
characters or strings.

Returns an alphabetically ordered set of strings.
Returns the count of rows in a view or set.
Returns a value from the latest or last row in a set.

Returns the current date and time in the server time
zone.

Returns the login name of the current user.
Adds a duration of time to a date-time value.
Subtracts a duration from a date-time value.
Formats a number as a currency value.
Returns e raised to a specific power.

Returns largest integer less than or equal to an
expression.

114

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Functions
115

C-SQL Function

Description

gammaDist
GREATEST

IS_RAISED

LAST_DAY

LEAST

LOG

logNormDist

LOWER

LPAD

LTRIM
MAX
median
MIN
MOD
mode

MOV _function

MOV_AVG

MOV_COUNT
MOV_MAX
MOV_MIN

MOV_SUM

MOV_STD_DEVIATION

MOV_VARIANCE

Returns the gamma distribution of a value.
Returns the greatest of a list of expression results.
Returns true when the specified alert is in a raised state.

Returns the date of the last day of the month that
contains a specified date.

Returns the least value of a list of expressions.
Returns the logarithm of a number from a specific base.

Returns the cumulative lognormal distribution of a
value.

Converts all uppercase characters in a string to lower
case.

Inserts one or more instances of a string into the start of
another string.

Removes characters from the start of a string.

Returns the maximum value from a set.

Returns the median (middle) number in a set.

Returns the minimum value from a set.

Returns the modulus (remainder) of a division.

Returns the most frequently occurring number in a set.

Limits the rows used in a set function calculation to a set
of the latest rows in the view.

Returns the moving average value (arithmetic mean) of a
moving window set of numeric values.

Returns the count of rows in a moving window set.
Returns the maximum value from a moving window set.
Returns the minimum value from a moving window set.

Returns the sum of a moving window set of numeric
values.

Returns sample standard deviation of a moving window
set of numbers.

Returns the square of the sample standard deviation of a
moving window set of numbers.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Functions
116

C-SQL Function

Description

NTILE

POSITION

POWER

PREV
PRIOR_VALUE

RANK

RATIO_TO_REPORT

ROUND

RPAD

RTRIM

SAFE_DIVIDE

SIGN
SQRT

SUBSTRING

SUM

SUM_OVER_GROUPS

STD_DEVIATION

TIMESTAMP_DIFF

TO_CHAR
TO_DATE

TRUNC

TUMBLE_AVG

Determines the tier rank of each value in a set with
respect to the entire set.

Returns the position of a character or string within a
string.

Returns a value raised to a specific power.
Returns a value from the next to last row in a set.
Returns the prior value of a column, alias, or expression.

Determines the rank of each value in a set with respect
to the entire set.

Calculates the ratio of a value to the sum of the values
for the entire set.

Returns a number rounded up to a specified count of
decimal places.

Adds one or more instances of a string to the end of
another string.

Removes characters from the end of a string.

Returns a quotient of two values, unless the quotient is
0, in which case it returns an alternate quotient value.

Identifies the arithmetic sign of a number.
Returns the square root of a number.

Returns the portion of a string identified by position and
length.

Returns the sum of a set of numeric values.

Returns a running sum of the numeric values ordered by
the column specified in the arguments.

Returns sample standard deviation of a set of numbers.
Returns the interval of time between two timestamps.
Converts a date-time to a character string.

Converts a character string to a date-time value.

Truncates a number to a specific count of decimal
places.

Returns the average value (arithmetic mean) of a
tumbling window set.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Functions
117

C-SQL Function

Description

TUMBLE_COUNT

TUMBLE_MAX

TUMBLE_MIN

TUMBLE_SUM

TUMBLE_STD_DEVIATION

TUMBLE_VARIANCE

UPPER

VARIANCE

yield

Returns the count of rows in a tumbling window set.

Returns the maximum value from a tumbling window
set.

Returns the minimum value from a tumbling window
set.

Returns the sum of a tumbling window set of numeric
values.

Returns sample standard deviation of a tumbling
window set of numbers.

Returns the square of the sample standard deviation of a
tumbling window set of numbers.

Converts all lowercase characters in a string to
uppercase.

Returns the square of the sample standard deviation of a
set of numbers.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference ABS 118

This scalar function returns the absolute value of a number.

Syntax

ABS (numeric)

Parameters
e numeric— An expression that evaluates to a numeric.

Return Type

Numeric, same data-type as numeric argument.

Example

Return the difference in two persons ages, regardless of which is older.

SELECT ABS(father age - mother age) AS "Difference of parents ages"
FROM Family

SIGN() returns the arithmetic sign of a number.

This set function returns the average value (arithmetic mean) of a set of numeric values.

Syntax

AVG (numeric)

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type
Numeric, same data-type as numeric argument.

Remarks

Calculates the average of numeric in all rows in the referenced view. When using a GROUP BY Clause, the
average applies to the numeric in each group.

SELECT AVG(pr price) "Average price" FROM Products

Average price

Example

The following example uses moving averages to produce results similar to a Moving Average
Convergence/Divergence (MACD) indicator. (This is not a true MACD because it does not use an
exponential moving average.) In securities trading, the basic MACD trading rule is to sell when the MACD

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference AVG 119

falls below its 9 day average and to buy when the MACD rises above the 9 day average. You can
accomplish this by defining rules similar to this:

e Raise SELL when MACD > Nine_Day_MA
Lower SELL when MACD < Nine_Day_MA

e Raise BUY when MACD < Nine_Day_MA
Lower BUY when MACD > Nine_Day_MA

To get these values you need two views:

e MACD_Base_View tracks the moving averages for each security symbol in the event stream. Note that
the Nine_Day_MA formula repeats the formulas for the other two averages. This is because you cannot
reference an alias in another column of the same view.

SELECT
StockQuotes.SYMBOL AS Symbol,
MOV_AVG (StockQuotes Event.CLOSE, Day, 26, StockQuotes.DATE)
AS Twentysix Day MA,
MOV_AVG (StockQuotes Event.CLOSE, Day, 12, StockQuotes.DATE)
AS Twelve Day MA,
MOV_AVG ((MOV_AVG (StockQuotes.CLOSE, Day, 12, StockQuotes.DATE) -
MOV_AVG (StockQuotes.CLOSE, Day, 26, StockQuotes.DATE)),
Day, 9, StockQuotes.DATE) AS Nine Day MA
FROM StockQuotes
GROUP BY StockQuotes.SYMBOL

e MACD_View contains the last MACD values for each security stored in the base view:

SELECT MACD Base_View.Symbol AS Symbol,
MACD Base View.Nine Day MA AS Nine Day MA,
(MACD_Base_ View.Twentysix Day MA -
MACD_ Base View.Twelve Day MA
) AS MACD
FROM MACD Base View

median() returns the median (middle) number in a set.

mode() returns the most frequently occurring number in a set.

MOV_AVG() returns the moving average for a set.

TUMBLE_AVG() returns the tumbling average for a set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference CASE 120

The CASE expression is described in detail in “CASE Expression” on page 323.

This scalar function converts a value from one Business Activity Monitoring type to another Business
Activity Monitoring type.

Syntax
CAST(value AS vcDataType)

Parameters
e Vvalue— Value to convert.

e vcDataType— One of the C-SQL Data Types to convert to.
o INTEGER
o DECIMAL
o DOUBLE PRECISION
e VARCHAR
o TIMESTAMP
e BOOLEAN

Return Type

Same as vcDataType argument.

Remarks

Types are cast according the Order of Precedence table in “Data Type Conversion” on page 56. CAST()
returns an error if a type cannot be cast as specified in an expression. For example, the following is an error
because C-SQL attempts to cast ‘4.5' to an INTEGER, but the decimal is an illegal character for INTEGER
types:

3 < CAST('4.5' AS INTEGER)

When casting from a decimal formatted column to a string, the result is zero-padded on the decimals to
match the scale, just as when casting from a string to a decimal. For example,

CAST('l.1' AS DECIMAL(5,4)) -->1.1000
CAST(CAST('l1.1' AS DECIMAL(5,4)) AS VARCHAR) --> '1.1000"

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference CEIL 121

Example

Cast a date string into a time-stamp:

SELECT CAST('1997-10-22'" AS TIMESTAMP)
FROM FoO;

“Data Type Conversion” on page 56 provides details about converting types.

TO_CHAR() converts the timestamp to a character string of specified format.

TO_DATE() converts a character string to a date.

This scalar function returns the smallest integer, rounded up from zero, greater than or equal to a number.

Syntax

CEIL(numeric)

Parameters
e numeric— Number to round.

Return Type
Same data type are numeric result.
Example
CEIL(1234.56) returns 1235.00.
CEIL(-2.75) returns-2.00.

FLOOR() returns the largest value less than or equal to a number.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference CHARACTER_LENGTH 122

This scalar function returns the length of a string.

Syntax
CHARACTER_LENGTH (string)

Parameters
e string— String or VARCHAR expression result whose length to evaluate.

Return Type

INTEGER.

Remarks

Alternate spelling is:

CHAR_LENGTH(string)
Returns an integer that is the length of the string. Returns NULL if the string is NULL.

The length of a string is determined by its displayable characters, and not necessarily the storage length of
the string. For example, a Unicode character requires 16-bits of storage — which might be considered as 2
characters of storage on some systems — but the actual character length is 1.

This scalar function returns a string that is the concatenation of two characters or strings.

Syntax
CONCAT (stringl, string2)

Parameters
e string— A character string value or VARCHAR expression result.

Return Type
VARCHAR.
Remarks
Returns string2 appended to the end of string1. Returns NULL if either string is NULL.

The || operator (“String operators” on page 250) is identical to this function.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference concatList 123

Examples
CONCAT ('a', 'b') returns'ab'.
'a'||'b' returns'ab'.
concatList() returns a string that is the concatenation of a list of characters or strings.
concatSet() returns an alphabetically ordered set of strings.

“String operators” on page 250 describes the || operator.

This scalar function returns a string that is the concatenation of a list of characters or strings.

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\\manifest on the distribution CD. For information on how to
load UDFs, see “User-Defined Functions” on page 346.

Syntax

concatList (stringl, string2 [, .. stringN])

Parameters
e string— An expression that evaluates to a VARCHAR

Return Type
VARCHAR.
Remarks
Returns string2 appended to the end of string1, string3 appended to string2, and so on.
Ignores NULL values unless all values are NULL, in which case returns an empty string.
Examples
concatList ('a','b', 'c') returns'abc'.
CONCAT() returns a string that is the concatenation of two characters or strings.
concatSet() returns an alphabetically ordered set of strings.

“String operators” on page 250 describes the || operator.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference concatSet 124

This set function returns an alphabetically ordered set of strings.

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\celequest\manifest on the distribution CD. For information on
how to load UDFs, see “User-Defined Functions” on page 346.

Syntax

concatSet (stringExp)

Parameters
e stringExp— An expression that evaluates to a VARCHAR. Typically the argument is a column in a view.

Return Type
VARCHAR.

Remarks

Returns a string that is the ordered set of all the strings passed into the function.
Ignores NULL values unless all values are NULL, in which case returns an empty string.

Examples

Consider this statement:

SELECT concatSet (item) AS item list FROM GroceryList

If the items in GroceryList are presented as follows in this order:

'banana’
Ieggl
'apple'
'donut'
NULL
'carrot'

The order in item_list in the new view is:

'apple,banana, carrot, donut, egg'

Subsequently, if ‘bagel’ is added to GroceryList, the new order in the new view is:

'apple,bagel, banana, carrot,donut, egg'
CONCAT() returns a string that is the concatenation of two characters or strings.
concatList() returns a string that is the concatenation of a list of characters or strings.

“String operators” on page 250 describes the || operator.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference COUNT 125

This set function returns the count of rows in a view or set.

Syntax
COUNT (*)

Return Type
INTEGER.

Remarks
Returns zero (0) if the view or set is empty.
This is also known as the “count star” function.
Rows that include NULLs are counted.
MOV_COUNT() returns the count of a moving set.

TUMBLE_COUNT() returns the count of a tumbling set.

This set function returns a value from the latest or last row in a set.

Syntax
CURRENT (columnName)

Parameters

e columnName— Column or alias to retrieve.

Return Type
Same data-type as argument.

Remarks

Returns a value from the latest row in the set based on the event timestamp. When all rows in the set have
the same timestamp, returns the value from the last row in the set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference CURRENT_TIMESTAMP 126

Example

Gather all stock feed bids and group them by stock symbol. The “current” row will always be the last one
received, and as such, will contain the current bid price:

SELECT symbol, CURRENT (bid) AS Bid, MAX (bid) AS High, MIN(bid) AS LOW
FROM Stock_ feed
GROUP BY symbol

symbol Bid High Low

K 31.25 31.28 30.72
IBM 80.79 80.04 82.55
VCLR 22.60 24.42 22.00

Moving set semantics

Cannot be used with a moving or tumbling set.

PREV() returns a value from the row previous to the current one.

This scalar function returns the current date and time in the server time zone.

Syntax
CURRENT_TIMESTAMP ()

Return Type

Date-Time.
Example
LAST DAY (CURRENT TIMESTAMP ()) returnsthe date of the last day of the current month.

TO_CHAR() converts a timestamp to a character string.
LAST_DAY() returns the date of the last day of a month.
DATE_ADD() adds a duration to a date-time.
DATE_DIFF() subtracts a duration from a date-time.

TIMESTAMP_DIFF() returns a time interval between two timestamps.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference CURRENT_USER 127

This scalar function returns the login name of the current user.

Syntax
CURRENT USER ()

Return Type
VARCHAR.

Remarks

Returns the user’s login name as defined in Business Activity Monitoring, in the same character case, and
as it appears in the BAM Workbench. As such, when using in a comparison, be sure to match the character
case exactly.

This function is primarily for use in access filters. See “Access Filters” on page 15, especially the section
“Users as Context” on page 16, for examples and uses.

This scalar function adds a duration of time to a date-time value.

Syntax
DATE ADD(timestamp, [durationType,] duration)

Parameters
e timestamp— The date-time to adjust.

e durationType— Type of the duration value; one of these literals:
e SECOND
e MINUTE
e HOUR
o DAY (default)
e MONTH
e YEAR

e duration— Duration of time to add; a literal positive integer.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference DATE_DIFF 128

Return Type

Date-Time.
Remarks
Uses Gregorian calendar addition rules.
Example
DATE ADD(CURRENT TIMESTAMP (), 2) returnsa date-time two days in the future from now.
DATE ADD(aTimestamp, DAY, 14) returnsa value 2 weeks after the data.
DATE_DIFF() subtracts a duration from a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

TIMESTAMP_DIFF() returns a time interval between two timestamps.

This scalar function subtracts a duration from a date-time value.

Syntax
DATE DIFF(timestamp, [durationType,] duration)

Parameters
e timestamp— The date-time from which to subtract some duration of time.

e durationType— Type of the duration value; one of these literals:
e SECOND
e MINUTE
e HOUR
o DAY (default)
e MONTH
e YEAR

e duration— Duration of time to subtract; a literal positive integer.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference DISPLAY_MONEY 129

Return Type
Date-Time.
Remarks
Uses Gregorian calendar subtraction rules.

Durations that span leap year days and seconds generally ignore the leap value. For example, subtracting
1 year from 3 March 1976 results in 3 March 1975 without being affected by the 29 February 1976 leap day.
However, subtracting 1 year from 29 February results in a 28 February date.

Examples
DATE_DIFF (CURRENT TIMESTAMP (), 2) returnsa date-time two days ago from now.
DATE_ADD() adds a duration to a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

TIMESTAMP_DIFF() returns a time interval between two timestamps.

This scalar function formats a number as a currency value.

Syntax
DISPLAY MONEY (number [, languageCode, countryCode])

Parameters
e number— Number to format.

e languageCode— A two-letter ISO 639 language code. Helps determine the currency symbol to display.

e countryCode— A two-letter ISO 3166 country code. Specifies the thousands separator, decimal
separator, and count of decimal digits to display based on what is appropriate for the country.

Return Type
VARCHAR.

Remarks
Returns a the number formatted as a currency string.

Omitting the languageCode and countryCode uses the symbol and format appropriate for country that
your computer is configured to use by default.

Some currency symbols require that the browser be configured to the correct code-page for the language.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Functions

DISPLAY_MONEY

130

Examples

Here are some examples that format the number 12345.678:

Language/Country Formula Result
English/USA DISPLAY MONEY (12345.678,'en','us') $12,345.68
Swedish/Sweden DISPLAY MONEY (12345.678,'sv','se') 12345,68 kr
German/Germany DISPLAY MONEY (12345.678,'de','de') 12.345,68dm

Common Codes

The following table lists some of the common ISO 639 two-letter language codes:

Language Code Language Code Language Code
Afrikaans af Fiji fj Dutch nl
Arabic ar Faroese fo Norwegian no
Catalan ca French fr Punjabi pa
Corsican co Hebrew he Polish pl
Czech cs Hindi hi Portuguese pt
Danish da Croatian hr Russian ru
German de Italian it Serbo-Croatian sh
Greek el Inuktitut iu Swedish sV
English en Japanese ja Turkish tr
Spanish es Korean ko Urdu ur
Persian fa Mongolian mn Yoruba yo
Finnish fi Nepali ne Chinese zh

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference DISPLAY_MONEY 131

The following table lists some of the common ISO 3166 two-letter country codes.

Country Code Country Code
AUSTRALIA AU NEPAL NP
AUSTRIA AT NETHERLANDS NL
BRAZIL BR NEW ZEALAND NZ
CANADA CA NORWAY NO
CHINA CN OMAN oM
CROATIA (local name: HR PAKISTAN PK
Hrvatska)

DENMARK DK PITCAIRN PN
FUJI FJ POLAND PL
FINLAND Fl PORTUGAL PT
FRANCE FR SAUDI ARABIA SA
GERMANY DE SOUTH AFRICA ZA
GREECE GR SPAIN ES
HONG KONG HK SWEDEN SE
INDIA IN SWITZERLAND CH
IRAN (Islamic republic of) IR TAIWAN ™
ISRAEL IL TURKEY TR
ITALY IT UNITED ARAB EMIRATES AE
JAPAN JpP UNITED KINGDOM GB
KOREA (Demo. people's KP UNITED STATES us
republic of)

MEXICO MX — —

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference EXP 132

This scalar function returns e raised to a specific power.

Syntax
EXP (power)

Parameters
e power— The power (DOUBLE) to which to raise e.

Return Type
DOUBLE PRECISION.

Remarks
Returns e raised to the nt power, where e = 2.71828183...
Example
EXP(4) raises e to the 4" power and returns 54.59815.
LOG() returns the logarithm of a number from a specific base

POWER() raises a number to a specific power.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference FLOOR 133

This scalar function returns largest integer less than or equal to an expression.

Syntax
FLOOR (numeric)

Parameter
e numeric— Number to floor.

Return Type

Numeric, same data-type as numeric argument.

Example

FLOOR ('1234.56") returns the integer 1234.00, after first implicitly casting the string literal to a
DECIMAL.

FLOOR (-2.75) returns-3.00.
Note: This function behaves identical to the Microsoft Excel INT() function.

CEIL() returns smallest integer rounded up.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference gammaDist 134

This scalar function returns the gamma distribution of a value.

Syntax

gammaDist (number, alphaNumber, betaNumber, isCumulative)

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\celequest\manifest on the distribution CD. For information on
how to load UDFs, see “User-Defined Functions” on page 346.

Parameter
e number— Positive number to evaluate, may be zero (0).

e alphaNumber— Alpha parameter (positive number, may be zero) to the gamma distribution equation.
e betaNumber— Beta parameter (positive number, may be zero) to the gamma distribution equation.

e isCumulative— Boolean that determines the form of the function of number based on alphaNumber
and betaNumber:

e TRUE uses the cumulative distribution function.
e FALSE uses the probability mass function.
Return Type
DOUBLE PRECISION.

Remarks

When alphaNumber is one (1), returns an exponential distribution.

When alphaNumber is a positive integer, the result is a Erlang distribution.

Example

Populate a view with the probability mass for a gamma distribution of alpha=9 and beta=2:

SELECT TimeToFail,
gammaDist (TimeToFail, 9, 2, FALSE) AS GammaDist
FROM UnitTests
ORDER BY TimeToFail

logNormDist() returns the cumulative lognormal distribution of a value.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference GREATEST 135

This scalar function returns the greatest of a list of expression results.

Syntax
GREATEST (value, value [, value .. 1)

Parameters

e value— A value to be used for the comparison. All values after the first are converted to the data type
of the first.

Return Type

Same data-type as argument.

Example

Selects the string with the greatest value:

SELECT Greatest (
'SCHOLAR',
'SKYLER',
'SHUELLER')

FROM Foo0;

Greatest
SKYLER
LEAST() determines the least value from a list.

MAX() returns the maximum value from a set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference IS_RAISED 136

This scalar function returns true when the specified alert is in a raised state.

Syntax
IS RAISED('alertName')

Parameters

o alertName— Fully qualified name of an alert: the name must include the containing business activity
and scenario names, like this 'activityName.scenarioName.alertName'.

Return Type

Boolean.

Remarks

Returns True if the alert exists and is in a raised state; otherwise, if the alert is in a lowered state or does not
exist, it returns False.

Note: Because this function returns False when the alert does not exist, there is no test to ensure that
the name you entered is a valid alert in the system; therefore, misspelling the name will cause
the function to always return False.

Use this function in a rule condition to test the state of an alert and to generate a new alert when the
tested alert remains raised for a period of time.

When used in a view definition, the view definition cannot have a set function.

See “Monitoring Alerts” on page 303 for a detailed discussion of using this function.

Alert States.

Monitoring Alerts.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LAST_DAY 137

This scalar function returns the date of the last day of the month that contains a specified date.

Syntax
LAST DAY (dateTime)

Parameters
e dateTime— A valid date (TIMESTAMP).

Return Type

Date-Time.
Example
LAST DAY (CURRENT TIMESTAMP ()) returns the date of the last day of the current month.

CURRENT_TIMESTAMP() returns the current date and time.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LEAST 138

This scalar function returns the least value of a list of expressions.

Syntax
LEAST (value, value [, value ..])
Parameters
e value— A value to be used for the comparison. All values after the first are converted to the data type
of the first.

Return Type

Same data-type as argument.

Example

SELECT Least (
'SCHOLAR',
'SKYLER',

' SHUELLER"')
FROM Foo0;

SCHOLAR
GREATEST() determines the greatest value from a list.
MIN() returns the minimum value from a set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LOG 139

This scalar function returns the logarithm of a number from a specific base.

Syntax

LOG(numeric [, base])

Parameters
e numeric— Number (DOUBLE) from which to retrieve the logarithm; must be greater than 1.
e base— Base (DOUBLE) of the logarithm; must be greater than zero (0). Omit this option to use the
natural log of numeric.

Return Type
DOUBLE PRECISION.

Remarks

This can be expressed mathematically as “log, meric Pase"

Example

LOG (8, 64) returns 2.0.
LOG(2) returns0.301029...
EXP() raise e to a specific power.

POWERI() raises a value to a specific power.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference logNormDist 140

This scalar function returns the cumulative lognormal distribution of a value.

Syntax

logNormDist (number, meanNumber, stdNumber)

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\celequest\manifest on the distribution CD. For information on
how to load UDFs, see “User-Defined Functions” on page 346.

Parameters
e number— Value to evaluate.

e meanNumber— Mean average of In(number).

e stdNumber— Standard deviation of In(number).
Return Type

DOUBLE PRECISION.

Remarks

Returns the cumulative lognormal distribution of a value, where In(number) is normally distributed with
mean and standard deviation.

gammaDist() returns gamma distribution of a value.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LOWER 141

This scalar function converts all uppercase characters in a string to lower case.

Syntax
LOWER(string)

Parameters
e string— String to convert.

Return Type
VARCHAR.
Example
LOWER ('Stage Right') returns ‘stage right’.

UPPER() converts to all uppercase.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LPAD 142

This scalar function inserts one or more instances of a string into the start of another string.

Syntax
LPAD(string, length, [padChar])

Parameters
e string— Character or string to alter.

e length— The display length of the returned string. Must be zero (0) or greater. When using multi-byte
characters, the length is the count of characters that display or print, not the count of multi-bytes.

e padChar— Character or string to insert. Default is a single space or blank character (**).

Return Type

VARCHAR.
Remarks

Returns a string in the same character type as the string parameter.

When length is smaller than the length of string, returns the string truncated to length.
Examples

LPAD ('ABC', 6, 'x"') returns xxxABC.

LPAD ('ABC',6, 'x0') returns ‘xoxABC.

LPAD('ABC',4) returns ‘' ABC’.

LPAD('ABC', 2, 'x') returns ‘AB’.

RPAD() adds characters to the end of a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference LTRIM 143

This scalar function removes characters from the start of a string.

Syntax
LTRIM(wholeString [, setString])

Parameters
e wholeString— String to trim.

e setString— Characters to remove; default is a single blank space ().
Return Type

VARCHAR.

Remarks

Recursively removes all instances of setString from the start of wholeString until wholeString no longer
starts with setString, and returns the result.

Examples
LTRIM(' ZzZ') returns’ZZZ.
LTRIM('aaazzz', 'a') returns‘'ZZZ.
LTRIM('ababazzZ', 'ab') returns‘aZZZ.
LTRIM('abcabaZZZ', 'abc') returns‘abazZzZZ.

RTRIM() removes characters from the end of a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MAX 144

This set function returns the maximum value from a set.

Syntax

MAX (expression)

Parameters

e expression— An expression that evaluates to any data type and which cannot reference a rank
function function. Typically the argument is a column in a view.

Return Type
Same data-type as expression argument.
Remarks
For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the maximum price from all the rows in Foo:

SELECT MAX (price) FROM Foo;

Moving set semantics

When used as a MOV_function(), returns the maximum value for the moving set.

MOV_MAX (numeric, window, size [,timestampColumn])
MOV_MAX() returns the maximum value from a moving window set.
TUMBLE_MAX() returns the maximum value from a tumbling window set.
MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference median 145

This set function returns the median (middle) number in a set.

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\celequest\manifest on the distribution CD. For information on
how to load UDFs, see “User-Defined Functions” on page 346.

Syntax

median (numericExp)

Parameters

e numericExp— An expression that evaluates to numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type

INTEGER when all results of numericExp are integer; otherwise DOUBLE PRECISION when any of the results
are decimal.

Remarks

This function sorts the values in the set and then returns the median of the ordered set.

When the count of values is odd, the median is the middle number of the set. For example, the median of
2,1,5is 2: the middle value of the ordered set.

Otherwise, when the count is even, the median is the average value of the two middle numbers in the set.
For example, the median of 2,1,5,4 is 3: the average of 2 and 4. Further, when the result of the average is a
decimal value, the result is “floored” to the integer: the median of 2 and 3 is 2, which is floor(2.5).

Ignores NULL values.

Examples

Consider this statement:

SELECT median (Value) AS MedianV FROM NumberList

The result is 1.5 (the average of 1.0 and 2.0 after ignoring the NULLs) when the items in NumberList are
presented in this order:

3.0
NULL
0.0
2.0
1.0
NULL
NULL

The result is 1 if the set is
1
2

Because the values are integers, the result must also be an integer. As such the average which is 1.5 is
floored to 1.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference median 146

AVG() returns the mean average value of a set.

mode() returns the most frequently occurring number in a set.

Adobe LiveCycle ES Functions

Business Activity Monitoring Server Reference MIN

147

This set function returns the minimum value from a set.

Syntax

MIN (expression)

Parameters

e expression— An expression that evaluates to any data type and which cannot reference a rank
function function. Typically the argument is a column in a view.

Return Type
Same data-type as expression argument.
Remarks
For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the minimum price from all the rows in set Foo:

SELECT MIN(price) FROM Foo;

Moving set semantics

When used as a MOV_function(), returns the minimum value for the moving set.

MOV_MIN(numeric, window, size [,timestampColumn])
MOV_MIN() returns the minimum value from a moving window set.
TUMBLE_MIN() returns the minimum value from a tumbling window set.
MAX() returns the maximum value from a set.

LEAST() returns the smallest value from a list.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Functions

MOD

148

This scalar function returns the modulus (remainder) of a division.

Syntax
MOD (dividend, divisor)

Parameters
e dividend— Numeric to divide.

e divisor— Numeric to divide by.

Return Type
INTEGER.

Remarks

When divisor is zero (0), returns dividend.

This function behaves differently from the classical mathematical modulus function when dividend is

negative. The classical modulus can be expressed with this formula:

dividend - divisor * FLOOR (dividend/divisor)

This function uses this updated formula:

SIGN (dividend) *

(ABS (dividend) - ABS(divisor * FLOOR (ABS (dividend/divisor))

This table illustrates the difference between the MOD function and the classical modulus formula:

Dividend Divisor MOD (Dividend,Divisor) Classical Modulus
11 4 3 3
11 -4 3 -1
-1 4 -3 1
-1 -4 -3 -3

Note: Most database management systems use the same formula as Business Activity Monitoring,
while spreadsheet applications like Microsoft Excel use the classical modulus.

Example
Return the remainder of dividend divided by divisor:

SELECT MOD(11,4) "Modulus" FROM Foo;

Modulus

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference mode 149

This set function returns the most frequently occurring number in a set.

Note: This function is provided as a sample UDF. To use it, you will need to load the function from the
directory \samples\udf\jar\com\celequest\manifest on the distribution CD. For information on
how to load UDFs, see “User-Defined Functions” on page 346.

Syntax

mode (numericExp)

Parameters

e numericExp— An expression that evaluates to numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type
Same type as numericExp result.

Remarks

When multiple different values occur with the same frequency, mode() returns the first one it encountered.
See the example.

Ignores NULL values.

Examples

Consider this set of numbers, fed into mode() in this order:

1

W R W

The mode() function returns 1 because it occurs with the most frequency, and is encountered before 3,
which occurs with the same frequency. Had the set been fed into mode() in reverse order, it would have
returned 3.

For this set of numbers, mode returns 1.0:

1

3
NULL
2.0
NULL
NULL
1

The NULLs are ignored, and the 2.0 causes mode() to return a DOUBLE PRECISION value.

See Also

AVG() returns the mean average number in a set.

median() returns the median (middle value) for a set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_function 150

“C-SQL Function” on page 114 for a complete list of functions.

This scalar function limits the rows used in a set function calculation to a set of the latest rows in the view.

Moving Set Functions

The moving window set functions are:

Argument Description

MOV_AVG Returns the moving average value (arithmetic mean) of a moving
window set of numeric values.

MOV_COUNT Returns the count of rows in a moving window set.

MOV_MAX Returns the maximum value from a moving window set.

MOV_MIN Returns the minimum value from a moving window set.

MOV_SUM Returns the sum of a moving window set of numeric values.
MOV_STD_DEVIATION Returns sample standard deviation of a moving window set of numbers.
MOV_VARIANCE Returns the square of the sample standard deviation of a moving window

set of numbers.

Note: Moving set functions are shorthand for simple query windows. For a complete discussion, see
“Query Windows" on page 272.

Syntax

All moving set functions have this syntax:

mov_function(numeric, window, size [,timestampColumn])

where function is an existing set function. The return type of the moving function is the same as that of
the named function. The numeric is typically a column in the view, but may contain other functions and
operators, though it cannot reference a rank function.

The window and size arguments specify which rows are included in the set. The window argument
determines if size is the count of rows in the set (EVENT), or a duration of time (SECOND, MINUTE, HOUR,
DAY. MONTH, or YEAR). For example a set of the last 6 events limits the set to no more than 6 events (per

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_function 151

group when using the GROUP BY Clause). Note that some events generate multiple rows; do not confuse
events with rows.

MOV_SUM(Price, EVENT, 6)

Time Price Time [Price Time Price Time Price
03:22 [12.34 03:22 [12.34 03:22 [12.34 03:22 [12.34
03:47 [33.50 03:47 [33.50 03:47 [33.50 03:47 [33.50
03:49 [10.87 [-91.37 03:49 [10.87 03:49 [10.87 03:49 [10.87
03:53 [20.00 03:53 [20.00 §-123.79 03:53 [20.00 03:53 [20.00
04:06 [14.66 04:06 [14.66 04:06 [14.66 04:06 [14.66
04:26 [32.42 04:26 [32.42 127.40 04:26 [32.42 108.12
04:56 [15.95 04:56 [15.95
Note: Only 5 events in set. — 0530 [14.22

Complete window expression:
SUM (Price) OVER (EVENT '5' PRECEDING REFERENCE FRAME)

When using time-series span (instead of event span), the size of the set varies depending on when the
events were recorded in the view. For example when using a time-series of 1 hour, only those rows that
entered the view in the last hour are used in the calculation.

MOV_SUM(Price, HOUR, 1)

Time Price Time Price Time Price Time Price

0322 [12.34 03:22 [12.34 03:22 [12.34 03:22 [12.34

03:47 B33.50 03:47 [33.50 03:47 B3.50 03:47 B3.50

03:49 [10.87 [-91.37 03:49 [10.87 03:49 [10.87 03:49 [10.87

03:53 [20.00 03:53 [0.00 [11145 [03:53 [20.00 03:53 [20.00

04:06 [14.66 04:06 [14.66 04:06 [14.66 62.95 04:06 [14.66

—— 04:26 [32.42 0426 [32.42 ‘ 04:26 [32.42
04:56 [15.95 04:56 [15.95
- e iz I

Complete window expression:
SUM (Price) OVER (RANGE 'l' HOUR PRECEDING REFERENCE OPERATOR)

Note: It is possible, but highly unlikely, for an event to arrive in the system in time to be included in a
view, but to be discarded because by the time it reaches the view, it is no longer in the view’s
time span. For example, if the event enters the event table a few milliseconds before it would
excluded from a derived view, it might be included or excluded depending on how long it takes
to process and propagate the event in base views.

The optional timestampColumn argument instructs the system to use the value of a field in the view as the
reference point for starting the time-series span. When you omit this option, the system calculates the
time-series based on the system clock, such as the last hour from now. When you name a timestamp

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference Time-Series Spans 152

column instead, the calculation is based on the time span from the value in the most recent value in the
column from any row in the view.

MOV_SUM(Price, HOUR, 1, Time)

Events of the last hour from the Time Price
most recent event based on its 03:47 B3.50
Time column value, not 03:22 12.34
necessarily the order that the 04:06 [14.66
events entered the view. 03:53 20.00
05:30 14.22

0426 3242 30.17
4:56 15.95
03:49 [10.87

Complete window expression:

SUM (Price) OVER (ORDER BY Time
RANGE '1l' HOUR PRECEDING
REFERENCE OPERATOR)

Time span calculations use the Gregorian calendar and are calculated to the second that the event was
recorded in the system (recorded in the vc_timestamp column). For example, if the span is 1 day and an
event arrives just before midnight, it excludes almost all events on the previous day; however, an event
arriving just after midnight includes almost all of the events on the previous day. Here are some additional
semantics:

In locales where daylight savings time is observed, durations of days, months, and years are adjusted
accordingly. As such, while 1 day is typically 24 hours long, it may be 23 or 25 hours depending on the
time of year.

Month calculations are based on the day of the month: a T month span on 5 April includes all dates
after 5 March. When the day of the month does not exist at the start of the window, the end of the
month is used. For example, a T month span on 31 May starts after 30 April.

Similarly, year calculations are based on the day of the year, and adjust as necessary for leap years.

For the purposes of parallel execution, you may choose to not process events in the order in which they
are timestamped. In this case the order of the data within a group is arbitrary and will only produce
approximate Moving Set values that may not be reproducible for the same input events during a
subsequent evaluation of the same set.

The set of events included in a moving window view are determined when a new event enters the
view. Events that are filtered out of a view before they enter the view, such as when excluded by a
WHERE Clause, do not affect the view and do not cause the view to update.

Do not use a moving set function in a derived view to perform a calculation on a moving set function
result in a base view. This is because the derived function will always return the current value in the base
view, regardless of the span of the window. If you need such a aggregation, place the functions in the
same view. See the example in “AVG” on page 118 for details.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference Interacting with GROUP BY 153

Using a moving set function on a view defined with a GROUP BY Clause populates the groups as follows:

Time-series spans

Time-series spans apply to all events in all groups. Only events that fall within the time span are included in
the groups. Events that do not meet time span definition are excluded. When all events have been
removed from a group set, the group is empty. If no other columns retain the group, it is removed from the
view. Consider this example where average prices are tracked in groups by product for the last hour. When
a Product no longer has events in the last hour, that Product’s group is removed.

SELECT MOV_AVG (Price,HOUR, 1) AS AV _pr
FROM ...
GROUP BY Product

However, in this variation the presence of the SUM() function causes the view to retain every event group,
but the average price for a group of the last hour may be empty. Querying an empty group returns NULL.

SELECT MOV_AVG(Price,HOUR,l) AS Av_pr,
SUM (Price) AS Total
FROM ...
GROUP BY Product

Event spans

Event spans apply their size to each group in the view; each group tracks a count of events determined by
the size of the span. Groups are never removed from the view, and events are removed from the sets only
when they are pushed out by a newer event. Consider the view in the example shown in the illustration
below, where MOV_AVG() tracks up to 3 events per group. When the fourth event whose Ix value is 100 is
inserted, the first is dropped from the moving average calculation of the Ix=100 group. However, within
this example, once the 200 group is created, its set remains constant with the one event:

Ix |Av_pr |[Ct ;
Events 100 11200 13 First event only. SELECT IX,
Ix |Price Ix [Av_pr [Ct _ MOV _AVG (Price, EVENT, 3) AS
100 [12.00 100 [11.00 2| 'Meludes x=200. Av pr,
200 |33.50 200 (33.50 |1 EOUNT(*) AS Ct
100 (10.00
100 110.00 | —Ix |Av_pr |Ct Has 3 Ix=100. FROM ...
700 110.00 100 [10.67 |3 GROUP BY Ix
200 [33.50
Ix [Av_pr |Ct | First event dropped.
100 [10.00 |3
200 [33.50 |1

For event spans that have events with multiple rows in the view, the entire event is treated as one item in

the set based on the timestamp (vc_timestamp) and event ID (vc_event_id).

Note: All columnNames referred directly by a rank function or scalar function must appear in the set of
columns listed in the GROUP BY list.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_AVG 154

This moving set function returns the moving average value (arithmetic mean) of a moving window set of
numeric values.

Syntax

MOV_AVG(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
Numeric, same data-type as numeric argument.
Remarks

Returns NULL if the group is empty.

Example

Return the average price of all the events that arrive within a 7 day interval:

MOV_AVG (price, DAY, 7, trade time) AS Avg 7 day price

“Function Types” on page 109 discusses moving sets.

AVG() returns the mean average for a set.

TUMBLE_AVG() returns the tumbling average for a set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_COUNT 155

This moving set function returns the count of rows in a moving window set.

Syntax
MOV_COUNT(*, window, size [,timestampColumn])

Parameters

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
INTEGER.

Remarks
Returns zero (0) if the set is empty.
Rows that include NULLs are counted.

When used with a GROUP BY returns the count of rows in the group set. See the discussion and example in
“Interacting with GROUP BY” on page 153 for more information.

Example

Return the count of all the events that arrive within the current 8 hour interval:

MOV_COUNT (*, HOUR, 8, trade time) AS Total

The above function is shorthand for this in-line window expression:

COUNT (*) AS Total OVER (ORDER BY trade time '8' HOUR)

This expression is equivalent to the following after filling in all default values:

COUNT (*) AS Total OVER (ORDER BY trade time
RANGE INTERVAL '8' HOUR PRECEDING
REFERENCE OPERATOR)

Note: The eight-hour window begins when the first event arrives in the view. To begin the window at
the top of the hour instead, include INITIALIZE '2003-03-05 00:00:00.000'.

“Function Types” on page 109 discusses moving sets.

COUNT() returns the count of a view or set.

TUMBLE_COUNT() returns the count of a tumbling window set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_MAX 156

This moving set function returns the maximum value from a moving window set.

Syntax

MOV_MAX (numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
Same data-type as expression argument.
Remarks
For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the maximum price of all the events that arrive within a 7 day interval:

MOV_MAX (price, DAY, 7, trade time) AS Max_ 7 day price
MAX() returns the maximum value from a moving window set.
TUMBLE_MAX() returns the maximum value from a tumbling window set.
MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_MIN 157

This moving set function returns the minimum value from a moving window set.

Syntax

MOV_MIN(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
Same data-type as expression argument.
Remarks
For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the minimum price of all the events that arrive within a 7 day interval:

MOV_MIN(price, DAY, 7, trade time) AS Min 7 day price
MIN() returns the minimum value from a view or set.
TUMBLE_MIN() returns the minimum value from a tumbling window set.
MAX() returns the maximum value from a set.
LEAST() returns the smallest value from a list.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_SUM 158

This moving set function returns the sum of a moving window set of numeric values.

Syntax

MOV_SUM(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

Total the price of all events that arrive in current hour:

MOV_SUM (Price, HOUR, 1)

Which is shorthand for this in-line window expression:

SUM (Price) OVER (RANGE 'l' HOUR PRECEDING
REFERENCE OPERATOR)

SUM() returns the sum of a view or set.
TUMBLE_SUM() returns the sum of a tumbling window set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_STD_DEVIATION 159

This moving set function returns sample standard deviation of a moving window set of numbers.

Syntax
MOV_STD DEVIATION (numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT) or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
DOUBLE PRECISION.

Remarks

Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

2
X.—X
The result is computed using the formula Z{“T)} , Where n is the number of elements in the sample
and X is the sample mean.

Example

Return the standard deviation in salaries for the last year’s worth of events:
SELECT MOV_STD DEVIATION (salary, YEAR, 1) AS "Dev. for the last year"
FROM employees;
Which in turn is equivalent to the following after filling in all default values:

SELECT STD DEVIATION (salary) AS "Dev. for the last year" OVER (
RANGE INTERVAL 'l' YEAR PRECEDING
REFERENCE OPERATOR)

STD_DEVIATION() returns the standard deviation of a view or set.

TUMBLE_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference MOV_VARIANCE 160

This moving set function returns the square of the sample standard deviation of a moving window set of
numbers.

Syntax
MOV_STD DEVIATION (numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT) or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.

2
X.—X
The result is computed using the formula Z{%} , where n is the number of elements in the sample
and X is the sample mean.

Example

Return the variation in salaries for each calendar year:

SELECT MOV_STD VARIATION (salary, YEAR, 1) AS "Variation for last year"
FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT VARIATION (salary) AS "Variation for last year" OVER (
RANGE INTERVAL 'l' YEAR PRECEDING
REFERENCE OPERATOR)

VARIANCE() returns the variance of a view or set.
STD_DEVIATION() returns a standard deviation.

TUMBLE_VARIANCE() returns the variance of a tumbling window set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference NTILE 161

This rank function determines the tier rank of each value in a set with respect to the entire set.

Syntax
NTILE(toRank, tiers)

Parameters
e toRank— A expression of any data type, and which typically references a column of values to rank.

e tiers— Count of tiers in which to partition the results; an integer greater than zero (0). When this value
is greater than the count of items to rank, all items are given the same rank.

Return Type
INTEGER.

Remarks

Returns an integer for each row in the set that represents the tier that the row belongs to, where one (1) is
the highest tier holding the greatest value. When toRank results in NULL, that result is assigned to the
lowest rank.

Note: This function cannot be used as an argument in a set function, moving set function, or rank
function. For example, SUM(NTILE()) is illegal.

An ntile function ranks rows by attempting to evenly distribute them throughout a fixed set of tiers. For
example, when there is a set of six expression results {D, B, E, C, A, and B} to rank into two tiers, NTILE()
assigns each a rank of either 1 (for C, D, and E) or 2 (for A, B, and B). Results with the same value are always
placed in the same tier.

When a set of values is not divisible by the tiers, the function evenly distributes any leftover rows into
higher-level groups. For example, the following table demonstrates how the letter items are distributed
into various counts of tiers:

tiers: 1 2 3 4 5 6 7
A 1 2 3 3 4 5 1
B 1 2 2 2 3 4 1
B 1 2 2 2 3 4 1

o N
—_
—
=
—_
—
N
=

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference NTILE 162

Example

The following query ranks sales of coffee and tea products into six tiers by their sales rankings. The ranking
is in sixths, so each product name receives a value from 1 to 6. This example requires that there be just one
unique entry for each product:

SELECT prod _name, NTILE(dollars, 6) AS sales_rank
FROM (lineitem INNER JOIN product
ON lineitem.item id=product.productid)
WHERE product.classkey IN (1, 2, 4, 5);

PROD_NAME SALES_ RANK
Demitasse M

Xalapa Lapa

Cafe Au Lait

Aroma Roma
Veracruzano
Colombiano
Darjeeling Special
Irish Breakfast
English Breakfast
Earl Grey

Gold Tips

AUl DWW NDNR R

RANK() ranks rows within the entire set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference POSITION 163

This scalar function returns the position of a character or string within a string.

Syntax
POSITION (sourceForString , searchInString)

Alternate form: POSITION (sourceForString IN searchInString)

Parameters
e sourceForString— String to search for.

e sourcelnString— String expression result in which to search.
Return Type

INTEGER.
Remarks

Returns the position, starting from 1, of the 15t instance of sourceForString in the sourcelnString result.

When CHARACTER_LENGTH(sourceForString) is zero (0), returns 1. Returns NULL when either argument is
NULL.

Examples
POSITION('a' IN 'banana') returns2.
POSITION('ana' IN 'banana') returns2.
POSITION('A' IN 'banana') returnsO.
POSITION('M' IN 'banana') returnsO.
POSITION('' IN 'banana') returnsl.
POSITION(NULL IN 'banana') returns NULL.

SUBSTRING() extracts a character or substring from a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference POWER 164

This scalar function returns a value raised to a specific power.

Syntax

POWER (numeric, power)

Parameters
e numeric— Number to raise.

e power— Power to raise numeric. Must be an integer when numeric is negative.
Return Type

Same data-type as numeric argument.
Remarks

This can be expressed mathematically as “numberPoWe"”.
Example

POWER (3, 5) returns 243.

EXP() raise e to a specific power.

LOG() returns the logarithm of a number from a specific base.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference PREV 165

This set function returns a value from the next to last row in a set.

Syntax
PREV (columnName)

Parameters
e columnName— Column or alias of any data type to evaluate.

Return Type

Same data-type as argument.

Remarks

Returns values from the row before the “current” row in a set, where the current row is the latest row in the
set based on the event timestamp, or when all have the same timestamp, is last row in the set.

Example

Gather all stock feed closing prices and group them by stock symbol. The “current” row will always be the
last one received, and as such, will contain the current closing price. The previous row will be the previous
day’s close:

SELECT symbol, CURRENT (close) AS "Last Trade",
PREV (close) AS "Prev Cls",
(CURRENT (close) - PREV(close)) AS Change
FROM Stock feed
GROUP BY symbol

symbol Last Trade Prev Cls Change

K 31.25 31.28 -0.03
IBM 80.79 80.04 0.75
VCLR 24 .42 22.60 1.82

Moving set semantics

Cannot be used with a moving or tumbling set.
CURRENT() returns the value from the latest or last row in a set.
PRIOR_VALUE() returns the prior value of a column, alias, or expression.

“Function Types” on page 109 discusses moving sets.

Functions

Adobe LiveCycle ES
PRIOR_VALUE 166

Business Activity Monitoring Server Reference

This scalar function returns the prior value of a column, alias, or expression.

Syntax
PRIOR VALUE (columnName)

Parameters
e columnName— Column or alias of any data type to evaluate.
Return Type

Same data-type as argument.

Remarks

Returns a NULL if there is no prior value — the first time the function is called on the columnName.
Use PRIOR_VALUE() when the data (events) enter the system grouped and ordered,

This function is not permitted in the WHERE Clause of a view definition.

Example

Consider this query that identifies the how long a task took to complete — as a percentage of an hour —
based on minutes since the previous task completed:
SELECT Task, CAST(
(TIMESTAMP DIFF (PRIOR VALUE (Completed), Completed, MINUTE) /60
, DECIMAL(5,4)

) AS Hours

FROM Tasks Completed
Task Hours
Startup
Initialize 0.0887
Begin job 0.1012
Finish job 4.3243
Clean up 0.2500
Shut down 0.1285
Have milk shake 0.6667

PREV() returns a value from the next to last row in a set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference RANK 167

This rank function determines the rank of each value in a set with respect to the entire set.

Syntax

RANK (expression)

Parameters
e expression— A expression of any data type, and which typically references a column.

Return Type
INTEGER.

Remarks

Returns an integer for each row in the set that is the row’s ranking within the entire set, where the greatest
value is ranked 1. When expression results in NULL it is ranked last in the result list. For example, the
ranking of (10, NULL, 20) ranks the 10 as 2, the 20 as 1, and NULL as 3.

When the values to be ranked are equal, they are assigned the same rank, and the next rank is skipped. For
example values 4.5, 4.5, 1.0 will be assigned rank values of 1, 1, and 3 respectively.

Note: This function cannot be used as an argument in a set function, rank function, or moving set
function. For example, SUM(RANK(...)) is illegal. Nor can RANK() be used on an stateless view.

When the set contains only one row, RANK() returns 1. For example, RANK(SUM(sales)) = 1.

Examples

Rank product sales by region:

SELECT RANK(SUM(sales)) AS R, SUM(sales) AS S, region
FROM product_ orders
GROUP BY region

R S region
1 100000 north
2 50000 south

Rank product sales by product:

SELECT prod _name, SUM(dollars) AS prod_sales,
RANK (SUM(dollars)) AS prod_rank
FROM product, lineitem
WHERE lineitem.classkey = product.classkey
AND lineitem.prodkey = product.prodkey
GROUP BY prod_name;

PROD_NAME PROD SALES PROD RANK
Demitasse Ms 656401.50 1
Xalapa Lapa 577450.00 2
Aroma Roma 479330.25 5
Verona 467234.00 6
NA Lite 557655.00 3
Lotta Latte 533454 .50 4

NTILE() ranks rows and places them in a finite set of tiers.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference RANK 168

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference RATIO_TO_REPORT 169

This rank function calculates the ratio of a value to the sum of the values for the entire set.

Syntax
RATIO_TO_REPORT(numeric)

Parameters
e numeric— Any numeric data type expression, typically a reference a numeric column.

Return Type
DOUBLE PRECISION.

Remarks

Returns an number for each row in the set that is the row’s ratio to the sum of the entire set. When
expression results in NULL, the function returns NULL. When the sum of the set is zero (0), the ratio is also
zero.

Note: This function cannot be used as an argument in a set function, moving set function, or rank
function. For example, SUM(RATIO_TO_REPORT(...)) is illegal.

Example

Determine what percentage each product sales is to the total sales of all products, for the last 20 weeks:

SELECT prod_description DESC,
SUM (dollars) as sales,
RATIO TO REPORT(SUM(1li amount)) * 100 AS ratio dollars
FROM lineitem, product
WHERE lineitem.li prod id = product.prod id
GROUP BY prod description;

DESC SALES RATIO DOLLARS
Widget 896931.15 12.88
Basket 514830.00 7.39
Football 507022.35 7.28
0il Drum 503493.10 7.23
Computer 437863.00 6.29
Chair 429637.75 6.17
Desk 424215.00 6.09
Mesh Bag 421205.75 6.05
Shoelace 417261.00 5.99
Powder 397102.50 5.70
Telephone 394086.50 5.66
Cord 392377.75 5.64
Mouse 389378.25 5.59
Monitor 305859.75 4.39
Case 294982.75 4.24
Cup 236772.75 3.40

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Functions

ROUND

170

This scalar function returns a number rounded up to a specified count of decimal places.

Syntax

ROUND (number, [places])

Parameters

e number— The numeric expression to round

e places— Count of decimal places to round to. A negative integer rounds to whole number digits.

Default is zero (0) to remove any fractional components.

Return Type

Numeric, same data-type as number argument.

Examples

ROUND (1294 .

ROUND (1294 .

ROUND (1294 .

ROUND (1294 .

ROUND (1294 .

5078) returns 1294.
5078, 0) returns 1294,

5078, 1) returns 1294.5.

5078, 2) returns 1294.51.

5078, -2) returns 1300.

TRUNC() removes digits from a number.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference RPAD 171

This scalar function adds one or more instances of a string to the end of another string.

Syntax
RPAD (string, length, [padChar 1)

Parameters
e string— Character or string to alter.

e length— The display length of the returned string. When using multi-byte characters, the length is the
count of characters that display or print, not the count of multi-bytes.

e padChar— Character or string to append. Default is a single space or blank character (*’).
Return Type

VARCHAR.
Remarks

When length is smaller than the length of string, returns the string truncated to length.

Examples
RPAD ('ABC', 6, 'x') returns /ABCxxx.
RPAD ('ABC', 6, 'xo') returns ‘ABCxox.
RPAD ('ABC', 4) returns‘ABC".
RPAD ('ABC', 2, 'x') returns’AB.

LPAD() inserts characters to the start of a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference RTRIM 172

This scalar function removes characters from the end of a string.

Syntax
RTRIM(sourceString [, setString])

Parameters
e sourceString— String to trim.

e setString— Characters to remove; default is a single blank space ().
Return Type
VARCHAR.

Remarks

Recursively removes all instances of setString from the end of sourceString until sourceString no longer
ends with set, and returns the result.

Examples

RTRIM('ZZZ ') returns'ZZZ'

RTRIM('ZZZaaa', 'a') returns‘ZZZ.
RTRIM('ZZZababab', 'ab') returns‘ZZZ.
RTRIM ('ZZZababc', 'abc') returns‘ZZZab'

LTRIM() removes characters from the start of a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SAFE_DIVIDE 173

This scalar function returns a quotient determined by a dividend, a divisor, and an alternate divide-by-zero
quotient. If the divisor is non-zero, this function returns the quotient of the dividend divided by the divisor.
If the divisor is zero, or there is some other runtime data error while calculating the quotient, such as a
DECIMAL out of range, the alternate quotient is returned.

Note: The recommended practice is use decimals for both dividend and divisor values.

Syntax

SAFE DIVIDE (numberDividend, numberDivisor,numberAlternateQuotient)

Parameters
e numberDividend— The numerical value to be divided.

The data type is determined by how the value is enter. If the value is entered without a decimal (e.g. 19),
the value is cast as an integer. If the value is entered with (e.g. 19.00), the value is cast as an integer.

e numberDivisor— The numerical vlaue by which the divident is divided.
This value is automatically cast as the same data type as the numberDividend.
e numberAlternatQuotient— The numerical value to be returned if the resulting quotient is 0 or if t
Return Type

Numeric, same data-type as number argument.
Examples
SAFE DIVIDE (100.20,4321) returns>5.
SAFE DIVIDE (100.19.5,4321) returns5.The 19.5is cast as an integer with a value of 19.

SAFE DIVIDE (100.00,19.5,4321) returns 5.12. The quotient is carried to the same number of
decimal points as the numberDividend, in this case two decimal points.

SAFE DIVIDE (SAFE DIVIDE (100.000,19.5,4321) returns5.128. The quotient is carried to the
same number of decimal points as the numberDividend, in this case three decimal points.

SAFE DIVIDE (100.0,4321) returns4321.Because the quotient of the numberDividend and
numberDivisor has a value of 0, the numberAlternateQuotient value is returned.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SIGN 174

This scalar function identifies the arithmetic sign of a number.

Syntax
SIGN (number)

Parameters
e number— The numeric value to evaluate.

Return Type
INTEGER.
Remarks
Returns 1 if the number is positive, 0 if the number is zero, and -1 if the number is negative.

Note that these expressions return identical results:

(number * SIGN (number))
ABS (number)

ABS() returns the absolute value of a number.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SQRT 175

This scalar function returns the square root of a number.

Syntax
SQRT (number)

Parameters
e number— The number (DOUBLE) to evaluate. Must be greater than zero (0).

Return Type
DOUBLE PRECISION.

Example

SQRT (42) returns 6.480...

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SUBSTRING 176

This scalar function returns a substring of a specified string.

Syntax
SUBSTRING(string, position, [length]).

Alternate forms:

SUBSTR (string, position, [length])
SUBSTRING(string FROM position [FOR length 1)

Parameters
e string— Character string to search.

e position— Starting position of the substring, where 1 is the first character at the start of the string, and
-1 is the last character. Negative values count backwards from the end of the string. Using zero (0) is the
same as using 1. A position not within string returns an empty string.

e length— Length of the substring to extract. Omitting length returns all characters from position
through the end of the string. Specifying a value greater than the remainder of the string returns all
characters from position through the end of the string, and pads the difference with space characters
to achieve the specified length. A negative value or zero (0) returns an empty string.

Return Type
VARCHAR.
Examples
SUBSTR ('breakfast', 1) returns ‘breakfast’.
SUBSTR ('breakfast', 0) returns ‘breakfast’.
SUBSTR ('breakfast', 30) returns” (empty string).
SUBSTR ('breakfast', 1, 2) returnsbr’
SUBSTR ('breakfast', CHARACTER LENGTH ('breakfast'), 2) returns’t’
SUBSTR ('breakfast', 3, 4) returns ‘eakf’
SUBSTR ('breakfast', 3, 8) returns ‘eakfast’
SUBSTR ('breakfast', -5, 4) returns 'kfas.
SUBSTR ('breakfast', 1, -1) returns” (empty string).

CHARACTER_LENGTH() returns the length of a character string.

POSITION() locates a character within a string.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SUM 177

This set function returns the sum of a set of numeric values.

Syntax

SUM(numeric)

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type

Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

Total the invOnHand column for all rows in the stock table:

SELECT SUM (invOnHand) "Total on hand"
FROM stock;

Total on hand

Moving set semantics

When used as a MOV_function(), returns the moving sum for the moving set.

MOV_SUM (numeric, windowwindow, size [, timestampColumn])

Last value in the set

When the moving set size is a single event, MOV_SUM() maintains the sum of the last order prices for each
customer, for all the customers that have placed an order since the system startup time.

SELECT os.os_cust_id, MOV_SUM(os.os_price, EVENT, 1)
FROM order status os
GROUP BY os.os_cust_id

MOV_SUM)() returns the sum of a moving window set.

TUMBLE_SUM() returns the sum of a tumbling window set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference SUM_OVER_GROUPS 178

This is rank function that is passed two parameters, a numeric value followed by an ordering parameter.
When the groups are ordered by the ordering parameter, the function returns a running sum of the
numeric values.

Syntax
SUM_OVER GROUPS ([numeric valuel, [ordering parameter])

Parameters
e numeric value—

e ordering parameter—

Return Type

Running sum of the numeric values provided in the arguments.

Example

Consider the following data set

grp data
1 1

2 3

3 10

4 200

If the following was issued:

SELECT grp, SUM _OVER GROUPS (data, grp) as running sum GROUP BY grp

The result would be:

grp running sum

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference STD_DEVIATION 179

This set function returns sample standard deviation of a set of numbers.

Syntax
STD DEVIATION (number)

Parameters

e number— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type
DOUBLE PRECISION.

Remarks

Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

2
X.—X
The result is computed using the formula Z{%} , Where n is the number of elements in the sample
and X is the sample mean.

Example

SELECT STD DEVIATION (salary) "Deviation"
FROM employees;

Deviation

3909.36575

MOV_STD_DEVIATION() returns the standard deviation of a moving window set.

TUMBLE_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TIMESTAMP_DIFF 180

This scalar function returns, as an absolute value, the interval of time between two timestamps.

Syntax
TIMESTAMP DIFF(startTime, endTime, unit)

Parameters
e startTime— Start Date-Time.

e endTime— End Date-Time.

e unit— Type of the time interval to return; one of these literals:
e SECOND
e MINUTE
¢ HOUR

o DAY
MONTH (30 days)
YEAR (12 months or 360 days)

Return Type
INTEGER.
Remarks

Uses absolute time difference rounded up to the nearest whole value; does not use Gregorian calendar
arithmetic.

Rounds the result to the nearest integer. For example, the difference between 10:00 and 10:29 in HOUR
units is zero (0), but 10:00 and 10:30 return one (1).

Returns NULL if either timestamp is NULL.

Example

Return the count of days from now until the end of the month.

TIMESTAMP DIFF(CURRENT TIMESTAMP (),
LAST DAY (CURRENT_ TIMESTAMP()), DAY)

Return True when a problem ticket is open for more than 30 minutes:

TIMESTAMP DIFF(ticket opened, CURRENT TIMESTAMP (), MINUTE) > 30

Return the number of days between two dates as a positive number, regardless of the which date is oldest:

ABS(TIMESTAMP DIFF(father birthdate, mother birthdate, DAY))
DATE_ADD() adds a duration to a date-time.
DATE_DIFF() subtracts a duration from a date-time.

CURRENT_TIMESTAMP() returns the current date and time.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TO_CHAR 181

This scalar function converts a date-time to a character string.

Syntax
TO_CHAR(date, [format])

Parameters
e date— Date-Time value to convert.
o format— Date pattern of string identical to the one used by the Java SimpleDateFormat class, and is

described in “Date-Time Formatting” on page 66. Omit this option to convert using the default format,
which is “yyyy-MM-dd HH:mm:ss.55555SSSS".

Return Type
VARCHAR.

Remarks

See “Converting Between Date-Time and Strings” on page 62 for a complete discussion about the
conversion.

Examples

TO_CHAR (CURRENT TIMESTAMP (), 'd MMMM yy') returns'5 March 03"
CAST() converts one data type to another.
TO_DATE() converts a character string to a date.

CURRENT_TIMESTAMP() returns the current date and time.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TO_DATE 182

This scalar function converts a character string to a date-time value.

Syntax
TO DATE(string, [format])

Parameters
e string— Date string (VARCHAR) or literal to convert.
o format— Date pattern of string identical to the one used by the Java SimpleDateFormat class, and is

described in “Date-Time Formatting” on page 66. Omit this option to convert using the default format,
which is “yyyy-MM-dd HH:mm:ss.55555SSSS".

Return Type

Date-Time.

Remarks

Omitting the time values from the pattern zero-fills (0) the portion of the TIMESTAMP thereby setting the
time to midnight.

Examples
TO DATE ('2003-02-18"') isidenticalto TO DATE ('2003-02-18"', "yyyy-MM-dd").
TO DATE('2003-02-18 12:00:00', 'yyyy-MM-dd HH:mm:ss') assigns noon as the time.

To strip the time portion off a TIMESTAMP, convert it to character and back to date:
TO DATE(TO_CHAR(a_timestamp, 'yyyy-MM-dd'))

CAST() converts one data type to another.
TO_CHAR() converts a date to a character string.

CURRENT_TIMESTAMP() returns the current date and time.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TRUNC 183

This scalar function truncates a number to a specific count of decimal places.

Syntax
TRUNC (decimalNumber [, places])

Parameters
e decimalNumber— Number to truncate.

e places— Count of decimal places to truncate to. When omitted, truncates all decimals and returns an
integer. When negative converts digits to zero.

Return Type

Numeric, same data-type as decimalNumber argument.
Examples

TRUNC (1234 .567) returns 1234.

TRUNC (1234 .567, 1) returns 12345.6.

TRUNC (1234.567, -2) returns 1200.

ROUND() rounds the number up to a specified count of decimal places.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_AVG 184

This tumbling set function returns the average value (arithmetic mean) of a tumbling window set.

Syntax

TUMBLE AVG(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT) or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type

Numeric, same data-type as numeric argument.

Remarks

Returns NULL if the group is empty.

Example

Return the average price of all the events that arrive within a 7 day interval:

TUMBLE_AVG (price, DAY, 7, trade time) AS Avg 7 day price

The above function is shorthand for this in-line window expression:

AVG (price) AS Avg_ 7 day price OVER (
ORDER BY trade time RANGE INTERVAL '7' DAY PRECEDING SLIDE)

To determine the average price of the previous 7 days, not including the current, use a window instead of a
TUMBLE_AVG(), like this:

AVG (price) AS Avg prev_7 day price OVER (
ORDER BY trade time
RANGE BETWEEN INTERVAL '8' DAY PRECEDING
AND INTERVAL '1l' DAY PRECEDING
SLIDE INTERVAL '7' DAY
INITIALIZE TIMESTAMP '1963-02-18 00:00:00.000"
REFERENCE OPERATOR)

AVG() returns the mean average for a set.
MOV_AVG() returns the average for a moving window set.

Tumbling Windows discusses tumbling window sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_COUNT 185

This tumbling set function returns the count of rows in a tumbling window set.

Syntax
TUMBLE_COUNT (*, window, size [,timestampColumn])

Parameters

e window— Determines if size is the count of events in the set (EVENT) or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
INTEGER.
Remarks
Returns zero (0) if the set is empty.
When using an EVENT window, this function returns an integer less than or equal to the window value.
Rows that include NULLs are counted.
When used with a GROUP BY returns the count of rows in the group set.

Example

Return the count of all the events that arrive within an 8 hour interval:

TUMBLE_COUNT (*, HOUR, 8, trade time) AS Total

The above function is shorthand for this in-line window expression:
COUNT (*) AS Total OVER (ORDER BY trade time
RANGE INTERVAL '8' HOUR PRECEDING SLIDE)
Which in turn is equivalent to the following after filling in all default values:

COUNT (*) AS Total OVER (ORDER BY trade time
RANGE INTERVAL '8' HOUR PRECEDING
SLIDE INTERVAL '8' HOUR
REFERENCE OPERATOR)

Note: The eight-hour window begins when the first event arrives in the view. To begin the window at
the top of the hour instead, include INITIALIZE '2003-03-05 00:00:00.000".

COUNT() returns the count of a view or set.

MOV_COUNT() returns the count of a tumbling window set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_MAX 186

This tumbling set function returns the maximum value from a tumbling window set.

Syntax

TUMBLE MAX (numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the maximum price of all the events that arrive within a 1 hour interval:

TUMBLE MAX (price, HOUR, 1, trade time) AS Max price

The above function is shorthand for this in-line window expression:

MAX (price) AS Max price OVER (ORDER BY trade time
RANGE INTERVAL '1l' HOUR PRECEDING SLIDE)

Which in turn is equivalent to the following after filling in all default values:

MAX (price) AS Max price OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING
SLIDE INTERVAL '1l' HOUR
REFERENCE OPERATOR)

Note: The one-hour window begins when the first event arrives in the view. To begin the window at
the top of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_MAX(price, EVENT, 5) is the shorthand for this complete window:

MAX (price) OVER (ORDER BY trade time
EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT
SLIDE 5
REFERENCE OPERATOR)

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_MAX 187

MAX() returns the maximum value from a moving window set.
MOV_MAX() returns the maximum value from a tumbling window set.
MIN() returns the minimum value from a set.

GREATEST() returns the maximum value from a list.

Tumbling Windows discusses tumbling window sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_MIN 188

This tumbling set function returns the minimum value from a tumbling window set.

Syntax

TUMBLE MIN(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type

Same data-type as expression argument.

Remarks

For Boolean, True is greater than False.
For String, ‘2" is greater than ‘A’

Example

Return the minimum price of all the events that arrive within a 1 hour interval:

TUMBLE MIN (price, HOUR, 1, trade_ time) AS Min price

The above function is shorthand for this in-line window expression:

MIN (price) AS Min price OVER (ORDER BY trade time
RANGE INTERVAL '1l' HOUR PRECEDING SLIDE)

Which in turn is equivalent to the following after filling in all default values:

MIN (price) AS Min price OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING
SLIDE INTERVAL '1l' HOUR
REFERENCE OPERATOR)

Note: The one-hour window begins when the first event arrives in the view. To begin the window at
the top of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_MIN(price, EVENT, 5) is the shorthand for this complete window:

MIN (price) OVER (ORDER BY trade time
EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT
SLIDE 5
REFERENCE OPERATOR)

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_MIN 189

MIN() returns the minimum value from a moving window set.
MOV_MIN() returns the minimum value from a tumbling window set.
MAX() returns the maximum value from a set.

LEAST() returns the smallest value from a list.

Tumbling Windows discusses tumbling window sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_SUM 190

This tumbling set function returns the sum of a tumbling window set of numeric values.

Syntax

MOV_SUM(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the first event in the view as the basis.

Return Type

Numeric, same data-type as numeric argument. Returns NULL if the set is empty.

Example

This tumbling sum expression sums all the events that arrive within a 1 hour interval:

TUMBLE SUM (price, HOUR, 1, trade_time) AS Total

The above function is shorthand for this in-line window expression:
SUM (price) AS Total OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING SLIDE)
Which in turn is equivalent to the following after filling in all default values:

SUM (price) AS Total OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING
SLIDE INTERVAL '1l' HOUR
REFERENCE OPERATOR)

Note: The one-hour window begins when the first event arrives in the view. To begin the window at
the top of the hour instead, include INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000'.

Similarly, the function TUMBLE_SUM(price, EVENT, 5) is the shorthand for this complete window:

SUM (price) OVER (ORDER BY trade time
EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT
SLIDE 5
REFERENCE OPERATOR)

SUM() returns the sum of a view or set.
MOV_SUM)() returns the sum of a moving window set.

Tumbling Windows discusses tumbling window sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_STD_DEVIATION 191

This tumbling set function returns sample standard deviation of a tumbling window set of numbers.

Syntax
TUMBLE_STD DEVIATION(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT), or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be a positive
integer.

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
DOUBLE PRECISION.

Remarks
Returns 0 when there is only a single row of input. Returns NULL if the set is empty.

2
X.—X
The result is computed using the formula Z{“T)} , Where n is the number of elements in the sample
and X is the sample mean.

Example

Return the standard deviation in salaries for each calendar year:

SELECT TUMBLE STD DEVIATION (salary, YEAR, 1) AS "Deviation per year"
FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT STD DEVIATION (salary) AS "Deviation per year" OVER (
RANGE INTERVAL 'l' YEAR PRECEDING
SLIDE INTERVAL 'l' YEAR
REFERENCE OPERATOR)

Note that you can use INITIALIZE to declare a fiscal year. And consider using PARTITION BY to get the
deviations for different pay grades. For example:

SELECT STD DEVIATION (salary) AS "Deviation per year" OVER (
PARTITION BY pay grade
RANGE INTERVAL 'l' YEAR PRECEDING
SLIDE INTERVAL '1l' YEAR
INITIALIZE '1963-07-01 00:00:00.000"
REFERENCE OPERATOR)

STD_DEVIATION() returns the standard deviation of a view or set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_STD_DEVIATION 192

MOV_STD_DEVIATION() returns the standard deviation of a tumbling window set.

VARIANCE() returns the square of the standard deviation.

Tumbling Windows discusses tumbling window sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference TUMBLE_VARIANCE 193

This tumbling set function returns the square of the sample standard deviation of a tumbling window set
of numbers.

Syntax
TUMBLE_STD DEVIATION(numeric, window, size [,timestampColumn])

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view. See individual function descriptions for
additional restrictions.

e window— Determines if size is the count of events in the set (EVENT) or a duration of time (SECOND,
MINUTE, HOUR, DAY. MONTH, or YEAR).

e size— Duration or count of window to use for determining the size of the set. Must be an integer
greater than zero (0).

e timestampColumn— (optional) Use the value of the field as the starting point for the time-series span.
The calculation is based on the time span from the most recent value in the column from any row in the
view. Omit this option to use the system clock as the time basis.

Return Type
DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.
2

X.—X
The result is computed using the formula Z{%} , where n is the number of elements in the sample
and X is the sample mean.

Examples

Return the variation in salaries for each calendar year:

SELECT TUMBLE_STD VARIATION (salary, YEAR, 1)
AS "Variation for last year"
FROM employees;

Which in turn is equivalent to the following after filling in all default values:

SELECT VARIANCE (price) AS "Variation for last year"
OVER (ORDER BY trade_ time
RANGE INTERVAL 'l' YEAR PRECEDING
SLIDE INTERVAL '1l' YEAR
REFERENCE OPERATOR)
FROM employees;

MOV_VARIANCE() returns the variance of a moving window set.
STD_DEVIATION() returns a standard deviation.
VARIANCE() returns the variance of a view or set.

“Function Types” on page 109 discusses moving sets.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference UPPER 194

This scalar function converts all lowercase characters in a string to uppercase.

Syntax
UPPER(string)

Parameters
e string— Character string (VARCHAR) to convert.

Return Type
VARCHAR.
Example
UPPER ('Volta') returns ‘VOLTA.

LOWER() converts to all lowercase.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference VARIANCE 195

This set function returns the square of the sample standard deviation of a set of numbers.

Syntax
VARIANCE (numeric)

Parameters

e numeric— An expression that evaluates to a numeric and which cannot reference a rank function
function. Typically the argument is a column in a view.

Return Type
DOUBLE PRECISION.

Remarks

Returns zero (0) when the expression set contains only one element. Returns NULL if the set is empty.

2
X. —
The result is computed using the formula z[%} , Where n is the number of elements in the sample
and X is the sample mean.

Example

SELECT VARIANCE (salary) "Variance"
FROM employees;

Variance

15283140.5

MOV_VARIANCE() returns the variance of a moving window set.
STD_DEVIATION() returns a standard deviation.

TUMBLE_VARIANCE() returns the variance of a tumbling window set.

Adobe LiveCycle ES Functions
Business Activity Monitoring Server Reference yield 196

This function computes the yield given a set of test results (fail=0, pass=1) and calculates the yield; that is,
total passed/total units. Null values are ignored.

Syntax
yield(pass, unit)

Parameters

e pass— Indicates whether to calculate the yield based on the number of units that pass or the number
of units that failed. Specify pass to use the number of units that pass the test to calculate the yield.
Specify fail to use the number of units that fail the test to calculate the yield.

e unit— Specifies the total number of units to test.

Return Type
Returns NULL if the yield is less than zero; otherwise, DOUBLE PRECISION.

Example

If SELECT YEILD(pass, 4) FROM E is passed the following values:

0,1
1,0
0,1

NULL, NULL
The result is 0.5 because test 1 and 3 pass but test 2 fails. Test 4 is ignored.

If SELECT YEILD(fail, 4) FROM E is passed the same values, the result is 0.25 because only one of the four
tests passes.

14 HTTP Post

A HTTP Post event tables receive events from a HTTP Post action, either as the result of an HTML form sent
from a browser or from data encoded in a URL that connects to the table.
» In this Chapter:
e “How It Works” on page 198
e "HTTP Post Event Tables” on page 198

e "Posting to an HTTP post event” on page 201

197

Adobe LiveCycle ES HTTP Post
Business Activity Monitoring Server Reference How It Works 198

HTTP Post event data arrives embedded in an URL. The internal agent extracts the fields from the URL and
puts the data in the event table. The URL may be formed as the result of an HTML form containing
<INPUT> fields, or it may be created by some other application that communicates in the HTTP protocol.

HTTP Post events receive data
embedded in a URL, usually

HTML Form from an HTML form.
Event table
Name: [VMyName | http://../eventname=Event&name=MyName
Send >
|

A HTTP Post event table receives new events from an HTTP Post action, which is usually the result of an
HTML form sent from a browser. In an HTML form, each <INPUT> element maps to a column in the event

table. Event data can also be published in the URL that passes the fields to the system. See “Posting to an
HTTP post event” on page 201 for examples.

4

Before creating an event to a HTTP Post, you must have Create permission for tables (see “Creating
Permission” on page 258). The following table lists the attributes for an HTTP Post event table.

Attribute Description

Name Event table name. This name must be unique among views, events,
context, and consolidated events. See “Object Namespace” on
page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events) or disabled
(not monitoring for events).

Post To URL URL in which to send the posted information. See “Posting to an HTTP
post event” on page 201 for examples.

Log event data for When on, logs event data that arrived after the last checkpoint started.

recovery This “recovery” log is used to restore the state of the system in the

event of an abnormal shutdown of the servers. For complete details,
see “Working with Checkpoint and Recovery” in Using Business Activity

Monitoring Workbench.
Process eventsinthe Choose this option when events must be processed in the order
order of arrival received. Otherwise, if events may be processed out of order, turn this
option on.

Note: To join events in a view, the events must be processed in order.
Leave this option off to join the events.

Adobe LiveCycle ES

HTTP Post

Business Activity Monitoring Server Reference Creating an HTTP Post event table 199

Attribute

Description

Disable event after this
number of
consecutive errors

Column Information

Clear State Interval

Disables the event when a consecutive count of errors occur. For
example, if set to 5, the event is disabled after 5 consecutive errors.
However, if 4 errors occur, then no errors are followed by 2 more errors,
the event remains enabled. The default is off: Do not disable.

The Column Information fields define how to map the fields from the

JMS message into columns in the event table. There is one column for
every field in the event table. See “HTTP Post Column Information” on
page 200 for details.

This tab contains several options for clearing persisted event data that
is propagated from the event in the views, objects, and dashboards
that depend on it.

The three options are:

« Do Not Clear State— This is the default. Data persists.

» Clear State on a Schedule— Select to clear the state on a
schedule. Selecting this option activates the scheduling feature
positioned to the right.

* Always Clear State (Every Event)— The state is refreshed each
time the event is updated.

Use the following procedure to create an HTTP post event table.

» To create a HTTP Post event table:
1. Open the BAM Workbench.

2. Click the New Event... button

3. On the New Event dialog page, select Single Event.

4. Select HTTP Post as the event source type.

5. Assign a name and define the columns of the event table in the Column Information fields.

Save the HTTP Post table as enabled and it will immediately be ready to receive event messages.

Adobe LiveCycle ES

HTTP Post

Business Activity Monitoring Server Reference HTTP Post Column Information 200

The Column Information fields define how to map the fields from the HTTP Post message into columns in
the event table. There is one field for every column in the event table, each with the following attributes:

Attribute

Description

Field Name

Message Name

Data Type

Format

Name of the column in the event table.

Name of the field in the message. On an HTML form, this is the NAME
attribute assigned to each form element. See “Posting to an HTTP post event”
on page 201 for examples. When mapping a Flat File field, the name for each
embedded field is N/A and uneditable.

Data type of the column in the event table.

(optional) Format of the event column for VARCHAR (string) and DECIMAL
values.

Each field in the message can be a simple field that maps directly into a event column, oritcan be a
complex field (a flat file field) that contains several fields that each map into columns in the table. Complex
fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on
page 81 for detailed descriptions of these file types.

Note: Message fields can contain more than one row of data; however, each row is part of the same
event. This is different from flat file imports that treat each row in the file as a unique event.

Column Infd fi€lds, each of which maps to a

A Flat File Field creates a
message field of embedded

column in the event table.

Add Field Add Flak File Field. ..
Field Mame Message Mame Data Type Formakt
MessageField Flak File: Delir %

To edit the definition of a

message field, select the

<Change Format> Format.

» To add a message field:
1. Click Add Flat File Field.

2. Choose the flat file type of the message field.

(Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the columns. This
file is a sample of the real data file. Data from this file appears in the next step to assist you as you map
the event data into the table.

3. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

4. Identify the flat-file attributes. See “Flat File Event Tables” on page 82 for details.

Adobe LiveCycle ES HTTP Post
Business Activity Monitoring Server Reference Posting to an HTTP post event 201

5. Define the format-specific Column Information. For details about the source type, see:
e "“Fixed-Width Files” on page 94.
e "“Delimited Files” on page 93
e “XML Files” on page 95
See “Multiple Lines (Events) of Input” on page 203 for details about sending data to flat file fields.

6. Click Save Event to save the message field definition.

» To edit the definition of a message field:

e Inthe field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>".

Note: When editing a message field, the sample file option for delimited and fixed-width file types is
not available.

Most HTTP Post event are generated from an HTML form. When defining the event, define one column for
each named <INPUT> element. For example, consider this HTML form:

<FORM action="http://.../bam/postservlet?eventname=Example"
method="post">
<P>
<LABEL for="name">Name: </LABEL>
<INPUT type="text" name="name">

<LABEL for="name">Date (yyyy-mm-dd): </LABEL>
<INPUT type="text" name="date">

<LABEL for="amt">Amount: </LABEL>
<INPUT type="text" name="amt">

<LABEL for="switch">Switch: </LABEL>
<INPUT type="radio" name="switch" value="FALSE" checked >O0ff
<INPUT type="radio" name="switch" value="TRUE">On

<INPUT type="submit" value="Send">
<INPUT type="reset">
</P>

</FORM>

Adobe LiveCycle ES HTTP Post
Business Activity Monitoring Server Reference Posting to Message Fields 202

The four form fields map to these four columns in the event table:

Column Information Clear State Interval

Add Field Add Flat File Field... |
Field Name Message Mame Data Type Format
Marne name VARCHAR W || \Width: 255 b ﬂ
Date date WARCHAR || Width: 255 A ﬂ
Arnounk arnk DECIMAL W || Precision: 28; S0 W ﬂ
Switch switch BOOLEANM w ﬂ

Notice that the date field maps to a VARCHAR, not a TIMESTAMP. In the views that are derived from this
event, cast the values to a date-time, similar to the following:

CAST (httpEvent."Date" AS TIMESTAMP)

To pass data into a message field, you can either embed the information in the URL (as described below in
Posting Values in the URL") or use an HTML <TEXTAREA> element and enter the flat-file data into that field.
For example, your HTML form might have the following declaration:

<LABEL for="flatfile"s>Flat file text: </LABEL>
<TEXTAREA name="MessageField" rows="20" cols="80"></TEXTAREA>

In the browser, you can either enter the data manually or copy the data from a flat file and manually past it
into the field. Remember that the data must be in the format of the declared Flat File Field, such as
delimited.

Note the following:

e When the event table contains more than just the Message Field column, you can enter only one row’s
worth of data into the <TEXTAREA> field. If the Message Field is the only column, then you may enter
multiple event row’s worth of data.

e Multiple rows passed through a <TEXTAREA> element are considered part of the same event, unlike a
text file where each row is a unique event.

Adobe LiveCycle ES HTTP Post
Business Activity Monitoring Server Reference Posting Values in the URL 203

When passing the field values directly in the URL, name and assign a value to each, separating them with
ampersands (&); for example,

. .?eventname=Example&name="Skyler"&date=2003-03-05&amt=9.21&switch=TRUE
However, if passing the values to a delimited flat file field, just name the field and separate the values with
the separator character (which is usually a coma); for example,

. .?eventname=Example&msgFile="Skyler",2003-03-05,9.21, TRUE

To send multiple events to a flat file field, separate them with the %0D%0A (the MIME transmission for an
end-of-line: “CR LF”); for example,

...="Skyler",2003-03-05,9.21, TRUE%0D%0A"Mike",1963-02-18,9.01, FALSE

Note that if you intend to send multiple lines, the Flat File field must be the only field in event column list.
When the list includes other columns, only one “line” of input is permitted.

15

Java Messaging Service (JMS)

Java Messaging Service (JMS) provides access to messages produced by Java applications. The producer

application publishes messages to topics or queue destinations that the Business Activity Monitoring
agent subscribes to. Each new published topic or queue message is mapped to a new event in the

associated event table.

In this Chapter:

“How It works” on page 205

“JMS Event” on page 205

“JMS Queue Agents” on page 210

“JMS Topic Agents” on page 213

204

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference How It works 205

Business Activity Monitoring JMS agents communicate with JMS topic factories or Queue factories
managed by Web application servers. When you define the agent, you tell it how to connect to the factory.
When you define a JMS event table, you tell it to subscribe to a JMS topic or queue managed by the factory
that the agent talks to. Then, when the topic publishes a new message, or when the queue receives a new
message, the agent receives it and passes it to the event table.

Sample: JMS message
providers publish topics or
send messages to the queues,
which are events

Event table

— *"™(vsagent) > JMS Message
h o pucer

mmmmm New event about = New message about
topic/queue. topic/queue.

Note: Business Activity Monitoring JMS agents support JMS MapMessage and TextMessage body types
for both topic and queue messages. This JMS Map Message type consists of name-value pairs,
where the names are strings and the values are wrappers to Java types. See “Mapping JMS Data
Types” on page 209 for details.

A Java Messaging Service (JMS) event receives new event data from a Java application that publishes
messages to the topic or sends messages to the queue that the table subscribes to. Each new topic or
queue message is a new event in the table.

The JMS agent supports JMS MapMessage and TextMessage body types only. MapMessage consists of
name-value pairs, where the names are strings and the values are wrappers to Java types. TextMessage
consists of a single unnamed text string, which can be interpreted as a fixed-width or delimited file or an
XML file. See “Mapping JMS Data Types” on page 209 for details.

Before creating an event to a JMS agent, you must:

e Have create permission for Contexts and Events (see “Creating Permission” on page 258), and Read
Only access permission on the agent that will feed the table.

e Obtain access to a JMS Topic or Queue as identified by the address factory’s JNDI location.
e Asample file (optional).

If the message contains a complex string that is CSV (delimited) or fixed-width text, it is helpful to have
a sample file that contains data in the format of the actual event string. You can use this sample when
you create the event to ensure that the fields map correctly into the event table by seeing how the data
lines up in the columns.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Java Messaging Service (JMS)

Prerequisites

206

The following table describes the attributes for a JMS event.

Attribute Description

Name Event table name. This name must be unique among views, events, context,
and consolidated events. See “Object Namespace” on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events) or disabled (not

Log event data for
recovery

Process events in the
order of arrival

JMS Agent

Topic/Queue

Message selector

monitoring for events).

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. See Working with Checkpoint and
Recovery for complete details.

Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on.

Note: To join events in a view, the events must be processed in order. Leave
this option off to join the events.

An existing JMS agent that connects to the JMS message stream. Create an
JMS Queue or JMS Topic agent with the BAM Workbench Administration tab.
See “JMS Queue Agents” on page 210 or “JMS Topic Agents” on page 213 for
details.

Identifies the topic/queue on which the message is being sent and defined by
the message publisher. This is a JNDI address similar to
com.celequest.myjmstopic on BEA WebLogic and
topic/com.celequest.myjmstopic on JBoss.

A Boolean expression that puts a filter condition on the messages the
publisher sends. The syntax of the condition is the same as that of the SELECT
command’s WHERE Clause. For example, this filter only accepts messages
where the Supplier property contains one of three values:

Supplier IN ('Xyz, Corp', 'Ink, Inc', 'Gizmos')

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference Creating a JMS Event Table 207

Attribute Description

Column Information ~ The Column Information fields define how to map the fields from the JMS
message into columns in the event table. There is one column for every field
in the event table. See “JMS Column Information” on page 208 for details.

Clear State Interval This tab contains several options for clearing persisted event data that is
propagated from the event in the views, objects, and dashboards that depend
on it.

The three options are:

* Do Not Clear State— This is the default. Data persists.

« Clear State on a Schedule— Select to clear the state on a schedule.
Selecting this option activates the scheduling feature positioned to the
right.

« Always Clear State (Every Event)— The state is refreshed each time the
event is updated.

Use the following procedure to create a JMS event table.

» To create a JMS event table:
1. Open the BAM Workbench Administration Console.

2. Create a new event.
3. Select JMS as the source type.
4. Define the values of the event table’s attributes.

5. Define the columns of the event table in the Column Information fields.

Save the JMS table as enabled and it will immediately be ready to receive event messages.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Java Messaging Service (JMS)

JMS Column Information

208

The Column Information fields define how to map the fields from the JMS message into columns in the

event table. There is one field for every column in the event table.

Each field in the message can be a simple field that maps directly into a event column, oritcan be a

complex field (a flat file field) that contains several fields that each map into columns in the table. Complex

fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on

page 81 for detailed descriptions of these file types.

Each column in the event table has the following attributes:

Attribute

Description

Field Name

Message Name

Data Type

Format

Name of the column in the event table.

Name of the field in the message. When mapping a MessageField, the name
for each embedded field is N/A and uneditable.

Data type of the event column. See “Mapping JMS Data Types” on page 209
for details.

(optional) Format of the event column for VACHAR (string) and DECIMAL
values.

Add columns by clicking Add Field or Add Flat File Field.

Column Ind fields, eéch of which maps to a
column in the event table.

A Flat File Field creates a
message field of embedded

Add Field Add Flak File Field. ..

Field N/a/me Message Mame Data Type Format

MessageField Flat Fil&: Delir %

To edit the definition of a

message field, select the
<Change Format> Format.

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference Mapping JMS Data Types 209

» To add a message field:
1. Click Add Flat File Field.

2. Choose the flat file type of the message field.

(Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the columns. This
file is a sample of the real data file. Data from this file appears in the next step to assist you as you map
the event data into the table.

3. For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

4. Identify the flat-file attributes. See “Flat File Event Tables” on page 82 for details.

5. Define the format-specific Column Information. For details about the source type, see:
e "Fixed-Width Files” on page 94.

e “Delimited Files” on page 93
e “XML Files” on page 95

6. Click Save Event to save the message field definition.

» To edit the definition of a message field:

e Inthe field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>".

Note: When editing a message field, the sample file option for delimited and fixed-width file types is
not available.

The JMS mapped message data types map to Business Activity Monitoring Data Types as follows.

Business Activity Business Activity
Java Data Type Monitoring Data Type Java Data Type Monitoring Data Type
boolean Boolean long Decimal
byte Integer float Double
short Integer double Double
char Varchar String Varchar

int Integer byte[] Not supported

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference JMS Queue Agents 210

A Java Messaging Service (JMS) Queue agent communicates with a JMS message producer through a JMS
queue running in the application server environment. The agent tells the producer which messages the
JMS Queue Agents event table is interested in receiving. The producer then sends messages to the event
table through the agent.

Note: JMS Queue agents are asynchronous, they receive event messages as the events occur, and you
cannot retrieve context from a JMS Queue agent as summarized in the following table.

Event Push Event Pull Context Pull

Yes No No

Before creating an agent, you need:
e A Custom Message-driven bean (MDB), which has the Event name hard coded in the properties file and
that will receive messages from the Queue, must be deployed in the host application server.

Note: Application servers do not allow dynamic subscriptions to JMS Queues. A custom MDB must be
created for this purpose. For assistance creating and configuring this MDB, refer to the ReadMe
files under samples/cqgmdb folder from the distribution CD.

e Create permission for agents (see “Creating Permission” on page 258 for details).

e The JNDI location of the topic factory in the application server that is receiving the queue messages.

A JMS Queue agent has the following attributes:

Attribute Required Description

Name Yes Identifies the agent. This name must be unique among agents.
See “Object Namespace” on page 248 for details.

Description No Optional description that may contain any text characters.

Status Yes Whether or not the agent is enabled (monitoring for events) or
disabled (not monitoring for events).

Queue Connection Yes Identifies the J2EE connection factory that maintains the
Factory desired queue. This string identifies the factory by its JNDI
lookup name. For example:

jms.ManufacturingQueue

In a BEA WebLogic environment, the factory JNDI name is
identified on the BEA WebLogic Console, Services > JMS >
Connection Factories > factoryName > General tab.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Java Messaging Service (JMS)
JNDI Properties For Connecting to a Remote Namespace 211

Attribute Required Description
Acknowledge mode No Protocol to use when acknowledging receipt of the message.
(Auto)

* AUTO — (default) Provider acknowledges message when
it is delivered.

* CLIENT — Acknowledges the message when the agent
receives it.

« DUPS OK — Tells the publisher that it is OK to send a
message more than once. Note that subsequent receipts
of the same message are treated as new and unique

events.
User name No User name to use to connect to the JMS factory.
Password No Password for the User name.
JNDI properties No Optional and additional Java Naming and Directory Interface

(JNDI) properties necessary to make or maintain the agent to
the JMS table. These name-value pairs allow you to specify JMS
properties recognized by the JNDI.

Note: When the JMS Queue is running in a different
namespace from the BAM Server, define the properties
described in “JNDI Properties For Connecting to a
Remote Namespace” on page 211.

When the JMS Queue is running in a different namespace from the BAM Server, define these JNDI
properties to make the connection:

java.naming. factory.initial
java.naming.provider.url
Further, if you are using security, also define these properties:

java.naming.security.authentication
java.naming.security.principal
java.naming.security.credentials

BEA WebLogic JNDI
java.naming. factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://localhost:9180

IBM Websphere

java.naming. factory.initial=com.ibm.websphere.naming.WsnInitialContextFact

ory
java.naming.provider.url=iiop://localhost:9180

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference Creating a JMS Queue Agent 212

JBoss
java.naming. factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099

Sun One Directory Server LDAP
java.naming. factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=1dap://russell:59226/dc=viewceler,dc=com

Also, prefix the Queue Connection Factory parameter value with: cn=

Use the following procedure to create a JMS Queue agent.

» To create a JMS Queue agent:

1. Open the Administration Console.

2. Click New Agent...

3. Choose JMS Queue as the source type

4. Fillin the required fields that define the agent’s attributes.

Save the agent as enabled and it will immediately begin monitoring for events.

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference JMS Topic Agents 213

A Java Messaging Service (JMS) Topic agent communicates with a JMS message producer through a JMS
topic running in the application server environment. The agent tells the publisher which messages the
JMS Topic Agents event table is interested in subscribing to. The publisher then sends messages to the
event table through the agent.

Note: JMS Topic agents are asynchronous, they receive event messages as the events occur, and you
cannot retrieve context from a JMS Topic agent as summarized in the following table.

Event Push Event Pull Context Pull

Yes No No

Before creating an agent, you need:
e A Custom Message-driven bean (MDB), which has the Event name hard coded and that will subscribe
to the Topic, must be deployed in the host application server.

Note: Application servers do not allow dynamic subscriptions to JMS Topics. A custom MDB must be
created for this purpose. For assistance creating and configuring this MDB, refer to the ReadMe
files under samples/cqgmdb folder from the distribution CD.

e Create permission for agents (see “Creating Permission” on page 258 for details).

e The JNDI location of the topic factory in the application server that is publishing the topics.

A JMS agent has the following attributes:

Attribute Required Description

Name Yes Identifies the agent. This name must be unique among agents.
See “Object Namespace” on page 248 for details.

Description No Optional description that may contain any text characters.

Status Yes Whether or not the agent is enabled (monitoring for events) or
disabled (not monitoring for events).

Topic Connection Factory Yes Identifies the J2EE connection factory that maintains the
desired topics. This string identifies the factory by its JNDI
lookup name. For example:

jms.ManufacturingTopic

In a BEA WebLogic environment, the factory JNDI name is
identified on the BEA WebLogic Console, Services > JMS >
Connection Factories > factoryName > General tab.

Adobe LiveCycle ES Java Messaging Service (JMS)

Business Activity Monitoring Server Reference JNDI Properties For Connecting to a Remote Namespace 214
Attribute Required Description
Acknowledge mode No Protocol to use when acknowledging receipt of the message.
(Auto)

* AUTO — (default) Provider acknowledges message when
it is delivered.

* CLIENT — Acknowledges the message when the agent
receives it.

« DUPS OK — Tells the publisher that it is OK to send a
message more than once. Note that subsequent receipts
of the same message are treated as new and unique

events.
User name No User name to use to connect to the JMS factory.
Password No Password for the user name.
JNDI properties No Optional and additional Java naming and directory interface

(JNDI) properties necessary to make or maintain the agent to
the JMS table. These name-value pairs allow you to specify JMS
properties recognized by the JNDI.

Note: When the JMS topic is running in a different namespace
from the BAM Server, define the properties described in
“JNDI Properties For Connecting to a Remote
Namespace” on page 211.

When the JMS topicis running in a different namespace from the BAM Server, define these JNDI properties
to make the connection:

java.naming. factory.initial
java.naming.provider.url

Further, if you are using security, also define these properties:

java.naming.security.authentication
java.naming.security.principal
java.naming.security.credentials

BEA WebLogic JNDI
java.naming. factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://localhost:9180

IBM Websphere
java.naming. factory.initial=com.ibm.websphere.naming.WsnInitialContextFact
ory
java.naming.provider.url=iiop://localhost:9180

Adobe LiveCycle ES Java Messaging Service (JMS)
Business Activity Monitoring Server Reference Creating a JMS Topic Agent 215

JBoss
java.naming. factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099

Sun One Directory Server LDAP
java.naming. factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=1dap://russell:59226/dc=viewceler,dc=com

Also, prefix the Topic Connection Factory parameter value with: cn=

Use the following procedure to create a JMS Topic agent.

» To create a JMS Topic agent:

1. Open the Administration Console.

2. Click New Agent...

3. Choose JMS Topic as the source type

4. Fillin the required fields that define the agent’s attributes.

Save the agent as enabled and it will immediately begin monitoring for events.

16

JDBC

JDBC (Java Database Connectivity) is a Java application programming interface for accessing standard SQL

databases from Java programs. Business Activity Monitoring (a Java application) uses JDBC to:

e Retrieve context data from a relational database (DBMS), as described in “JDBC Tables” on page 217

and “JDBC Agents” on page 224.

e Access the metadata database that Business Activity Monitoring uses to store object and state

definitions.

e Allow other Java applications to access the business view data in memory. See “JDBC Access to View

Data” on page 228 for details.

Application Server Environment

Context System
Tables Metadata

Business
Views

JDBC Agent

JDBC interfaces

Metadata
DBMS

» In This Chapter:
e "JDBCTables” on page 217
e "JDBC Agents” on page 224

External
Application

216

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference JDBCTables 217

Java database connectivity (JDBC) event and context tables receive their data from external relational
database systems (DBMS). The data are retrieved by either making a query on the database or by calling a
stored procedure in the DBMS.

For Context tables, new data is retrieved only when a new event requires it. Then the agent passes the
query data to the DBMS, which then returns the result from DBMS.

When the view needs context, it

IBusiness view identifies the requested the data in the
k context table’s input columns.
Input columns
\ Data forquery ()
JDBCAgent \ o ™
Context ~] 9 < | DBMS
table] Requested data

The inputs passed to the DBMS as a
Output .
query whose results are fed back into
columns i
e — the context table’s output columns for
use by the view.

For event tables, the agent periodically polls the DBMS to see if new events are available, then retrieves
them for inclusion in the events table. Each event returned is processed individually, regardless of the
count of events returned as a result of the polling query.

New events are found by polling the

DBMS looking for new data.

Business view
Poll for new events

Event table -
m JDBC Agent A - DBMS

New events found

Before creating an event to a JDBC source table, you need:

An agent — An existing JDBC agent defined with sufficient access rights to query the database, or call
the stored procedure. Create an agent with the BAM Workbench Administration tab. See “JDBC Agents”
on page 224 for details.

For queries — The schemas of the tables to query.

For query events — A column in the source table must be an incrementing value that identifies when
new events are available. See “Polling the JDBC Source” on page 221.

For stored procedures — To define the procedure in the RDBMS and provide a list of the input and
(result set) output fields, and their data types. See “Stored Procedure Source” on page 222" for details.

Permissions — Create permission for tables (see “Creating Permission” on page 258) and Read Only
access permission on the agent that will feed the table.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

JDBC

Event Tables

218

A JDBC tables has the following attributes:

Attributes Description

Name Identifies the table. This name must be unique among views, events, context,
and consolidated events. See “Object Namespace” on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the event object is enabled (monitoring for events) or disabled

Log event data for
recovery

Process events in the
order of arrival

JDBC Agent

JDBC Query

Disable context after
errors

Treat all rows in
ResultSet as single
event

Field Information

Event Key (event
only)

(not monitoring for events).

When on, logs event data that arrived after the last checkpoint started. This
“recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the BAM Server(s). For complete details, see “Working
with Checkpoint and Recovery” in Using Business Activity Monitoring
Workbench.

Choose this option when events must be processed in the order received.
Otherwise, if events may be processed out of order, turn this on.

Note: To join events in a view, the events must be processed in order. Leave
this option off to join the events.

An existing JDBC source agent that accesses an RDBMS. Create an agent with
the BAM Workbench Administration tab. See “JDBC Agents” on page 224 for
details.

SELECT statement made against the database in the native database language.
For details about the SELECT command, see the reference documentation for
the DBMS. If you change the query, click Resubmit Query to validate it; you
cannot save this form with an invalid query.

Count of consecutive errors to receive before the system disables this context.
Once disabled, a context must be re-enabled manually.

All rows returned in the ResultSet are considered a single event. Otherwise,
every row returned from the table is considered a separate event.

Columns to populate in the event or context table. The Field Names are derived
from the JDBC Query result. When the system validates the query, it populates
this field list and identifies the JDBC Data Type of each return value. You specify
the associated Data Type of the column in the table.

The field names are the same as defined in the DBMS schema unless you alias
them with the AS operator in the SELECT statement’s select list.

For fixed-width and delimited files identifies key field columns for multi-row
events. See “Multi-Row Events” on page 84 for details.

Adobe LiveCycle ES
Business Activity Mo

JDBC
nitoring Server Reference Creating a JDBC Source Event or Context Table 219

Att

ributes Description

Index (context only) Builds an index for the column when checked. It is critical that you select the

right index in order to have good performance when prefetch is enabled for
data caching. Select index for those columns you will be using in join
conditions.

Note: If you are not using prefetch caching, selecting index has no effect.

Caching Stores query results in memory and future requests retrieve data from memory,
(context only) thereby lessening the impact on the DBMS by reducing the number of queries.

See “Caching Context Queries” on page 48 for details about this feature.

Polling (event only) How frequently to call the stored procedure or to query the DBMS for new

events. See “Polling the JDBC Source” on page 221 for details.

Clear State Interval This tab contains several options for clearing persisted event data that is
(event only) propagated from the event in the views, objects, and dashboards that depend

onit.
The three options are:

* Do Not Clear State—This is the default. Data persists.

» Clear State on a Schedule— Select to clear the state on a schedule.
Selecting this option activates the scheduling feature positioned to the
right.

« Always Clear State (Every Event)— The state is refreshed each time the
event is updated.

Use the following procedures to create JDBC source event or context table.

» To create a JDBC source event table:

1.

2.

3.

Open the BAM Workbench tab.

From Tables and Views, select Events then click New Event. (See “JDBC Tables” on page 217.)

Select either Single Event
Choose JDBC as the event source type.

Choose either Query source or Stored Procedure source.

e Stored Procedure source calls a stored procedure in the DBMS to locate the data. See “Stored
Procedure Source” on page 222, for details about this source.

e Query source makes a SELECT SQL query on the database in the native database language. Enter the
SELECT statement in the query field. See Query Source,” below, for details about this source. When
you click Continue, the BAM Workbench issues the query to validate the query and determine the
return columns.

Save the JDBC source as enabled.

The source willimmediately be ready to receive events or context.

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Query Source 220

» To create a JDBC source context table:
1. Open the BAM Workbench tab.

2. From Tables and Views, select Contexts then click New Context.

3. Choose JDBC as the context source type. (See “Context Tables” on page 217.)

4, Select the JDBC connection

5. Choose either Query source or Stored Procedure source.

e Stored Procedure source calls a stored procedure in the DBMS to locate the data. See “Stored
Procedure Source” on page 222, for details about this source.

e Query source makes a SELECT SQL query on the database in the native database language. Enter the
SELECT statement in the query field. See Query Source,” below, for details about this source. When
you click Continue, the BAM Workbench issues the query to validate the query and determine the
return columns.

6. Save the JDBC source as enabled.

The source willimmediately be ready to receive events or context.

A query source makes a SELECT query on the database in the source DBMS. Queries are used for both
context and events, and are in native syntax used by the DBMS. For specific syntax information, see the
DBMS documentation.

When making a query to a Sybase database, be aware of these limitations:
e All names, including tables and columns, are case-sensitive.

e All queries must be in the form SELECT * FROM table only; you cannot include any SELECT clauses. To
filter the results, load them into a business view, then filter that view.

Consider a view that joins an event table with a context table, such as the following:

SELECT Event.ID, Context.Name, Context.BDate AS Birth Date
FROM Event, Context WHERE Event.ID = Context.ID

The context Output for this view might look like this:

Field Name JDBC Data Type Data Type
Name STRING Varchar
Birth Date DATE Timestamp

Consider the following query of an Events table:

SELECT * FROM Events

Adobe LiveCycle ES

JDBC

Business Activity Monitoring Server Reference Polling the JDBC Source 221

The resulting field information might look like this:

Field Name
Event ID
Product ID
Product_ Name

JDBC Data Type Data Type

TINYINT Integer
TINYINT Integer
STRING Varchar

Note that the polling Incrementing field is most likely Event_ID. See Polling the JDBC Source, for details.

Polling tells the object how frequently to call the stored procedure or to query the DBMS for new events.
Polling has the following parameters:

Parameter

Description

Polling interval

Persist state across
reboots

Disable after errors

Incrementing field
(event query only)

Initial value
(event query only)

How often to call the procedure or issue the query.

After a restart, continue polling using the state of the polling prior to
stopping the system. At run-time, the object keeps track of values returned
from the last call or query and uses them to determine the starting point of
the next call or query. When the option is checked, that information is saved
at every check point and when the system is shutdown. See Working with
Checkpoint and Recovery for more information.

Otherwise, when the option is not checked, polling restarts with the initial
values defined for this object.

Disables the object (stops polling) after consecutive errors occur. By default,
the polling stops after five consecutive errors. To re-enable the object,
change its Object Status to enabled. Set this option to zero (0) to never
disable automatically.

Identifies the column in the source table that contains a value that
increments for every event. For example, if the table being queried contains
unique, ascending ID values, that field is the one used by the query using the
logic where ID greater that maximum ID from last query".

Value to use the first time the object queries the DBMS for events. For
example, you might specify ID values starting with 500. For subsequent
queries, the value must be greater than the Incrementing field value returned
from the last query.

Note: If you are using a SQLServer 2005 context database and a 2005
Microsoft driver, intial date values must be in the form yyyy-mm-dd;
otherwise, an error may be generated.

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Stored Procedure Source 222

The JDBC stored procedure source requires the following attributes:

Attribute Description

Procedure name Name of the stored procedure in the DBMS.

JDBC events do not support multiple result-set or stored procedure output
parameters. For Oracle this means that only Oracle functions are supported
because only they return a single result.

Outputs Columns in the event or context table, their data types, and optional formatting.
The procedure returns a result set whose values map to the columns in the order
they appear in this list. The data type identifies the type of the column in the table
and will automatically be converted from the JDBC type as defined in “Mapping
JDBC Data Types” on page 224.

Inputs (optional for events) Parameters passed to the stored procedure and their data
types. The parameters contain values to look up in the DBMS table. Inputs are
passed as arguments to the procedure in the order they appear in the list.

The data type identifies Business Activity Monitoring data type of the value being
passed to the procedure. See Mapping JDBC Data Types,’ below for details.
Further,

For events, the procedure usually queries the DBMS looking for events inserted
since the last time the procedure was called. This is done by identifying fields in
the table that contain some incrementing or increasing values. For example, if the
table being queried contains unique, ascending ID values, that field is the one
used by the procedure using the logic “where ID greater that maximum ID from last
query".

For events, the Initial Polling Value specifies the value to use the first time the
procedure queries the DBMS for events. For example, you might specify ID values
starting with 500. For subsequent queries, the Subsequent Polling Value identifies
a field that contains the maximum value from the last query. This value is an
Output field from the previous result.

Polling How often to call the stored procedure. See “Polling the JDBC Source” on
page 221 for details.

Note: When making a query to a Sybase database, be aware that the names, including tables and
columns, are case-sensitive.

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Example of Receiving Context Using a Stored Procedure 223

Consider a view that joins an event table with a context table as follows:

SELECT Event.ID, Context.Name
FROM Event, Context
WHERE Event.ID = Context.ID

The context Output for this view is the Name column, and the Input to the procedure is the ID column.

Output Field Name Data Type

Input Field Name Data Type

Consider an event with the following fields. Note that Event_Timestamp is the field with the unique and
increasing value: each event record has a timestamp assigned by the DBMS.

Output Field Name Data Type

Ticket ID Varchar
Cust_ID Varchar
Status Varchar
Topic Integer
When Opened Timestamp
Assigned To Varchar
Event Timestamp Timestamp

The event input identifies a parameter that passes the value to query. The name of the input must be
unique to the list but is otherwise insignificant. In the following example, the field name is “IN1".

Input Field Name Initial Polling Value Subsequent Polling Value

IN1 2003-03-05 19:45:00 Event Timestamp

The first time the stored procedure queries the DBMS, it issues one semantically similar to the following:

SELECT * FROM events
WHERE event time >= "2003-03-05 19:45:00"

Subsequent queries use the results from the previous query as the starting point for new events.

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Mapping JDBC Data Types 224

The data types of the DBMS columns are displayed as JDBC data types and map to Business Activity
Monitoring Data Types as follows:

JDBC data type Character Integer Double Decimal Timestamp Boolean
CHAR yes — — — — as literal
VARCHAR yes — — — — as literal
LONGVARCHAR yes — — — — as literal
NUMERIC — yes yes yes — yes
DECIMAL — yes yes yes — yes

BIT — yes yes yes — yes
TINYINT — yes yes yes — yes
SMALLINT — yes yes yes — yes
INTEGER — yes yes yes — yes
BIGINT — yes yes yes — yes
REAL — yes yes yes — yes
FLOAT — yes yes yes — yes
DOUBLE — yes yes yes — yes
BINARY — — — — — —
VARBINARY — — — — — —

DATE — — — — yes —

TIME — — — — yes —
TIMESTAMP — — — — yes —

Note: Do not use Business Activity Monitoring Boolean data type in a WHERE predicate passed to the
JDBC source. Boolean values may be included in the Select list.

A Java database connectivity (JDBC) agent communicates with a relational database (DBMS) by either
making a query on the database, or calling a stored procedure in the DBMS. The DBMS then returns one or
more rows of data, which the agent passes on to the requesting event or context JDBC Tables.

Note: JDBC agents are synchronous, they retrieve event messages and context data as the result of a
specific request as summarized in the following table. For context, the agents access the DBMS
when a new event requires context data. For events, the agent periodically polls the DBMS to see

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Attributes 225

if new events are available, then retrieves them for inclusion in the events table. Each event
returned is processed individually, regardless of the count of events returned as a result of the

polling query.
Event push Event pull Context pull
No Yes Yes

Before creating a JDBC agent, you need:

e Create permission for agents (see “Creating Permission” on page 258 for details).

e A JDBC data source defined and managed by the application server, preferably one that pools
connections. Note, configure the connection pool as documented in your application server’s
documentation. Additionally, in the pool’s definition:

e Set the maximum number of open connections to the database to be at least 200.

e Seta refresh rate to be greater than 0, preferably to 1 or 2 minutes. This allows the database to go
down and come back up with loosing of the connection from the pool. Further, you should set the
pool to test for the existence of a physical table in the database.

A JDBC agent has the following attributes:

Attribute Description

Name Identifies the agent. This name must be unique among agents. See
“Object Namespace” on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events) or
disabled (not monitoring for events).

Database type Identifies the DBMS vendor as Oracle, Sybase, SQL Server, or DB2.

User name User name to use to connect to the DBMS. Must have query access
rights.

Password Password for the User name. If you omit this option, the agent uses

the password specified in the JDBC Source configuration definition in
the application server.

Max rows per query Maximum count of rows to return as the query result. Useful to keep
users from returning exceptionally large results that impact the
DBMS.

Type of JDBC connection How to connect to the JDBC in the application server.

+ Datasource-based: Connects to a JDBC database pool through
a JNDI connection. Do not use for IBM Websphere.

« URL-based: Connects to a JDBC source via a URL.

Adobe LiveCycle ES JDBC

Business Activity Monitoring Server Reference Attributes 226
Attribute Description
JNDI name for JDBC Source Name of the data source to use as a connection to the database. The
(Datasource only) name is in JNDI form, such as

“com.celequest.products.ProductSource.”

A source gets its connection from a pool of connections maintained
by the application server. That server keeps the connections open to
reduce delays when establishing a connection.

Note: The connection pool must be configured as a
non-transactional pool; non-TxT on WebLogic.

JNDI properties Optional and additional Java naming and directory interface (JNDI)

(Datasource only) properties necessary to make or maintain the agent to the JDBC
source. These name-value pairs allow you to specify JDBC properties.
The names are either one of the short cuts listed below or a JNDI
recognized property.

The agent recognizes the following names as short cuts to JNDI
properties:

« factory maps to INITIAL_CONTEXT_FACTORY.

« provider maps to PROVIDER_URL.

« security_credentials maps to SECURITY_CREDENTIALS.
< security_principal maps to SECURITY_PRINCIPAL.

JDBC URL URL that maps to the JDBC connection configured in the application

(URL only) server running Business Activity Monitoring. For example, a URL
might look like the following:
jdbc:oracle:thin:some_context/context@v480:1521:symbols

JDBC driver class JDBC driver to use. This driver must reside in the classpath of the
(URL only) application server running Business Activity Monitoring. Include the
complete classname, such as oracle.jdbc.driver.OracleDriver

Adobe LiveCycle ES JDBC
Business Activity Monitoring Server Reference Creating a JDBC Agent 227

Use the following procedures to create a JDBC agent.

» To create a JDBC agent:
1. Open the BAM Workbench Administration Console.

2. Click New Agent.
3. Choose JDBC as the source type
4. Fillin the fields that define the agent’s attributes.

Save the agent as enabled, and it will immediately be ready to retrieve data.

17

JDBC Access to View Data

Business Activity Monitoring provides an application programming interface (API) that allows JDBC 2.0
applications to retrieve data from a view, and to retrieve the metadata that describes the views in the
installation. The data that you can retrieve are:

View data from the recent view. Note that if the view contains a (moving set) window, the window data
is returned.

Event identifier (VC_EVENT_ID always included) which identifies the event that produced the most
recent row included in the view.

Latest event identifier (VC_LATEST_EVENT_ID always included) which identifies the last event that
caused the view to update, though data from that event might not be included in the view.

Event timestamp (VC_TIMESTAMP always included) which identifies when the last event was included
in the view.

1

Note: This is the same information that is written to a database when persisting views. See “Persisting
Views to a Database” on page 359 for more information.

» In This Chapter:

“Classpath” on page 229

“JDBC View Interfaces” on page 229

“JDBC Accessor Examples” on page 235

228

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Classpath 229

The classpath to Business Activity Monitoring JDBC driver (cgjdbcclient.jar) needs to be added to the client
JDBC application. The client application should also link in the application server (such as weblogic.jar) to
have access to the JNDI naming service. For example, when running a program (for example, Test) from a
command line, the java call might look like the following on a BEA WebLogic Server:

java -classpath .;c:\bea\weblogic700\server\lib\weblogic.jar;
c:\cg\cgjdbececlient\eqgjdbececlient.jar JDBCAccessor

The rest of this chapter describes the JDBC View Interfaces and provides “JDBC Accessor Examples” on
page 235.

JDBC 2.0 defines interfaces for accessing data. Business Activity Monitoring implements the interfaces for
accessing its data listed in table below. For complete details about the interfaces, see the JDBC
documentation at http://java.sun.com/j2se/1.3/docs/api/java/sql/package-summary.html.

Note: All methods return data that meet the JDBC 1.0 standard. Further, methods defined in the JDBC
class but which not supported in Business Activity Monitoring API throw an SQLException.

The following are the interfaces that Business Activity Monitoring supports:

Class Member Description

Driver The JDBC SQL database driver. See “Example: Establishing a connection to the BAM
Server” on page 236 for an example. The class name is:
com.celequest.jdbc.driver.Driver

connect Attempts to make a database connection to the URL.
acceptsURL Returns true if this driver understands the specified
subprotocol.
getMajorVersion Returns the driver’s major revision number.
getMinorVersion Returns the driver’s minor revision number.
jdbcCompliant Returns false.
Connection A connection to a specific database. See “Example:

Establishing a connection to the BAM Server” on page 236
for an example of using this interface.

createStatement Returns a newly created Statement object

close Releases a Connection object’s JDBC resources
immediately.

getMetaData Returns a newly created DatabaseMetaData object.

isClosed Returns true if the calling Connection object is closed;

otherwise, returns false when it is still open.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

JDBC Access to View Data

JDBC View Interfaces

230

Class Member

Description

Statement

executeQuery

close

DatabaseMetaData

getTables

getColumns

7

An SQL statement to pass to the database. See “Example:
Querying the Contents of a View” on page 238 for an
example of using this interface.

Executes a Business Activity Monitoring C-SQL select
query, returns a single ResultSet, and closes the calling
Statement object’s current ResultSet, if any. The query
statement involves a single table only and may contain
WHERE, GROUP BY, and ORDER clauses. The viewname
references in the query are case insensitive and my be
quoted (using the double quote character).

Releases a Statements object’s JDBC resources.

Provides information about the view definitions defined in
Business Activity Monitoring installation.

Returns view definitions. See “Example: Querying View
Metadata” on page 241 for an example of using this
method.

Returns the column information for a given view. See
“Example: Querying Column Metadata” on page 240 for an
example of using this method. See “getColumns() Column

Summary” on page 232 for a summary listing of the
columns.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

JDBC Access to View Data
JDBC View Interfaces 231

Class Member Description
ResultSet A table of data representing a database result set, which is
usually generated by executing a statement that queries
the database.
next Moves the cursor to the next row in the set and fixes the
current row.
close Immediately releases a ResultSet’s JDBC resources.
wasNull Returns true if the last value read was SQL NULL.
getString Returns the value of a column as a Java String.
getBoolean Returns the value of a column as a Java Boolean.
getint Returns the value of a column as a Java int.
getDouble Returns the value of a column as a Java double.
getObject Returns the value of a column as a Java object (as defined

getBigDecimal

getTimestamp

getMetaData

ResultSetMetaData

getColumnCount
getPrecision

getScale

getTableName

getColumnName

getColumnType

getColumnTypeName

in the default type mapping).

Returns the value of a column as a java.math.BigDecimal
object.

Returns the value of a column as a Java Timestamp.

Returns the number, types, and properties of a ResultSet
object’s columns as a ResultSetMetaData object.

Provides information about the types and properties of
the columns in a ResultSet object.

Returns the count of columns in the ResultSet object.
Returns the designated column’s number of decimal digits.

Returns the count of digits to the right of the decimal
separator.

Returns the table name from which the ResultSet was
derived.

Returns the name of a column.

Returns the JDBC type for the value stored in a column.
See “Data Type Mappings” on page 232 for a summary of
the mappings.

Returns the Business Activity Monitoring type name for
the a column.

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Data Type Mappings 232

The “get” functions in this class return values from Business Activity Monitoring columns. This matrix
indicates which functions should be used for the various Business Activity Monitoring data types.

getBoolean getint getDouble getBigDecimal getString getTimestamp

Boolean X o o o o} —
Integer o] X o] o] o —
Double o o X o o —
Decimal o] o] o} X o —
Varchar o o o} o} X X
Timestamp — — — — X X

X indicates that the function returns a value compatible with Business Activity Monitoring data type.

o indicates data types that might be compatible, but whose conversion is not recommended.

This table is a summary of the Java documentation for DatabaseMetaData.getColumns(). See the Java
documentation for a complete list.

Column Type Description

TABLE_CAT String Table catalog (may be null)

TABLE_SCHEM String Table schema (may be null)

TABLE_NAME String Table name

COLUMN_NAME String Column name

DATA_TYPE int SQL type from java.sql.Types. See DATA_TYPE Return Values,’
below, for a summary.

TYPE_NAME String Data source dependent type name, for a UDT the type name
is fully qualified

COLUMN_SIZE int Column size. For char or date types this is the maximum
number of characters, for numeric or decimal types this is
precision.

BUFFER_LENGTH String Not used.

DECIMAL_DIGITS int Count of fractional digits

NUM_PREC_RADIX int Radix (typically either 10 or 2)

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

JDBC Access to View Data
DATA_TYPE Return Values 233

Column Type Description
NULLABLE int Is NULL allowed.
e columnNoNulls - might not allow NULL values
e columnNullable - definitely allows NULL values
e columnNullableUnknown - nullability unknown
REMARKS String Comment describing column (may be null)
COLUMN_DEF String Default value (may be null)
SQL_DATA_TYPE int Not used.
SQL_DATETIME_SUB int Not used.
CHAR_OCTET_LENGTH int For char types the maximum number of bytes in the column.
ORDINAL_POSITION int Index of column in table (starting at 1)
IS_NULLABLE String "NO" means column definitely does not allow NULL values;

"YES" means the column might allow NULL values. An empty
string means nobody knows.

The DATA_TYPE column returns an int value that identifies the Java data type. See the java.sql.Types file for
details. The following table summarizes those values.

Type Value
BIT -7
TINYINT -6
BIGINT -5
LONGVARBINARY -4
VARBINARY -3
BINARY -2
LONGVARCHAR -1
NULL 0
CHAR 1
NUMERIC 2
DECIMAL 3
INTEGER 4

Adobe LiveCycle ES JDBC Access to View Data

Business Activity Monitoring Server Reference DATA_TYPE Return Values 234
Type Value
SMALLINT 5
FLOAT 6
REAL 7
DOUBLE 8
VARCHAR 12
DATE 91
TIME 92
TIMESTAMP 93
OTHER 111
JAVA_OBIJECT 2000
DISTINCT 2001
STRUCT 2002
ARRAY 2003
BLOB 2004
CLOB 2005

REF 2006

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference JDBC Accessor Examples 235

The examples in this section demonstrate how to connect to the BAM Server and query view data,
metadata, and metadata about the views and columns defined in the installation. The examples, include:

e “Example: Establishing a connection to the BAM Server” on page 236

e “Example: Querying the Contents of a View” on page 238

e “Example: Querying a View’s Column Specifications” on page 238

e “Example: Querying Column Metadata” on page 240

e “Example: Querying View Metadata” on page 241

Access to the JDBC driver depends on the java.sql.* classes. As such, be sure to include the following
import in your applications;

import java.sqgl.*;

Included on the product CD-ROM is a sample application that contains the complete code for the snippets
listed in these examples. See the \samples\JDBC\ directory for the files. That directory has two files:

e readme.txt describes how to compile and run the application.

e JDBCAccessor.java is the application.

Briefly, to compile the application, use the following command:

javac -classpath . JDBCAccessor.java
To run the program, load it into the application server, similar to the following:

BEA WeblLogic:

java -classpath .;c:\bea\weblogic700\server\lib\weblogic.jar;
c:\cg\cgjdbeclient\cqgjdbecclient.jar JDBCAccessoOr

JBoss:

java -classpath .;C:\jboss\3.2.3\client\jnet.jar;
C:\jboss\3.2.3\client\jboss-net-client.jar;
C:\jboss\3.2.3\client\jnp-client.jar;
C:\jboss\3.2.3\client\jboss-common-client.jar;
c:\cg\cgjdbcclient\cqgjdbecclient.jar JDBCAcCcessOr

The results from the examples print to the standard output, with errors going to standard error.

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Establishing a connection to the BAM Server 236

This example shows how to establish a connection to the BAM Server’s JDBC driver.

Establish the connection by creating a Connection object, similar to the following:

Connection connection = null;
connection = DriverManager.getConnection(url, userName, password) ;

The userName and password parameters identify a Business Activity Monitoring account. When querying
a specific object (like a view), the user account must have at least Read Only access permission. Otherwise,
if the account has No Access to the view, the query fails as if the view does not exist.

The url parameter identifies the factory in the application server that establishes the connection to
Business Activity Monitoring JDBC driver. This URL specifies the type of connection, host and port to
connect to, and the factory in the application server. Further properties vary among application servers.
The sample application names the common properties in variables that you can customize for your

installation:
String userName = "gystem";
String password = "manager";

The sample application that builds the url parameter from the properties specific to the application server
as follows:

BEA WebLogic connection properties

String hostAndPort = "localhost:80";
String factory = "weblogic.jndi.WLInitialContextFactory";
String url = "jdbc:celequest:factory="+factory+

";provider=t3://"+hostAndPort+";";

JBoss connection properties

String hostAndPort = "localhost:1099";
String factory = "org.jnp.interfaces.NamingContextFactory";
String url = "jdbc:celequest:java.naming.factory.url.pkgs="+

"org.jboss.naming:org.jnp.interfaces; "+
"factory="+factory+";provider=jnp://"+hostAndPort+";";

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Establishing a connection to the BAM Server 237

Following is a more detailed example. However, to see the complete listing, examine the
JDBCAccessor.main() member.

// Common connection properties
String userName = "gystem";
String password = "manager";

// JBoss connection properties

String hostAndPort = "localhost:1099";
String factory = "org.jnp.interfaces.NamingContextFactory";
String url = "jdbc:celequest:java.naming.factory.url.pkgs="+

"org.jboss.naming:org.jnp.interfaces; "+
"factory="+factory+";provider=jnp://"+hostAndPort+";";

// Verify the JDBC driver in the application o

try {
Class.forName ("com.celequest.jdbc.driver.Driver") ;

} catch (ClassNotFoundException e) {
handleError ("Could not find the JDBC driver class.", e);
return;

}

// Establish the connection to the JDBC driver
Connection connection = null;

try {
connection = DriverManager.getConnection (url, userName, password) ;

} catch (SQLException e) {
handleError ("Could not connect to the JDBC driver.", e);
return;

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Querying the Contents of a View 238

This snippet shows how to query the entire contents of a view. The executeQuery() call passes the query to
the driver, which returns the view contents in a ResultSet object. All columns, including the internal system
columns like VC_TIMESTAMP are included in this list. Additionally, metadata about the view is retrieved in
a ResultSetMetaData object to determine the count of columns in the view.

Note: See the JDBCAccessor.PrintViewContents() sample for a complete code listing.

/* Query all contents of a view.
* Connection has already been established, and view name defined.

*/
String queryString = "SELECT * FROM " + VIEW NAME ;
ResultSet rs; // Table to hold the query results.
ResultSetMetaData rmd; // Metadata about the result set.

// Query the view, and get its data and metadata.
Statement stmt = connection.createStatement () ;
rs = stmt.executeQuery(queryString) ;

rmd = rs.getMetaDatal() ;

// Print the contents of the entire view, row by row.

int columnCount = rmd.getColumnCount () ;
boolean isEmpty = true;
while (rs.next()) {

isEmpty = false;
System.out.print (" Row: ");
for (int i=0;i<columnCount;i++)
// Show the column value, or "NULL"
String ts = rs.getString(i+l);
System.out.print ((rs.wasNull() ? "NULL " : ts + " "));

}

System.out.println(); // Line break
}
if (isEmpty)

System.out.println("\n *** The view is empty ***");
}

The result might look like the following:

Contents of view [OrderProductTotals]:

Row: Hinges 132300.00 49 130000.00 28 2004-08-17 11:22:06.818 28

Row: Lag bolts 16400.00 41 65000.00 21 2004-08-17 11:22:06.818 28
Row: Nails 129600.00 48 150000.00 26 2004-08-17 11:22:06.818 28

Row: Nuts 337875.00 159 280000.00 27 2004-08-17 11:22:06.818 28

Row: Screws 60000.00 30 80000.00 20 2004-08-17 11:22:06.818 28

Row: Washers 122400.00 72 170000.00 23 2004-08-17 11:22:06.818 28
Row: Chip board 277200.00 126 250000.00 18 2004-08-17 11:22:06.818 28
Row: Plywood 304800.00 127 250000.00 10 2004-08-17 11:22:06.818 28

This snippet shows how to query the user-defined specifications about the columns in a view. First it
shows all of the metadata available for column specifications, then it shows interesting specifications

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Querying a View's Column Specifications 239

about each column in the view, including the internal system columns. Note that the results appear in the
order that the columns appear in the view, followed by the internal columns.

Note: See the JDBCAccessor.PrintColumns() sample for a complete code listing.

/* Query a view's column specifications.
* Connection has already been established, and view name defined.
*/
// Query the table to identify the columns to report on. Because the
// view contents are irrelevant here, omit them by declaring
// 'WHERE false' as the query condition.

String queryString = "SELECT * FROM " + VIEW NAME +" WHERE false';
ResultSet rs; // Table to hold the query results.
ResultSetMetaData rmd; // Metadata about the result set.

// Query the view, and then get its metadata.
Statement stmt = connection.createStatement () ;
rs = stmt.executeQuery(queryString) ;

rmd = rs.getMetaDatal() ;

// Print the metadata about the columns in the view.
System.out.println("Column details for view [" +
rmd.getTableName (1) +"]:");

// Walk through and show the interesting metadata available for
// each column in the view. Include labels to identify what we see
// in the result.
for (int i=0;i<rmd.getColumnCount () ;i++)
System.out.println(
non + Integer.toString(i+l) +

". Name [" + rmd.getColumnName (i+1) +

"] Type [" + Integer.toString(rmd.getColumnType (i+1)) +
"] Precision [" + Integer.toString(rmd.getPrecision(i+l)) +

"] Scale [" + Integer.toString(rmd.getScale(i+1))+"1");

}

The results might look like the following:

View: [ORDERPRODUCTTOTALS]
Column details for view [ORDERPRODUCTTOTALS] :
1. Name [FAMILY] Type [12] Precision [20] Scale [0]
2. Name [PRODUCT] Type [12] Precision [50] Scale [0]
3. Name [SALES] Type [3] Precision [25] Scale [2]
4. Name [QTY] Type [4] Precision [10] Scale [0]
5. Name [TARGET] Type [3] Precision [15] Scale [2]
6. Name [TARGET MIN] Type [3] Precision [15] Scale [2]
7. Name [TARGET MAX] Type [3] Precision [15] Scale [2]
8. Name [VC_EVENT ID] Type [4] Precision [10] Scale [0]
9. Name [VC TIMESTAMP] Type [93] Precision [0] Scale [9]
10. Name [VC_LATEST EVENT ID] Type [4] Precision [10] Scale [0]

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Querying Column Metadata 240

These snippets show how to retrieve metadata about the columns view. (To retrieve the column
specifications instead, see “Example: Querying a View's Column Specifications” on page 238.)

Note: See the JDBCAccessor.PrintColumnMeta() sample for a complete code listing.

/* Retrieve the metadata about the columns of a defined view.

*/
// NOTE: Specify 'null' instead of 'VIEW NAME' to get the metadata
// for ALL columns in the installation.

rs = meta.getColumns (null,null,VIEW NAME,null);
rmd = rs.getMetaDatal() ;

// Show the metadata available for view columns.

int columnCount = rmd.getColumnCount () ;

for (int i=0;i<columnCount;i++) {

System.out .print (rmd.getColumnName (i+1) +
((i+1)==columnCount ? "m . mn, un));

}

The results first lists the metadata column names (see “getColumns() Column Summary” on page 232 fora
description of the columns):

Getting column metadata for [OrderProductTotals]

TABLE CAT,TABLE_ SCHEM, TABLE NAME, COLUMN NAME,DATA TYPE,TYPE NAME,
COLUMN_SIZE,BUFFER_LENGTH,DECIMAL DIGITS,NUM_ PREC RADIX,NULLABLE,
REMARKS, COLUMN_DEF, SQL. DATA TYPE, SQL_DATETIME_ SUB, CHAR_ OCTET_LENGTH,
ORDINAL POSITION,IS NULLABLE

Next, show all of the metadata about the columns in a specific view. Note that columns do not appear in
the order that they appear in the view.

// Show the metadata values for the columns in the view.
boolean isEmpty = true;
while (rs.next()) {
isEmpty = false;
for (int i=0;i<columnCount;i++)
String ts = rs.getString(i+l); // Metadata wvalue
if (rs.wasNull())
System.out.print (", ") ;
else
System.out.print (ts +
((i+1)==columnCount ? "" : ", "));

}

System.out.println() ;
}
if (isEmpty)
System.out.println("\n *** Either there are no columns defined "+
"for this view (unlikely), or the view is not "+
"defined (probably).");

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Querying View Metadata 241

The following is a sample listing of the metadata for the OrderProductTotals view. (See “Data Type
Mappings” on page 232 for a mapping of the data types from Java). Again, the columns do not appear in
any particular order.

, .OrderProductTotals,VC EVENT ID,4,VCInteger,10,,0,10,1,,,,,,1,YES

, OrderProductTotals,VC_TIMESTAMP, 93,VCTimestamp,9,,0,10,1,,,,,,3,YES

, ,OrderProductTotals, Target max, 3,VCDecimal, 15,,2,10,1,,,,,,4,YES

, .OrderProductTotals,VC LATEST EVENT ID,4,VCInteger,10,,0,10,1,,,,,,5,YES
, ,OrderProductTotals, Family, 12,vCvarchar, 20,,0,10,1,,,,,,6,YES

, ,OrderProductTotals, Target min, 3,vVvCDecimal, 15,,2,10,1,,,,,,7,YES

, ,OrderProductTotals,Qty, 4,VvCInteger,10,,0,10,1,,,,,,9,YES

, ,OrderProductTotals, Product, 12,VCvarchar,50,,0,10,1,,,,,,10,YES

, ,OrderProductTotals, Target, 3,VCDecimal, 15,,2,10,1,,,,,,11,YES

, ,OrderProductTotals, Sales, 3,VCDecimal, 25,,2,10,1,,,,,,12,YES

These snippets show how to query view metadata. First it shows the metadata available for views, then it
shows how to find all of the views defined in the system.

Note: See the JDBCAccessor.PrintAllViewsMeta() sample for a complete code listing.

/* Retrieve metadata about views.
*/
ResultSet rs;
ResultSetMetaData rmd;
DatabaseMetaData meta = connection.getMetaDatal() ;

// Use 'null' for the 3rd parameter to retrieve information about all
// of the views in the system, instead of just one.
rs = meta.getTables(null,null,null,null);
rmd = rs.getMetaDatal() ;
for (int i=0;i<rmd.getColumnCount () ;i++)
System.out .println (
" ["+ rmd.getColumnName (i+1) +

"] Type [" + Integer.toString(rmd.getColumnType (i+1l)) +
"] Precision [" + Integer.toString(rmd.getPrecision(i+l)) +
"] Scale [" + Integer.toString(rmd.getScale (i+1))+"1");

}

The results first describe the metadata that is available:

This metadata is available for views.
[TABLE CAT] Type [12] Precision [255] Scale [0]
[TABLE _SCHEM] Type [12] Precision [255] Scale [0]
[TABLE NAME] Type [12] Precision [255] Scale [0]
[TABLE _TYPE] Type [12] Precision [255] Scale [0]
[REMARKS] Type [12] Precision [255] Scale [0]

Adobe LiveCycle ES JDBC Access to View Data
Business Activity Monitoring Server Reference Example: Querying View Metadata 242

Next, list the views (table names) defined in the system:

// Use the metadata to list all of the views in the system.
final int GT TABLE NAME = 3; // View name
boolean isEmpty = true;
while (rs.next()) {
isEmpty = false;
System.out.println(" " + rs.getString(GT_TABLE NAME)) ;

}
if (isEmpty) {
System.out .println (" *** There are no views defined. ***m");

}

The results look similar to the following:

OrderChangeDetails
OrderTotals
8WeekOrders
8WeekOrdersAvg
OrderProductTotals
OrderSalesGrandTotal
30DayOrders
InventoryChangeDetails
SupplierAlternates

18 Objects

Objects manage data in Business Activity Monitoring. Every object has a name, optional description, and a
status that determines if it is able to work with its intended data. Further, each object has additional
information that you define that tells the object what data to manage, and how to manage it.

» In this Chapter:
e “Object Status” on page 244

e "“Object Names” on page 245

e "“Object Namespace” on page 248

243

Adobe LiveCycle ES

Objects

Business Activity Monitoring Server Reference Object Status 244

Every object has one of three statuses that determine its ability to operate:

Icon

Description

Enabled — The object is accepting new data and processing them. You can only enable
valid objects that do not depend on disabled objects. When you enable a disabled object,
you have the choice of enabling just that object, or that object and all objects that depend
on that object (cascade enable). Further, all of the dependant objects must be capable of
being enabled — none may be invalid — or the entire operation fails and no objects are
enabled.

Disabled — The object is not accepting new data. Disabling an object does not affect the
definition or existence of that object; rather, it just keeps new data from flowing into the
object and to all objects that depend on the object. For example, disabling a view also
disables all rules that monitor the view, and thereby also disables all associated alerts and
reportlets.

Disabled dependant— The object is not accepting new data because an object that this one
depends on is disabled. Enabling the referenced object will also enable this object.

Invalid — The object that has a reference to another object which cannot be satisfied, such
as one view that references a column in another view, but that column no longer exists in
the referenced view. An object can be invalid because a referenced object does not exist or
because some attribute of the object does not match the requirements of the dependent
(such as a data type mismatch or a missing column name). Invalidating an object also
invalidates all objects that depend on the object. This usually happens when you delete an
object that has dependencies, or change an object’s definition.

When you view a list of objects, you can see each object’s valid/invalid state, and the enabled/disabled
status. You can click on an enabled indicator in the Status column to disable it, or click on a disabled
indicator to enable it.

@, |Name Description ‘ ,5.’7 ‘ Status

Cuskomer_Order This is the customer_order wiew 4

H—
OrdersPerCustomerCountyiew This is the orderspercustomer view 4 ﬂ_ Click to disable.
M OrdersPerProductCountiew This is the ordersperproduct view % ﬂ

|

OrdersPerProductyiew Yiew showing incoming orders alo.,. 4

Click to enable.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Objects

Object Names 245

All object names must be either a regular identifier or a delimited identifier.

e Regular Identifier — The first character of a regular identifier must begin with a letter from
‘A'-'Z’, and all subsequent characters can be from ‘a’-'z}, ‘A'-'Z, '0’-'9’, or '_".

Z or

e Delimited Identifier — A delimited identifier must start and end with a double quote (). The body of a
delimited identifier must be non-empty and can contain any SQL language characters including: the
Regular Identifier characters, underscore (*_’), space(’), percent('%’), ampersand (‘&’), single quote, left
parenthesis ('('), right parenthesis (‘)), asterisk (*'), plus sign (‘+'), comma (7), minus sign (*-'), slash ('/’),
colon ("), semicolon (}'), equals operator (‘="), question mark (‘?'), vertical bar (‘|') or double quote (")

(escaped with another double quote).

Note: Names may not contain periods (%), less than ('<’), or greater than (">’) characters.

All names must be unique within their class (such as view or agents; see “Object Namespace” on page 248
for details) and may not be identical to reserved words. For example, you cannot have a view named by the

regular identifier select, though you can have a delimited one named "select".

All identifiers beginning with “VC_" are reserved system names and may not be used. Further, all reserved

words in the SQL-99 standard are reserved in C-SQL. The following are Business Activity Monitoring

reserved words:

Reserved Words

abs
absolute
acked
action
add

all
allocate
alter
and
any

are

as

asc

assertion

delete
desc
describe
descriptor
diagnostics
disconnect
distinct
domain
double
drop

else

end
end-exec

escape

local
log
lower
lowered
Ipad
[trim
match
max
min
minute
mod
module
month

mov_avg

rollback
round
rows
rpad
rtrim
schema
scroll
second
section
select
session
session_user
set

sign

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Objects

Reserved Words

246

Reserved Words

at

authorization

avg
begin
between

bit

bit_length

boolean
both
by

cascade

cascaded

case
cast
catalog
ceil

char

char_length
character

character_length

check
close
coalesce
collate
collation
column
commit

concat

event
except
exception
exec
execute
exists
exp
external
extract
false
fetch
first
float
floor
for
foreign
found
from
full

get
global
go

goto
grant
greatest
group
having

hour

mov_count
mov_max
mov_min
mov_ntile
mov_rank
mov_ratio_to_report
mov_std_deviation
mov_sum
mov_variance
names
national
natural

nchar

next

no

not

ntile

null

nullif

numeric
octet_length
of

on

only

open

option

or

order

size

smallint

some

space

sql

sqlcode
sqlerror
sqlstate

sqrt
std_deviation
substr
substring

sum
system_user
table
temporary
then

time
timestamp
timestamp_diff
timezone_hour
timezone_minute
to

to_char
to_date

trailing
transaction

translate

Adobe LiveCycle ES Objects
Business Activity Monitoring Server Reference Reserved Words 247

Reserved Words

connect identity outer translation
connection immediate output trim
constraint in overlaps true
constraints indicator pad trunc
continue initially partial union
convert inner position unique
corresponding input power unknown
count insensitive precision update
Create insert prepare upper
cross int preserve usage
current integer prev user
current_date intersect primary using
current_time interval prior value
current_timestamp into prior_value values
current_user is privileges varchar
cursor is_raised procedure variance
date isolation public varying
date_add join raised view
date_diff key rank when
day language ratio_to_report whenever
deallocate last read where
dec last_day real with
decimal leading references work
declare least relative write
default left restrict year
deferrable level revoke zone

deferred like right

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Objects
Object Namespace 248

The namespace controls how objects are named within Business Activity Monitoring. Generally, object
names must be unique among other objects of the same type, within the same container. However, here
are some exceptions:

Alerts, rules, and reportlets can share the same name within the containing scenario; you can use the
same name for one alert, one rule, and one reportlet within a scenario. Further, each object within a
scenario may share the same name as an object of the same type in another scenario.

Profiles must be unique within a single user; multiple users may share profile names.

Views, events, context, etc., cannot share the same name; they must be unique within the “tables” class.

See the summary below for details.

Agents must be unique within the “agents” class.

Users and business activities cannot share the same name; they must be unique within the “containers”
class. The following outline summarizes the namespace constraints:

/containers
/Business activities
/Scenarios
/Alerts
/Rules
/Reportlets
/Users and Roles
/E-mail profiles
/RTD (Excel) profiles
/tables
/Events
/Context
/Consolidated events
/Cube
/Dimensions
/Views
/agents
/Flat (text) files
/SOAP (Web services)
/JMS
/JDBC
/Rendezvous (TIBCO)
/External actions (processes)
/Join relationships

Unique

Unique
Unique
Unique

Unique
Unique
Unique
Unique
Unique
Unique

Unique
Unique
Unique
Unique
Unique

among /containers

among /containers
within a user
within a user

among /tables
among /tables
among /tables
among /tables
among /tables
among /tables

among /agents
among /agents
among /agents
among /agents
among /agents

19 Operators and Constants

This chapter describes the operators and constants that Business Activity Monitoring and C-SQL support
in expressions and arguments.

» In this Chapter:

e “Numeric Operators” on page 250

e "“String operators” on page 250

e “Comparison operators” on page 251

e "“Logical operators” on page 252

e "“Constants” on page 252

249

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Operators and Constants

Numeric Operators

250

There are two classes of numeric operators: prefix and infix.

Control the arithmetical sign of numeric values.

Prefix Operator Description
+ Unary plus
- Unary minus

Numeric operators perform arithmetical operations on numeric values:

Numeric Operator Description Example
+ Addition 11 + 3 returns 14
- Subtraction 11-3returns 8
* Multiplication 11 * 3 returns 33
/ Division 11/ 3 returns 3

To perform arithmetic operations on date-time values, use DATE_ADD() and DATE_DIFF().

Concatenation (||) is the only string operator and it appends the right-side string to the end of the left-side
string. For example 'a'||'b' returns 'ab'. The behavior is identical to the CONCAT() function.

Adobe LiveCycle ES Operators and Constants
Business Activity Monitoring Server Reference Comparison operators 251

Comparison operators compare two or more values of the same data type and return a Boolean:

Operator Description Example
= Equal 1=1 returns TRUE
<> Not equal 'A'<>'a' returns TRUE
> Greater than CURRENT_DATE()>TO_DATE('02/28/1963') returns
TRUE
< Less than Age<21 returns UNKNOWN when Age is NULL
>= Greater than orequal ~ TRUE>=FALSE returns TRUE
<= Less than or equal NULL<=NULL returns NULL
IN Is a member of a list Symbol IN ('IBM', 'MSFT', 'VCLR') or

Count NOTIN (5, 10, 15, 20)

BETWEEN/AND Is within a range SalePrice BETWEEN 50.0 AND (90.0) or
NOT BETWEEN 'M' AND 'O’

LIKE Pattern matching. See Title LIKE 'MR_'
below for details.

The LIKE operator matches a pattern of characters. A percent sign (%) in the pattern is a wildcard for zero or
more characters, and an underscore (_) is a wildcard for exactly one character.

WHERE Title LIKE 'MR '
WHERE E Mail NOT LIKE '%.edu'

To include either ‘%’ or ’_" in the search string, use the keyword ESCAPE to designate an escape character. A
‘%’ or’_' following an escape character is treated as a literal. Note that the escape character may not be
used elsewhere in the search string. The following example looks for “10%"” anywhere in Discount:

WHERE Discount LIKE '%10$%' ESCAPE 'S$'
Note: An escape character prefixing anything other than an escape or special character is ignored.

Be careful about using LIKE when comparing against numeric types. LIKE is a string operator, and as such,
searching a numeric first performs an Implicit Cast of the numeric value to a string. When casting numerics
to strings, be aware of the following:

e For DECIMAL numbers, casting to string zero-pads the decimal values to match the precision and scale
defined for the column. So, for example, if a column is defined as precision 5 and scale 4, a value of 1.1
in the column is cast as ‘1.1000’, and so searches for single digit decimals must be done as LIKE'_._000".

e For DOUBLE PRECISION numbers, the ‘e’ is cast to upper case. So, for example, +1e11 is converted to
"1.0E171".

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Operators and Constants
Logical operators 252

Logical operators compare Boolean values, such as the result of a comparison operation.

Logical Operator Description

Example

AND Both true

OR One must be true
NOT Inverse

IS Test of Boolean

(SalesPrice>500) AND (OnSale)

(ZipCode ='90210") OR (City = 'Lodi")

NOT OnSale

IS OnSale or
IS NOT OnSale

The truth table for the equal sign (=) operator is equivalent to IS. See “Truth Table for IS” on page 68 for

details.

The C-SQL Boolean constants are TRUE, FALSE, and UNKNOWN. See “Boolean” on page 68 for details about

these constants.

Constants Description

TRUE True.

FALSE Not true.

NULL No data.

UNKNOWN Test for Boolean value that is NULL, or where a

comparison cannot be determined such as when
comparing null to null.

Note: NULL is ignored when computing set function, moving set function, and rank function values.
For example, the average of (3, NULL, 3) is 3, not NULL and it is not 2.

NULL is a null value. Any non-Boolean column which does not have an entry is considered NULL.

WHERE SalesPrice NULL

Returns

TRUE

WHERE SalesPrice = UNKNOWN Error, cannot cast Numeric to Boolean

However, testing a Boolean column returns UNKNOWN when the column is empty.

WHERE OnSale = NULL
WHERE OnSale = UNKNOWN
WHERE OnSale IS NULL
WHERE OnSale IS UNKNOWN

Returns
Returns
Returns
Returns

UNKNOWN (null = null)
UNKNOWN (null = unknown)
TRUE

TRUE

20

Permissions

Permissions control which users may see, create, and edit Business Activity Monitoring objects and user
accounts.

» In this Chapter:

e "Accessing Permissions” on page 255

e "“Granting Permissions” on page 258

e "“Creating Permission” on page 258

253

Adobe LiveCycle ES Permissions
Business Activity Monitoring Server Reference Application of Permissions 254

Permissions can be applied in two places:

e On a specific object from the Permissions button after selecting the object in a list. When you assign a
permission a specific object, it is the maximum permission that the user has to that object. You cannot
set a user’s permission to a specific object lower than that user’s permission to the class of objects.

e Atthe class level from the Administration Console >Edit User dialog>Access Permissions tab. When
you assign a class level permission, it is the minimum permission that the user has to all objects of this
type. You can also assign class level permissions to a role from the Edit Role dialog > Access Permissions
tab. Roles define permissions for set of users over sets of objects.

When a user belong to one or more roles, the highest level of access between the roles and the user’s
assigned permissions is the one that applies. For detailed information about roles, see “Roles” on

page 296.

By default, every new user has No Access permissions for everything (except user accounts, to which they
have Read Only permission). However, even with this minimal set of permissions, a user may receive and
view alert notifications and reportlets generated as the result of mandatory subscriptions.

Note: A System User always has full permissions to every object in the installation. For information
about the System user, see “Users” on page 332.

The rest of this discussion describes the permissions in detail:

e "Permission Restrictions” on page 259 details the rules for when you are allowed to change
permissions.

e "Permission Inheritance and Dependencies” on page 259 describes the permissions you need to create
and edit classes, and how some objects affect access to others.

Adobe LiveCycle ES Permissions
Business Activity Monitoring Server Reference Accessing Permissions 255

Access permissions specify the level of access a user has to an object. Permissions can be assigned to an
entire class of object or to a specific object. The access permissions are:

Permission On the class On a specific object

No Access Cannot see any objects of this class, unless —
granted “read” on specific objects.

Filtered/Read-Only — Limits the rows in a view that
the user can see based on an

"

access filter. See “Access Filters
on page 15 for details.

Read-Only Can see all objects of the class. Can see the object.

Read-Write Can see and edit all objects of the class. Can see and edit the object.

Note: You cannot assign a permission to a specific object that is more restrictive than the user’s
permission on the class. For example, you cannot assign Read Only when a user has Read-Write
on the object’s class. Further, you cannot assign a permission to an object that is greater than
your own for the same object.

All class level permissions are assigned to a user or role. To see or change a class level permission, you must
first edit the user’s account or role definition.

Note: When viewing the list of user or roles, do not use the Permissions button. That button defines
which users and roles may access the specific user accounts or role definitions in the list. See
“Specific Object Access Permissions” on page 256 for details about this button.

» To change a user’s permissions for a class of objects:
1. Inthe Administration Console, select the Users folder, and double-click on the user’s account in the list.
This edit’s the user’s account.

2. On the Edit User dialog, click the Access Permissions tab.

3. Click Edit next to the permission to change. The permission dialog has three fields:

e Role-Granted Permissions shows the permission assigned by the roles that the user is a member of.
When the user belongs to multiple roles, the greatest level of access among them is applied.

e Additional User-Specific Permission is the permission that you are assigning for the user for the
class. While you can assign a permission lower than the role permissions, doing so does not lower
the users permission.

e Effective Permissions is the greatest level of permission assigned by the other two fields, and is the
permission assigned to the user for this class of objects.

For more information about this dialog, see “Access Permissions Tab” on page 335.

4. Save the changes to immediately apply them to the user.

Adobe LiveCycle ES

Permissions

Business Activity Monitoring Server Reference Class Level Access Permissions 256

» To change arole’s permissions for a class of objects:

1.

In the Administration Console, select the Roles folder, and double-click on the role in the list. This edit’s
the role’s definition

Click the Access Permissions tab.
Click Edit next to the permission to change. Set the permission to the class for this role.

Save the changes to immediately apply them to the role.

You access the permissions to specific objects by selecting the object in the list of objects, and clicking the
Permissions button above the list. Note that this applies to the Users and Roles lists as well. You can assign
access permissions to specific user accounts and roles in the same way you assign access to specific views
or agents.

» To see user permissions for one or more specific objects:

e Select the objects in a list (such as a specific view in the Views list) and click Permissions. Your

permissions to the object are shown at the top of the dialog, and the permissions that each user has to
the object are listed below your permissions.

» To change user permissions for one or more specific objects:

1.

Select one or more objects and click Permissions. (Note that Filtered/Read-Only permission can only be
assigned to one view at a time.)
Select the users whose access permissions you want to change and click Change Permissions.
You cannot change the permissions for users that do not meet the criteria listed in “Permission
Restrictions” on page 259. For example, the following illustration shows a list of each user’s access
permissions to the current object, that three users have higher permission than the current user
(because their permissions cannot be changed), and that two users are about to have their permissions
changed.
You cannot Your permissions: |Read with grant, read-only granting, and write ability
change the Set business activity permissions For these users or roles:
permissions of | Mame |Tn_.rpe Permissions Change Permissions. .
this users. ——) Diaz User Readfwrite with gra...
InventoryManagers Raole Mo access
Jasan
@ Masi Lser Readfwrite access
These two selecte Rama User Read-only with gran. ..
users are about to SalesExecutives Role Mo access
have their SalesManagers Role Mo access
permissions @ Skyler User Read with grant, re...
changed. @ Tarun User Readwrite access

Mo access

@ Zaphad User Readfvrite access

Adobe LiveCycle ES Permissions
Business Activity Monitoring Server Reference Class Level Access Permissions 257

3. Set the permissions on the Basic tab. Note that when you assign permissions to a view, you have the
option of choosing a Filtered/Read-Only permission, as shown in the following illustration. See “Access
Filters” on page 15 for information about this permission.

Basic Advanced
™ Mo Access | Filtered/Read only
/ is available for
¥ Filtered | Read only

views only.

r Lirnit ToDepartrent
¥ LimitToRegion

 Read only
{” Read and ‘Write

Save the permissions and they are immediately applied to the objects.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Permissions
Creating Permission 258

The Create permissions specifies which classes of objects a user may create.

When you create an object, you have Read and Write, and Grant Access permissions to that object. This
allows you to grant any Access or Grant permissions to any other users for that object.

Note: Once you have created an object, any other user with Grant permissions on the object can
reassign permissions, in effect overriding any permissions you assigned.

When you create a user, the user has “No Access” to everything. You may assign permissions to that user
for an entire class of objects on the user’s Access Permissions Tab.

» To see which types of objects you may create:

Click Account Settings and view the Access Permissions Tab for your account.

The Grant permissions allow you to assign permissions to other users. The Grant permissions are:

Permission

Description

Grant Read Only

Grant Read and Write

Grant Create

Grant ability to grant Read Only
Grant ability to grant Read and Write

Grant ability to grant Create

May grant Read Only permission.

May grant Read and Write permission.

May grant Create permission.

May grant ability to grant Read Only permission.

May grant ability to grant Read and Write permission.

May grant ability to grant Create permission.

Note: The System User is the only user that is always guaranteed to have full permissions on all objects.

Adobe LiveCycle ES Permissions
Business Activity Monitoring Server Reference Permission Restrictions 259

» To grant permissions to other users:

1.

Select the objects and click Permissions.

2. Select the users to modify and click Change Permissions and choose the Grant permissions on the

Advanced tab.

* Mo shility to grant

™ Ability to grant read-only permissions

r Ahbility ko grant read access granking
™ Ability to grant read and write permissions

r Ahbility ko grant read and write access granking

When granting permissions, be aware of these restrictions:

You cannot lower another user’s permission on an object for which they have higher permission than
you.

You cannot raise another user’s permission on an object to be higher than your own permission on that
object. You will usually encounter this restriction when attempting to assign permissions on multiple
objects are once, where your permission on one of the objects is less than your permission for the
others.

Objects that track permissions control access to the object, and to objects they may contain. Other objects
inherit their permissions from the object that they are contained in. The objects that control permissions
are:

Agents
Business Activities (controls access to contained scenarios, rules, alerts, and reportlets)

Roles

Tables, includes Events, Contexts, and consolidated events

Users (controls access to user accounts).

Views

Note: Regardless of what permissions a user has to an alert or reportlet, the user can always see the
information in alert notifications and reportlets sent to the user.

When you create or edit objects, you are limited by the permissions of any dependant objects and by the
permissions of any containing object. The following are the objects that have dependant requirements for
create or edit:

Table — You must have Read permission to the agent that feeds the table.

Adobe LiveCycle ES Permissions
Business Activity Monitoring Server Reference Dependencies 260

e View — You must have Read permission to the event table or base view and any context tables that
feed the view.

e Business activity — To see the definitions of any objects contained in a business activity, you need Read
permission on that business activity. Further, for contained scenarios, rules, alerts, and reportlets you
need:

e To see the definition of the object you need Read permission on the underlying view.
e To create a contained object, you need Read and Write permission on the business activity, and
Read permission on the underlying view.

Note: Permissions on one object can affect a user’s access to another, especially for restrictions on
views. For example, you might be able to edit an alert but not the alert’s reportlet when the
reportlet’s view is No Access, but the alert’s view is Read Only.

21

Portal Server Integration

This chapter describes the requirements and procedures for integrating BAM Server with one of the
supported portal servers, in accordance with the JSR-168 specification.

In this Chapter:

“Before You Start” on page 262

“Integrating with BEA WebLogic Portal Server” on page 263

“Integrating with IBM WebSphere Portal Server” on page 264

“Integrating with JBoss Portal Server” on page 265

“Creating Multiple Portlet Instances on a JBoss Portal Server” on page 266

261

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Portal Server Integration
Before You Start 262

The following prerequisites must be in place before you begin this procedure:

e BAM Server must be started and running on any of the supported application server implementations.

e One of the following supported portal servers must be installed and running:

Portal Server

Description

BEA WebLogic Portal Server

IBM WebSphere Portal Server

JBoss Portal Server

The version bundled with WebLogic Application Server v 8.1
SP5.

Note: Be sure to also install the bundled WebLogic Workshop,
as this will be required to complete several steps in the
implementation.

Version 5.1.0.1

This product is bundled with WebSphere Application Server
version 5.1.13.

Note: (DB2 only) If you are using WebSphere Application
Server with a DB2 database, you also require the DB2
Universal V 8.1 or 8.2 fix pack 10.

Version 2.2.1 SP3

This product is bundled with the JBoss 4.0.3 SP1 Application
Server

Adobe LiveCycle ES Portal Server Integration
Business Activity Monitoring Server Reference Integrating with BEA WebLogic Portal Server 263

This section contains the following subsections:

Converting the lavaJSR168.war

Deploying the lavaJSR168.war into WebLogic Portal Server

To integrate with WebLogic Portal Server, you must first convert the lavaJSR168.war to the WebLogic
Portal specification using the Portlet Preparer Tool utility available from BEA
(http://dev2dev.bea.com/codelibrary/code/portletpreparer.jsp).

» To convert the lavaJSR168.war file:

1.

From the Portlet Preparer Tool utility, extract the portletConverter.jar to a temporary directory; that is,
$CONVERTER_ROOTS.

Copy the lavaJSR168.war file to the same directory.

In the Portlet Preparer Tool utility, set WEBLOGIC_HOME in env.sh or env.bat (depending upon the
platform) to the same temporary directory.

Run the following command:
run ant -Dwar.file=lavadJSR168.war

This creates a subdirectory called tempDir.

Using WebLogic Workshop, import the tempDir as a portal Web project.

After converting the lavaJSR168.war file, you can deploy it.

» To deploy the lavaJSR168.war file:

1.

2.

3.

Install WebLogic Portal Server, if it is not installed already.
Create a new portal domain instance and start the new portal domain server.
Using WebLogic Workshop, create a new Portal Application.

Into the new portal application, import the tempDir portal web project you created in the previous
section.

Note: Before proceeding, ensure that the lavaJSR168.war file is visible under the WEB-INF/lib directory
of the web project and that the cqjsr168.jar is visible under the portlet section.

. Launch the Portal Administration Console and log in.

Note: Before proceeding, ensure that the correct web application is selected in the console. Ensure
also that the dashboard displays under portlets in the modules node.

Create a new Page and add the dashboard.

Create a new Portal.

http://dev2dev.bea.com/codelibrary/code/portletpreparer.jsp

Adobe LiveCycle ES Portal Server Integration
Business Activity Monitoring Server Reference Integrating with IBM WebSphere Portal Server 264

10.

11.

12.

13.

Under the new portal create, a new desktop.
Under the new desktop, create a new blank book and add the page you created above.
View the desktop to launch the portal application.

In the dashboard portlet, go to Edit mode and log in to the running BAM Server.

This action displays the available metrics.
Select the desired metrics to be displayed in the portal page.

Click OK.
This action displays the dashboard objects that are available for the portlet.

To perform the following procedure, you should access and review the WebSphere Portal documentation,
which is available online at
http://www-128.ibm.com/developerworks/websphere/zones/portal/proddoc_v51x.html.

» To integrate with WebSphere Portal Server:

1.

2.

10.

11.

Install WebSphere Portal Server, if it is not installed already.

Log in to the portal administration console.

. In Portal Management>Web Modules, deploy the lavaJSR168.war file.

Create a new Virtual Portal Server with an appropriate name.
From the newly created Virtual Portal Server, create a new Page.

When configuring page layout:
e Select a two-column layout.
e Add the dashboard portlet.

When completed, the portal displays the page name as a link in the left column. When you click on the
Page link, the right column displays the dashboard portlet.

Click on the Page link, and go to the Edit mode of the dashboard portlet.

Access BAM Server by entering the username, password, and URL of the running instance.

This action displays the available metrics.
Select the desired metrics to be displayed in the portal page.

Click OK.
This action displays the dashboard objects that are available for the portlet.

http://www-128.ibm.com/developerworks/websphere/zones/portal/proddoc_v51x.html
http://www-128.ibm.com/developerworks/websphere/zones/portal/proddoc_v51x.html

Adobe LiveCycle ES Portal Server Integration
Business Activity Monitoring Server Reference Integrating with JBoss Portal Server 265

» To integrate with JBoss Portal Server:

1.

2.

Install JBoss Portal Server, if it is not installed already.
Shut down the JBoss Application Server, if it is running.
Copy the lavaJSR168.war file to the deploy directory in the JBoss Application Server installation.

Restart the JBoss Application Server:
...\$JBOSS_HOMES$\bin\run.bat (Windows)
.../$JBOSS_HOMES/bin/run.sh (UNIX)

Bring up the View page in a browser.

For example, the URL may be http://[host]:[port]/portal/portal/default/[page name].

Note: The page name value may be customized by modifying the <page-name> element in the
celequest-objects.xml file in the WAR package. The default is celequestpage.

Go to Edit mode of the dashboard portlet.

Access BAM Server by entering the username, password, and URL of the running instance.

This action displays the available metrics.
Select the desired metrics to be displayed in the portal page.

Click OK.
This action displays the dashboard objects that are available for the portlet.

Adobe LiveCycle ES Portal Server Integration
Business Activity Monitoring Server Reference Creating Multiple Portlet Instances on a JBoss Portal Server 266

You can create multiple dashboard portlet instances on the JBoss portal server. To create multiple portal
pages and have different sets of dashboards displayed on them execute the following procedures.

» To create multiple instances of CelequestDashboardPortletinstance:

1. Login to JBoss Portal with the user name admin and password admin.
2. Choose the Admin Portal page on the Tab.

3. Click on the Manage Instances Link.

4. Select the LavaDashboardPortletinstance.

5. Give the instance a new name and click create New Instance.

6. Repeat the steps 4 and 5 to create multiple instances of LavaDashboardPortletinstance.

» To create multiple pages:

1. Click on Manage Portal Link.

2. Click on the root folder in the tree.

3. Click on the default page under the root tree.

4. Create a New Page (for example, celPage1) in the left frame then click on that page.

5. Now associate the new page with a LavaDashboardPortletinstance instance on the center of the page.

)

. Click on Preview Link for page in step 5 and edit the dashboard portlet. For example, adding Dashboard
objects the page.

N

Repeat steps 4, 5, and 6 to create dashboard portlets for each LavaDashboardPortletinstance instance.

22

Processes

A process is the set of steps (actions) that accomplish a task, such as the example below which is a
four-step process for making a request for approval. Further, a real transaction through a process is a
process instance, such as a specific request for approval.

Make Review Approve
—_ JE—
request request request
Reject
request

Business process management (BPM) systems create and manage business processes and instances. When
a BPM is managing a process instance, it sends details about each step of the transaction to Business
Activity Monitoring, which then develops statistics about the entire process. For example, the system
might determine how long, on average, it takes to complete the entire process, is the process getting
faster over time, what percentage of requests are rejected, or how long just the review step takes.

» In this Chapter:

e “How It Works” on page 268

e “Creating and Using Processes” on page 269

267

Adobe LiveCycle ES Processes
Business Activity Monitoring Server Reference How It Works 268

Process instance details arrive in Business Activity Monitoring as events. The BAM Server aggregates the
details in views or cubes to generate the statistics. The BAM Dashboard then presents the process as a
diagram, and includes the statistics in a table. Other objects can display other metrics, such as charts that
present statistics over times.

Process BAM Server BAM Dashboard
management »| (viewsand cubes) | (charts and tables)
(sgrsc:::s‘ses) Instance Statistic

details

The BAM Dashboard also provides an optional ad-hoc query to the BPM to get the details about a specific
process instance, such as where it is in the process. When a user makes such a request, the BAM Dashboard
queries a context table in the BAM Server, and that table queries the BPM for the specific instance details.
The results are then returned to the BAM Dashboard for display.

Process Business Activity BAM Dashboard
management Monitoring
system
y <« uery | petail Search - Instance query
contexttable | and results
Details

The process management system generates a process definition file that describes the process in XML. A
process definition in the BAM Workbench then associates that definition file with an aggregate view or
cube and optionally with a search context table. The BAM Dashboard uses that object as the source for a
process chart and to identify the associated aggregate view or cube and search context table.

Business Activity BAM Dashboard
Process Monitoring
management
system Process Process definition
Definition file g ‘Process
" diagrams
Aggregate

view or cube

Detail Search
context table

Adobe LiveCycle ES Processes
Business Activity Monitoring Server Reference Creating and Using Processes 269

To create and use processes in Business Activity Monitoring, the external business process system must:
e Generate a process definition file in an XML format recognized by Business Activity Monitoring.
e Publish process step statistics as event data into the BAM Server.

e Optionally provide an interface for the process instance queries from Business Activity Monitoring
context tables.

» The general steps for creating process diagrams are:

1. Create an agent (if necessary) and event table to receive the process events from the BPM.
2. Create one view or cube per process.

3. (Optional) Create a context table to query the BPM.

4. Create a process definition object.

5. Create a process diagram.

The event streams receive and aggregate the process instance statistics. Event data are received in an
event table, usually arrive through an agent, and the aggregate views are based on the event table. For
detailed information about these components, see the following topics:

e "“Agents” on page 23

e "Events” on page 76

e "Views” on page 350

e "“Cubes” on page 50

The following requirements also apply:
e There should be only one agent and event table per BPM.

e There should be one view or cube per process. Use a Where Clause to distinguish the process events
from other processes in the event table, such as "Process Name"='"Request Approval'. For details, see
“Working with Process Definitions” in Using Business Activity Monitoring Workbench.

The context table generates a query to the BPM whenever a BAM Dashboard user makes an ad hoc query
about a specific process instance. For details about context tables, see “Context” on page 43.

When the context receives a query from the BAM Dashboard, it first looks for the details in the context
cache. If the instance is not in the cache, the table then queries the BPM for the details. Be sure to define a
reasonable invalidation schedule for your business, or disable the cache if the queries need to return the
most up-to-date information about the process instance.

For details about this task, see “Working with Process Definitions” in Using Business Activity Monitoring
Workbench.

Adobe LiveCycle ES Processes
Business Activity Monitoring Server Reference Process Definitions 270

Before creating a process definition, you need:
e Read Only access permission on the view or cube that aggregates the process events.

e (Optional) Read Only access permission on the context search table.

» To create a process definition in the BAM Workbench:

1. Open the Process Definitions folder in the BAM Workbench and choose New Process Definition.
2. Name the object and upload the process definition file generated by the BPM.
3. Choose the aggregate view or cube, and choose the column that identifies the steps in the process.

4. (Optional) Choose the detail search context table, choose the column to search, and optionally provide
descriptive text to appear in the BAM Dashboard.

Detail aearch (Optional)

Context table to query the process management syskem about a spe
Choose the column ko query and provide a descriptive name For it

Conkext Table; IF‘rc | 3
Search Column: [Fr |Request number L

Descriptive Mame: Equest nurmoer

Process

Reguest number: I

Resulk:

5. Save the process definition.

You can now create process diagrams based on this definition.

Adobe LiveCycle ES Processes
Business Activity Monitoring Server Reference Process Diagrams 271

For details about this task, see “Process Diagrams” in Using Business Activity Monitoring Dashboard.

Before creating a process diagram, you need Read Only access permission on the aggregate view or cube
that provides the statistics.

» To create a process diagram in the BAM Dashboard:

1. Open the Process Diagrams manager and choose Create Diagram.
2. Select the process definition (as defined in the BAM Workbench).
3. Select the source columns to present as statistics.

4. Name the process diagram and save it.

The BAM Dashboard immediately presents the process diagram. The statistics update as events arrive for
the specific process.

23

Query Windows

A query window specifies a set of rows that are used in calculations with respect to the current row (event)
under examination in a view constructed with a C-SQL SELECT statement. (Business views created in the

BAM Workbench construct views through a well-formed SELECT statement passed to the servers.) This
chapter discusses and describes how to define and use windows.

In this Chapter:

“Overview” on page 273

“Window Declarations and References” on page 274

“Event-Series Windows” on page 276

“Time-Series Windows" on page 277

“Window Partitions” on page 282

“Window Advancement” on page 285

“Window Update Reference” on page 288

“Window Initialization” on page 288

272

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Overview 273

The calculation using a window may be for computing a moving set function, a join, or expiring rows from
a view. All such calculations use a window; however, in the default cases for these operations, you do not
need to define the window semantics. For example, in C-SQL, set functions perform calculations on sets of
rows in a view. The default set of rows for each function is all events since the view was initiated (an
“unbounded” set). Consider the following view that calculates the total value of a column named Qty for
all events that were ever included in the view:

SELECT SUM(Qty) AS Total Qty FROM Orders
However, another way to express the SUM() in order to get the same result is the following, which says to
sum over the set of all previous events:
SELECT SUM(Qty) OVER (EVENTS UNBOUNDED PRECEDING) AS Total Qty
FROM Orders

The OVER clause defines a window that identifies the set of rows to include. With a window, you can limit
the set to a specific count of event rows or to those events that occurred within a specific time-span. For
example, to total just the current and last five events, define a window as follows:

SUM (Qty) OVER (EVENTS 5 PRECEDING) AS Total Qty

And, to total just the current month’s events, use a time-series window, as follows:

SUM(Qty) (RANGE INTERVAL 'l' MONTH PRECEDING) AS Total Qty OVER

All windows are identified by either the EVENTS or RANGE clause and include an extent definition that
defines the size of the window.

{ RANGE | EVENTS } <window frame extents>

The extent syntax is unique to the window type and is described in detail in “Event-Series Windows” on
page 276 and “Time-Series Windows” on page 277. Other clauses (not shown) control how the window
behaves as new events enter the window, which items to include, and how and when the window updates
to include new events and discard old ones.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Window Declarations and References 274

There are two ways to define windows and associate them with functions:

In-line defines the window parameters immediately following the function reference, similar to the
following:

SELECT PartName, SUM(Qty) OVER (EVENTS 4 PRECEDING) AS Total Qty,
FROM Orders
GROUP BY PartName

This format is useful when you have only one window per query, though you can also use it with multiple
windows. Note that you cannot share these window definitions among functions in the same query.

Reference by name to use a window defined with the WINDOW clause, similar to the following:

SELECT PartName,
SUM (Qty) OVER Previous4 AS Total Qty,
AVG (Qty) OVER Previous4 AS Average Qty
FROM Orders
GROUP BY PartName
WINDOW Previous4 AS (EVENTS 4 PRECEDING)

This format is useful when you have multiple simple window definitions because you can define them all
in one place: in the same WINDOW clause definition. This form also allows you to share the definition over
multiple functions in the same query (as shown above) and allows you to use windows that extend
another window's definition (see “Extending One Window Definition with Another” on page 275).

Note: Functions in the select list associated with a window must have alias names defined with the AS
operator, such as AS Total_Qty in the examples above.

The WINDOW clause defines windows that can be shared throughout the query, and which may be
extended by other windows. The following example defines two windows, each used by a different
function in the query:

SELECT PartName,
SUM (Qty) OVER Previous4 AS Total Qty 4,
AVG (Qty) OVER PreviouslO0 AS Average Qty 10
FROM Orders
GROUP BY PartName
WINDOW Previous4 AS (EVENTS 4 PRECEDING),
Previousl0 AS (EVENTS 10 PRECEDING)

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Extending One Window Definition with Another 275

When windows share common traits, you can define those traits in one window definition, then extend
(inherit) that definition with other, unique aspects in different windows. For example, the following
definition defines one window named Common with the PARTITION BY clause, then defines additional
windows that extend the common traits with the range required for the unique windows:

SELECT PartName,
SUM (Qty) OVER Events4 AS Total Of Qty 4,
AVG (Qty) OVER Eventsl0 AS Average Of Qty 10
FROM Orders
WINDOW Common AS (PARTITION BY PartName),
Events4 AS (Common EVENTS 4 PRECEDING),
Eventsl0 AS (Common EVENTS 10 PRECEDING)

The WINDOW definition above is the same as:

Events4 AS (PARTITION BY PartName EVENTS 4 PRECEDING),
Eventsl0 AS (PARTITION BY PartName EVENTS 10 PRECEDING)

Window extension definitions may not include properties defined in the base window. For example, you
cannot define an ORDER BY in both the base and extension windows. Further:

e A PARTITION BY clause can appear in the base window definition only; it cannot appear in extensions.
e These clauses can appear in extension definitions only; they cannot appear in the base window:

BETWEEN/AND

CURRENT EVENT

EVENTS

INITIALIZE

RANGE

REFERENCE

SLIDE

UNBOUNDED

<window start integer> without an EVENTS or RANGE clause

e A window may only extend another window defined in the same query; a window in a derived view
cannot extend a window in a base view.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Event-Series Windows 276

Event-series windows contain a maximum fixed-set of events. Initially the window is empty, but fills with
new events until it reaches its defined capacity. After that, the oldest events are discarded one-for-one as
the newest events are included.

This window holds
three events. d \CACACROR Future events
| X] ONOXOXO®)
| N N |[OXOXO@)
Older events are
®® ® @) () discardedwhenthe
Discarded events. window is full and new

. O events are added.

Event-series windows are identified by the EVENTS clause. There are two ways to express spans of events.
The first method is to use the BETWEEN and AND clauses. which specify both the upper and lower
boundary of the window. The second method is to use the PRECEDING expression, which specifies only
the lower boundary of the window. The upper boundary is the current event in the second case. The
PRECEDING expression clarifies that the event rows precede the current one.

([PARTITION BY <columns>]
EVENTS { BETWEEN {<oldestEvent> | UNBOUNDED} PRECEDING
AND { <newestEvent> PRECEDING | CURRENT EVENT }
| {<oldestEvent> | UNBOUNDED} PRECEDING
}
[SLIDE <distances]
[REFERENCE {FRAME | OPERATOR}]

}

PARTITION BY creates one window frame for each <column> of events, similar to a GROUP BY window. See
“Window Partitions” on page 282 for details.

SLIDE identifies how to advance the window when new events arrive in the view. See “Window
Advancement” on page 285 for a detailed description of this option.

REFERENCE tells the window when to determine if rows have expired from the window set. See “Window
Update Reference” on page 288 for a detailed description of this option.

This window contains rows limited by a count of consecutive events in the view, such as the last 5 events,

SUM (Qty) OVER (EVENTS 4 PRECEDING) AS Total Qty

or the 10 events starting 12 events ago.
SUM (Qty) OVER (EVENTS BETWEEN 11 PRECEDING AND 2 PRECEDING)
AS Total Qty

Notice that the size of the window frame is (<oldestEvent>—<newestEvent>+1). For example, the frame
above contains 10 events (11-2+1).

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Current Event 277

To include all of the previous events, including the current one, with the UNBOUNDED option, like this:
SUM (Qty) OVER (EVENTS UNBOUNDED PRECEDING) AS Total Qty

Which is the same behavior as if no window was defined:

SUM (Qty) AS Total Qty

In the examples in the preceding section, notice that the starting event is numbered 1 less than the
desired starting event. This is because the counting is zero-based: event zero (0) is the current event.

A window of 5 events,
including the current event.

6 5|4 3 2 1 o0
‘ |

I
Seven events ago Current event

Another way to express the last 5 events is:
OVER (EVENTS BETWEEN 4 PRECEDING AND 0 PRECEDING)

Yet another way to express the range of events is to use the CURRENT EVENT literal as follows:
OVER (EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT)

Time-series windows grow to include all of the events that occur within an interval of time. Such as the
1-day window shown in the illustration below that grows as new events arrive during the day.

— | atest event

Latest
event

1 day 1 day 1 day 1 day

Similarly, a 3-day window includes all of the events within the current 3-day window.

During day 3. During day 4. During day 5.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference RANGE Clause 278

Time-series windows are identified by the RANGE clause. These windows contain rows that are limited to a
time range in combinations of years, months, days, hours, minutes, or seconds. There are two ways to
express spans of events. The first method is to use the BETWEEN and AND clauses. which specify both the
upper and lower boundary of the window. The second method is to use the PRECEDING expression, which
specifies only the lower boundary of the window. The upper boundary is the latest timestamp in the
second case.

([PARTITION BY <columns>]
[ORDER BY {<date-time column> | <integer column>} [ASC | DESC]]
RANGE {BETWEEN
{INTERVAL <oldestTime> | <oldestInt> | UNBOUNDED} PRECEDING
AND {INTERVAL <newestTime> | <oldestInt>} PRECEDING
| {INTERVAL <oldestTime> | <oldestInt> | UNBOUNDED} PRECEDING

}

[SLIDE [INTERVAL <distance>]]
[REFERENCE {FRAME | OPERATOR}]
[INITIALIZE <initTimestamp>]

)

Further,

e The order-by, “oldest’, and “newest” columns are usually date-time data types. However, you can also
use an integer that represents a time-series. See “Integer Time-Series” on page 281 for details.

e PARTITION creates one window for each <column> of events, similar to a GROUP BY window. See
“Window Partitions” on page 282 for details.

e ORDER BY identifies the column used to calculate the time of the event. See “ORDER BY Clause” on
page 279 for details.

e SLIDE identifies how to advance the window when new events arrive in the view. See “Window
Advancement” on page 285 for a detailed description of this option.

e INITIALIZE specifies a common date-time to which to initialize all associated windows in a view. When
you use a time-series window it is best to initialize the start time to be midnight for day, month, and
year windows; to the first day of the month for month and year windows; and to the first day of the
desired range for year windows. See “Window Initialization” on page 288.

e REFERENCE tells the window when to determine if rows have expired from the window set. See
“Window Update Reference” on page 288 for a detailed description of this option.

e ASC specifies that the rows are ordered according to their timestamps from oldest to newest. (For
further explanation of ordering, see “Descending” on page 280.)

e DESC specifies that timestamps are ordered according to their timestamps from newest to oldest. (For
further explanation of ordering, see “Descending” on page 280.)

This window totals the Qty column for the current month’s worth of events:

SUM (Qty) OVER (RANGE INTERVAL 'l' MONTH PRECEDING) AS Total Qty

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Which Events Are Included? 279

You can also identify very specific ranges, such as this one which starts18 hours and 15 minutes ago, and
stops 45 seconds ago: See “Date-Time” on page 61 for detail about the date-time specifications.

OVER (RANGE BETWEEN INTERVAL '18:15' HOUR TO MINUTE PRECEDING
AND INTERVAL '45' SECOND PRECEDING

The events to include in a time-series window are determined when a new event enters the window or
view (see “Window Update Reference” on page 288 for more details). However, it is important to note that
interval is inclusive of events that are exactly the size of the range interval from the current event. For
example, consider a window with a one day interval:

SUM (order gty) OVER (RANGE INTERVAL '1l' DAY PRECEDING) AS TotalQty

When two events have exactly one day between them, they are both included in the window. Notice the
value of TotalQty after the two events:

order gty TotalQty EventTime

1 1 2003-12-01 09:00:00.0
1 2 2003-12-02 09:00:00.0

When using the BETWEEN clause, both <oldestTime> and <newestTime> are included. For example, to
have two windows, one of the current week and one for the week before that, use these definitions:

ThisWeek: RANGE INTERVAL '7' DAY PRECEDING
LastWeek: RANGE BETWEEN INTERVAL '14' DAY PRECEDING
AND INTERVAL '7' DAY PRECEDING

Notice that both ranges use '7' as a bounding value. The current week includes everything from now back
seven days inclusive, while the previous week includes the seven days before seven days ago. Another way
to define the windows above is to use '0' as the current time; for example:

ThisWeek: RANGE INTERVAL '7' DAY PRECEDING
AND INTERVAL '0O' DAY PRECEDING
LastWeek: RANGE BETWEEN INTERVAL '14' DAY PRECEDING
AND INTERVAL '7' DAY PRECEDING

Note that the row at percisly 7 days ago would be included in both this week and last week.

Unless defined otherwise, all times are calculated based on each event’s internal event arrival timestamp.
For example, this window contains events of the last hour in the order that they arrived in the system.

OVER (RANGE INTERVAL '1l' HOUR PRECEDING)
You can designate any date-time column in the event as key. For example, you might want to use the time
that an order was placed:

OVER (ORDER BY order.order timestamp RANGE '4' DAY PRECEDING)

The ORDER BY argument is a single column name reference; you cannot use integers to represent the
ordinal position of the column in the SELECT list. Further, the default sort order is ascending (ASC), though

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Out-of-Order Arrival 280

descending (DESCQ) is available also. See “Descending” on page 280 for details. The ORDER BY clause has
the following syntax:

ORDER BY <columnNameReference> [ASC | DESC]

When the event stream is not in the expected order, the query engine attempts to insert the out-of-order
event into its correct location in the window frame, and updates all aggregations accordingly. The query
engine always uses the latest time of all the events received prior to the out-of-order event to determine if
it should be included. If the event is not within the latest window frame, it is omitted.

For example, consider a window of 1-hour that receives the following events in the order listed. In the
example, the second event is the latest, and as such, only events received after 08:10 (09:10 minus 1 hour)
are included in the window. The fourth event, therefore, is rejected because its timestamp is 08:04.

OVER (ORDER BY Time RANGE INTERVAL 'l' HOUR PRECEDING)

Arrival
Sequence Time Amount

1

2 09:10 103.76 << Latest timestamp sets the window
3 08:50 90.20 << Out-of-order, accepted

4 08:04 188.88 << Out-of-order, rejected

After the four events above have been processed, the view that contains them looks like this:

Arrival
Sequence Time Amount

1 08:45 242.69
3 08:50 90.20 << Reordered
2 09:10 103.76

By default, order is assumed to be ascending: oldest events are processed first. However, you may specify
DESC for descending sort order. When events arrive and they are not already in descending order, they are
processed the same as noted above in “Out-of-Order Arrival.

OVER (ORDER BY Time DESC RANGE INTERVAL 'l' HOUR PRECEDING)

Arrival
Sequence Time Amount

1

2 09:10 103.76 << Out-of-order, expires after fourth event
3 08:50 90.20 << Out-of-order, accepted
4

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Query Windows
NULL Value Timestamps 281

After the four events above have been processed, the view that contains them looks like this:

Arrival

Sequence Time Amount
4 08:04 188.88
1 08:45 242.69
3 08:50 90.20

When the referenced column contains a NULL value for the timestamp, the event is rejected unless the
range is UNBOUNDED. When the window frame is unbounded, all events are included, including the NULL
timestamps; though the NULL values are placed last in the set, in the order they arrived. For example:

Arrival
Sequence Time Amount
1 08:04 188.88
2 08:45 242.69
3 103.76 << First NULL time
4 08:50 90.20
5 157.11 << Second NULL time

When the above events are processed in ascending order by Time column, the resulting view looks like:

Arrival
Sequence Time Amount
1 08:04 188.88
2 08:45 242.69
4 08:50 90.20
5 157.11 << Second NULL time
3 103.76 << First NULL time

A time-series range is usually expressed as a range of date-time or date interval values. However, you can
also use an integer that represents a time-series. For example, consider this series of date-time values and
matching integer values:

Date_time value Date time int

2003-12-01 09:00:00 3795637500
2003-12-01 13:00:00 3795654167
2003-12-02 09:00:00 3795737500
2003-12-03 09:01:00 3795837569
2003-12-04 09:00:00 3795937500

The “time” that the integers represent is entirely arbitrary and not a factor in how Business Activity
Monitoring processes the values. Rather, it is up to you to understand what the values mean. For example,
in the series above, 100,000 represents one day. As such, a window of the previous two days for this data is
defined as:

ORDER BY Date_ time int
RANGE 200000 PRECEDING

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Window Partitions 282

Or to see just the previous day:

ORDER BY Date time int
RANGE BETWEEN 200000 PRECEDING AND 100000 PRECEDING

When using an integer time-series, always use the ORDER BY clause and identify the integer column as the
series order.

All events in a view are included in a single set (window) unless defined otherwise by the GROUP BY or the
PARTITION BY clause. These clauses sort events into windows based on a key value, such as a common
name or ID. Use partitioned windows to aggregate the events specific to the window. For example, to
collect the total volume for all transactions by security, the view definition might look like the following:

SELECT Trades.symbol, SUM(Trades.volume) OVER Symbols AS Total volume
FROM Trades
WINDOW Symbols AS (PARTITION BY Trades.symbol)

This is similar to a view defined with the GROUP BY clause in the following manner:

SELECT Trades.symbol, SUM(Trades.volume) AS Total volume
FROM Trades
GROUP BY Trades.symbol

Note: Querying the two views above produces very different results. The grouped view returns one
row for each group. While the partitioned view, by default, returns just one row containing the
result of the last event that entered the view (though the information for each partition is
maintained internally). To see more rows from a partitioned view, set the view’s Maintain in view
setting to a size greater than 1. For more information, see “Historical Results from Partitioned
Views” on page 284.

The PARTITION BY clause defines one or more columns that contain the values that identify a partition
window.

PARTITION BY <column> [, <column> ..]
Where <column> is either the name of a column in the SELECT list, or is an ordinal integer that represents
the position of a column listed in the SELECT list of columns (the first reference is 1). When you declare a

list of columns, one partition is created for each unique value of the set. For example, this declaration
creates partitions for individuals based on unique lastname-firstname combinations:

PARTITION BY last name, first name

Consider the illustrations in the following sections that show what happens when a new event arrives that
is significantly newer than the most recent event already in the view.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference View Update for a Simple GROUP BY 283

When an event arrives in a view with a simple GROUP BY clause, the new event is applied to the associated
group. In this case, the new event is applied to the average for all AAA events ever received:

SELECT NAME, AVG(Value) AS AvVal
GROUP BY Name

AAA updates based on all AAA
Name | Value Name | Value Name | Value events ever received; SRK is
AAA | 20.00 | =i~ [AAA | 10.00 | =P [AAA |15.00| |unchanged;groups never
SRK | 24.00 SRK | 24.00 expire.

Now consider the same event entering a view partitioned by Name, and where only the partition window
frame that identifies the event updates. In this example, the AAA event is 2 hours newer than the last AAA
event. As such, all previous values for the partition expire and are discarded, and only the new event is
used. Notice that the other partition is no affected.

SELECT Name, AVG(Value) OVER w AS AvVal
WINDOW w AS (PARTITION BY Name
RANGE INTERVAL 'l' HOUR PRECEDING
REFERENCE FRAME)

Name | Value Name | Value Name | Value Average for AAA is latest event
AAA | 20.00 B> TAA [1000] = [Aaa [2000] | only (previous events expired);
SRK | 24.00 SRK |24.00] | SRKis unchanged; groups never
empty.
A new event arrives that is 2 hours

newer than the most recent event

already in the partition.

Finally, consider the same event entering a partitioned view that updates based on REFERENCE OPERATOR.
The reference tells all partitions to update when an new event enters the window. In this illustration, all

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Advantage of Partitions over Groups 284

existing partitions expire and a new one is created for the new event because none of the events tracked
by the existing partitions are within the range of the last hour.

SELECT Name, AVG(Value) OVER w AS AvVal
WINDOW w AS (PARTITION BY Name
RANGE INTERVAL '1l' HOUR PRECEDING
REFERENCE OPERATOR)

Name | Value Name | Value Name | Value All previous events expire
AAA | 20.00 > [ZAA [10.00 B> [2AA 2000 and SRK partition empties;
SRK | 24.00 average for AAA is latest
event only.
A new event arrives that is 2 hours

newer than the most recent event

already in the partition.

The following query is similar to the one shown in the illustration above, except that in the illustration
above, only the row corresponding to the last event entered the view is shown in the result:

SELECT Name, MOV _AVG (Value, HOUR,1)GROUP BY Name

The main advantage of partitions is that you can have multiple partitions based on different columns in
the same view, while GROUP BY applies solely to the entire view.

One disadvantage of partitons is that you cannot look at the view to see the contents of the partitions;
unlike a view with GROUP BY where you can view the results of all groups in the BAM Dashboard or in the
Results tab of the BAM Workbench. A GROUP BY maintains results for each group as long as there are data
in the group. In the previous illustration, if you use the view constructed with the GROUP BY expression
instead of the PARTITION, you will be able to view the contents, and groups will expire when they have had
no events in the last hour.

When you query a partitioned view, by default, the result is a view with one row containing the result of
the last event that entered the view (though the information for each partition is maintained internally).
For example, if you track the average price of securities, partitioned by symbol, querying SELECT * on the
view would return a result similar to the following:

SELECT * FROM AveragePricesView
Symbol AvgPrice Date

JMH 164 .35 2003-07-14

In the results above, the last event that the AveragePricesView received was for the JMH symbol.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Query Windows
Window Advancement 285

To see more rows, set the partitioned view’s Maintain in view setting to a size greater than 1. If you have
many aggregate events, set the value to a large number, such as 500. Thus, querying the view returns up to
that many rows, for example:

AAA 24 .35
SRKH 102.07
JMH 90.22
SRKH 106.88
AAA 25.66
JMH 94 .11

Date

2003-03-05
2003-03-05
2003-03-05
2003-03-06
2003-03-06
2003-03-06

The results appear in the order that the view produced them: the order of the events that last entered each

partition.

To get meaningful historical results, order the new view, such as on Symbol and Date. For example:

SELECT * FROM AveragePricesView ORDER BY Symbol, "Date"

Symbol AvgPrice

AAA 24 .35
AAA 25.66
AAA 25.25
AAA 24 .92

Date

2003-03-05
2003-03-06
2003-03-07
2003-03-08

When a new event enters a window, the window determines which events to keep and which to discard
when the window is full. A window frame is full if the next row causes an existing row in the frame to
expire out of the window. When viewed in the context of future and past events in the event stream, the
window can be seen to advance or slide along the event stream as it adds and discards events.

@0 O

Windows “advance” along
the event stream as new
events arrive.

Discarded events.

L X)@,

OO0
OO0
OO0

@0 O

00

Future events

Older events are
discarded when the
window is full and new
events are added.

The window advance clause (SLIDE) specifies the distance to advance when the window is full. By default,
when SLIDE is omitted, event-series windows slide one event along the stream for each new event, while
time-series windows advance to include the latest event and all events within the interval defined in the

RANGE clause remain. The rest are discarded.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Tumbling Windows 286

Including a SLIDE clause advances the window either the entire size of the window (when you omit the
argument) or advances the event distance or time interval specified by the argument.

SLIDE [<intervals> | <distances]

For example, consider an event-series window whose size is 3 events. Declaring SLIDE with no arguments
is the same effect as declaring SLIDE 3.

This window slides 3 events
when advancing after 000 OOCOOOO
being full.

L N X J NONOICXON®

After advancing, the

EVENTS '2' PRECEDING
SLIDE 3 'YX Y YoleoXeXe window contains only the

new event. Future events
are added until the

000000 OO window again becomes
full.
00000000 O

When a window advances more than one event, it is tumbling, as described in the next section, “Tumbling
Windows.” Further, the TUMBLE_ functions are shorthand for complete window expressions that use this
sliding behavior. See “Tumble Functions” on page 287 for more information.

Note: The SLIDE argument need not the same as the window size, but it mst be less than or equal to
the window size.

A tumbling window empties its contents when it advances to include the newest event. For example, a
tumbling time-series window continues to grow until a new event enters that causes older events to be
discarded.When the SLIDE interval is the same as the window size, the window dumps all existing events
when a new one arrives and the window is full.

This 2-day window also slides 2 days RANGE '2' DAY PRECEDING
after becoming full. SLIDE 2

_ E=— _ EEE=—
First event of First event of
third day slides third day slides

This functionality is useful for tracking a full interval’s worth of events during the interval. For example, if
you start an interval on a Sunday and declare a slide interval of 7 days, the window will empty and advance
every Sunday. Use the INITIALIZE clause to set the starting time appropriately. See “Window Initialization”

on page 288 for details.

A trailing tumbling window empties and begins refilling after it slides. However, it is important to
understand that the items that enter the view must fall within the window as identified by the last event.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Tumble Functions 287

For example, consider this 7-day window that includes values from the previous week and empties every 7
days:

RANGE BETWEEN INTERVAL '14' DAY PRECEDING
AND INTERVAL '7' DAY PRECEDING
SLIDE INTERVAL '7' DAY

This window only accepts values that are older than 7 days preceding the last event. Even though there
might be a full week’s worth of events, the window only contains those that are 7 days older than the last.
For example, when these events are fed into the window, only the first event is included in the window
because it is more than 7 days older than the last event:

Event Time

2003-12-01 09:00:00 << Only event included in the window
2003-12-01 10:00:00

2003-12-02 08:45:00

2003-12-08 09:10:00 << Last event

Each of the first three events is included only after receiving an event after 08:45 on the 12-09.

Most of the set functions have associated “tumble_" functions, which are shorthand for complete sliding
window expressions. For example, consider this tumbling SUM() expression which sums all the events that
arrive within a 1 hour interval:

TUMBLE SUM (price, HOUR, 1, trade time) AS T Sum

The above function is shorthand for the following in-line window expression:

SUM (price) OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING SLIDE) AS T_Sum

Which in turn is equivalent to the following, after filling in all default values:

SUM (price) OVER (ORDER BY trade time
RANGE INTERVAL 'l' HOUR PRECEDING
SLIDE INTERVAL '1l' HOUR
REFERENCE OPERATOR) AS T Sum

Similarly, the function TUMBLE_SUM(price, EVENT, 5) is the shorthand for this complete window:

SUM (price) OVER (
EVENTS BETWEEN 4 PRECEDING AND CURRENT EVENT
SLIDE 5
REFERENCE FRAME) AS T Sum

See the descriptions of the individual tumble functions for details about their behavior.

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference Window Update Reference 288

When a view receives a new event, one or more of the view’s windows may update to reflect the new
information. Depending on each window’s reference and definition, it is possible for all events in a window
to expire and be removed from the window or to not be affected by the update.

Note: Events that are filtered out before they enter the view, such as when excluded by a WHERE
Clause, do not affect the view’s windows and do not cause the windows to update, regardless of
the reference point.

A reference determines when to evaluate the set of events included in a window. The references are:

e OPERATOR — the window updates whenever a new event enters the view, whether or not the event is
included in the window. For example, if a view tracks securities traded in the last hour, and partitions
each security into its own window, each window evaluates its set whenever a new trade enters the
view. If a security has not been traded in the last hour, its window becomes empty. All other windows
include only those securities traded in the last hour; older trades are removed from their windows.

SELECT Trades.symbol,
AVG (Trades.price)
OVER (RANGE INTERVAL 'l' HOUR PRECEDING REFERENCE OPERATOR)
AS av_price last hour
GROUP BY symbol
FROM Trades

This mode is desirable — and the default — when using time-series aggregations and you want all
windows to include events referenced from the same time: the time of the last event that arrived in the
view. This mode is also useful for views where you want event-series windows to expire and thereby
reduce memory consumption by the view.

e FRAME — the window updates only when a new event enters the window. For example, if the view
tracks the last 10 trades for each security, only the window that receives the new trade updates. All
other (security) windows retain their 10 event’s worth of events.

SELECT Trades.symbol,
AVG (Trades.price) OVER (EVENTS 9 PRECEDING REFERENCE FRAME)
AS av_price last 10 trades
GROUP BY symbol
FROM Trades

This mode is desirable when you want windows to retain a set of events, regardless of when they
arrived, such as for event-based moving aggregates. This mode is the default for event based windows.

Note: The FRAME reference is also useful for reclaiming server memory.

When using a time-series window, the beginning time for the window frame is set by the first event that
arrives in the window. When a view has several group or partition frames, each might have a different
starting time. Consider these two events, which are the first to arrive in the view:

Symbol Time
IBM 09:00:00.875
CQST 09:23:02.111

Adobe LiveCycle ES Query Windows
Business Activity Monitoring Server Reference INITIALIZE Clause 289

If the view that receives these events places them in different group-by frames, each will start at each
event’s Time and continue to reset based on that initialization time. For example:

SELECT Trades.Symbol, Trades.Time,
AVG (Trades.Price) OVER An Hour AS Avg Price One Hour Tumble
GROUP BY Trades.Symbol, Trades.Time
FROM Trades
WINDOW An Hour AS (ORDER BY Trades.Time
RANGE INTERVAL 'l' HOUR PRECEDING SLIDE)

With this view definition, an event arriving at 09:10 will cause the initial IBM event to expire, but the CQST
will remain in its window for at least another 13:02 minutes: the time remaining since it entered the view.

To have all windows begin at the same time, use the INITIALIZE clause. This clause defines the initialization
point for all frames based on the window definition. For example, to have all windows begin at the same
time, initialize them to a date-time older than the first event likely to arrive in the view.

WINDOW An Hour AS (ORDER BY Trades.Time
RANGE INTERVAL 'l' HOUR PRECEDING SLIDE
INITIALIZE TIMESTAMP '2003-03-05 00:00:00.000")

With this definition, all windows initialize at the same time: midnight. As such, each frame expires at the
top of the hour (when minutes is 00:00.000). Because the window includes the SLIDE clause, all previous
trades are discarded when the frame expires, and only new events arriving during the current hour are
accepted.

Note: This clause acts as a filter in that it excludes all events before the initialization time.

The initialization time is a date-time literal value — a TIMESTAMP Literal. Further, the initialization value is
static: it cannot change after the view is created.

This initialization definition defines the current fiscal year, which begins on 1 July of the calendar year:

(RANGE INTERVAL 'l' YEAR PRECEDING SLIDE
INITIALIZE TIMESTAMP '1963-07-01 00:00:00")

24 Reportlets

Reportlets describe the contents of a view and present that information in a report that is either attached
to an alert message or presented by an external system. Frequently, reportlets provide information about
an event that puts the event into context. For example, when an inventory is low for a product, and a
restock shipment is overdue, an alert might notify purchasing managers of that state and a reportlet
attached to the alert might list the alternative suppliers for that product. Reportlets are attached to all
subscribers of the associated alert.

There are two types of reportlets:

e Internal reportlets are the visual representation of the information in a view when the alert generated
the reportlet. The presentation is a table formatted in either text, HTML, or a Microsoft Excel worksheet,
and contains all of the information that was in the view.

e External (3rd-party) reportlets are produced by external reporting systems. External reportlets present
a report based on view data passed to them when the user clicks a link to the external system. That
system is responsible for generating and presenting the report.

» In this Chapter:
e “Creating Reportlets” on page 291

e "“Reportlet Attributes” on page 291

e “External Reportlet Attributes” on page 293

e “Reportlet Views” on page 295

290

Adobe LiveCycle ES Reportlets
Business Activity Monitoring Server Reference Creating Reportlets 291

To create a reportlet you must have:

e Create permission for business activities (see “Creating Permission” on page 258 for details)

e Read and Write permission on the business activity that will contain the reportlet

e Read Only permission on the view that will feed the reportlet.

» To create a reportlet:
1. Open the BAM Workbench Scenario Modeler.
2. Open an existing scenario that will contain the reportlet.
3. Select the Reportlets tab.
4. Chose New Reportlet.

5. Select the type of reportlet to create.
Reportlets are formatted as HTML tables or Microsoft Excel spreadsheets.
External (3rd-party) reportlets are defined and produced by external reporting systems based on the
data passed to them.

Note: The External reportlets option is only available when external links have been defined. For more
information, see “Working with External Links” in Using Business Activity Monitoring Workbench.

6. Fillin the attribute fields on the Create Reportlet dialog.

Note: For details, see “Reportlet Attributes” on page 291 or “External Reportlet Attributes” on
page 293.

Save the reportlet as enabled, and it will immediately be ready for use.

You can also create a reportlet when creating or editing an alert. Doing so automatically attaches the
reportlet to that alert.

Reportlets are formatted as HTML tables or Microsoft Excel spreadsheets. Each reportlet has the following

attributes:

Attribute Description

Name Identifies the reportlet. The name can contain letters and numerals only. This name
must be unique among reportlets within the same scenario. See “Object Namespace”
on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the reportlet is enabled, or disabled.

Note: When the containing scenario is disabled, you cannot make the reportlet
enabled. The scenario must be enabled before the reportlet may be enabled.

Adobe LiveCycle ES Reportlets

Business Activity Monitoring Server Reference Reportlet Attributes 292
Attribute Description
View Business view from which the report draws its data.

Excel format (optional) Specifies how to format Excel-type reportlets. Leave this setting as
<an empty spreadsheet> to produce an HTML formatted reportlet.

Template Identifies a worksheet template for formatting the reportlet. Options
are:

Select an existing template — One that has already been created
and uploaded to the BAM Server.

New Custom Template — Opens the Add Template dialog where you
identify an existing Microsoft Excel template on your computer.
Saving and closing this dialog uploads the template from your
machine to the server.

An empty spreadsheet — Uses the Microsoft Excel default worksheet
format.

Sheet name Name of the worksheet to contain the reportlet. Default is “Sheet1”.

Sheet address Location on the worksheet to present the reportlet. Default is “A1".

Adobe LiveCycle ES

Reportlets

Business Activity Monitoring Server Reference External Reportlet Attributes 293

External reportlets present reports based on view data passed to them when the user clicks a link to the
external (3rd-party) reporting system. That system is responsible for generating and presenting the report.
The external reportlet definition identifies the external link, and the view information to pass to the
external system that that system then uses to identify the report to present. For example, an external
report might present a PDF that contains the complete description of a product identified in an alert.
External reportlets have the following attributes:

Attribute

Description

Reportlet Name

Status

Description

Data from View

Report Name

Report Parameters

Identifies the reportlet. The name can contain letters and numerals only. This
name must be unique among reportlets within the same scenario. See
“Object Namespace” on page 248 for details.

Whether or not the reportlet is enabled or disabled.

Note: When the containing scenario is disabled, you cannot make the
reportlet enabled. The scenario must be enabled before the reportlet
may be enabled.

Optional description that may contain any text characters.

Business view from which the report draws its data. Contains the column data
to send to the external report.

Name of the report in the external system. This is the DocName element in
the URL that communicates with the external report system:

http://localhost.com?DocName=<Report Name>

Parameters to pass to the external system. Each parameter corresponds to a
column in the view. The reportlet substitutes the value of each named
column into the URL. For example, the URL is defined as follows:

. .?DocName=<Report Name>&Parameterl=PROD ID&...
It looks similar to this when sent to the external system:

. .?DocName=<Report Name>&product="product id"&...

Adobe LiveCycle ES

Reportlets

Business Activity Monitoring Server Reference External Reportlet Attributes 294

Attribute

Description

Report Arguments

Display Link

This panel specifies argument values that can be assigned to arguments in
the URL specified in the external link. For example, consider the case in which
the external link defines a base URL for a Cognos report, and the base URL
needs the following arguments:

ui.tool=CognosView

ui.object=contect/folder[@name="Demo Report'l/report({@name="Inventory
Levels by Retailers’]

ui.action=run
run.outputFormat=PDF

The base URL is
http//server-name/cognos8/cgi-bin/cognos.cgi?b_cation=xts.run&m=portal
/launch.xts&

When the Associated Report is called from the dashboard object, the values
specified for the arguments in the Report Arguments pannel, the actual URL
request is constructed as follows:

http//server-name/cognos8/cgi-bin/cognos.cgi?b_cation=xts.run&m=portal
/launch.xts&ui.tool-CognosView& ui.object=contect/folder[@name="Demo
Report’l/reportf@name="Inventory Levels by
Retailers']&ui.action=run&run.outputFormat=PDF

Shows the complete, qualified URL that will appear in the alert message and
is the link to the external report system.

The URLs used to communicate with the external report system begin with the string defined for the
report in the External Links list on the BAM Workbench tab in the BAM Workbench. For more information
about these locators, see “Working with External Links” in Using Business Activity Monitoring Workbench.

Adobe LiveCycle ES Reportlets
Business Activity Monitoring Server Reference Reportlet Views 295

Reportlets retrieve their information from the business view that the alert is based on or from any view
derived from the same event source (in the same event stream). For example, consider a rule that
generated the customer alert based on the view InventoryLow. Another view, AvailableSuppliers adds
context by indicating alternative suppliers. The reportlet attached to the alert may draw information from
either of these views. Further, because ShippingNotices is derived from the same event source, you could
also retrieve information from it. However, you cannot retrieve information from OrderDetails because it is
on a different event stream.

AvailableSupplier

ShippingNotices InventoryLow

OrderDetails

(Customer) (WarehouseEvent’ Product) Supplier) OrderEvent ’

For more details about the information that appears in the reportlet view, see “Reportlet Filtering” on
page 36.

Note that the reportlet view may not be a synchronized join. See “Synchronized Joins” on page 353 for
details.

25

Roles

Roles define permissions associated with User and provide a way to assign the same permissions to
objects and groups of sure without having to set those permission for each individual user of the group.

» In this Chapter:

e “Creating roles” on page 298

e “Role Attributes” on page 298

296

Adobe LiveCycle ES Roles
Business Activity Monitoring Server Reference Overview 297

Roles define the minimum sets of Permissions associated with Users. Roles provide a way to quickly assign
the same permissions to an object or class of objects and for groups of users without having to set those
permissions for each individual user of the group. For example, an “operator” role might provide full
permissions to agents but not to events or business activity objects, while a “application developer” role
might have full permissions on all objects, except agents.

Users may belong to none, one, or more roles. To see which roles a user belongs to, edit the user account
and view the User Details Tab. To see which roles you belong to, click Account Settings and view the tab.

A user’s permission for a particular operation is the maximum of all the permissions associated with that
user’s roles and with any individual permissions assigned to the user for the object. Consider a user with
two roles: one has Read-only access to the views class, and the other has read and write access. The
maximum permission on views for this user is Read and Write, and as such, this user can edit views.

When a user has multiple roles with
overlapping permissions on an
object, the greatest permission is
used. This user has Read and Write
access.

Similarly, if a user has one role, and that role is limited to Read only for all views but has been individually
assigned Read and Write to a particular view, that user may edit that view.

When a user’s specific permission
overlaps with a role, greatest
permission is used. This user has
Read and Write access.

Specific

Role

Read

Note: For details about specific access levels, see “Permissions” on page 253. Any unusual interactions
between object permissions and roles are described in the discussions of that object.

Roles are objects maintain lists of users and associated permissions, and like all other Business Activity
Monitoring objects, roles are protected by permissions. Only users with specific permissions on a role — or
on all roles — can perform that action on the role. For example, to add users to a role, you need Read and
Write permission on that role.

To see the roles defined in the installation, look at the Roles list in the Administration Console of the BAM
Workbench.

Adobe LiveCycle ES Roles
Business Activity Monitoring Server Reference Creating roles 298

To create roles, you need Create permission for roles. For each object class, you can assign up to the
greatest permission that you have for that class. For example, if you have Create permission for a class, for
that class, you can assign any of

e No Access,
e Readonly,
e Read and Write

e Create

» To create arole:

1. Open the Administration Console.

2. Click Roles to see the list of all currently defined roles.

3. Click New Role.

4. Fillin the role attributes, assign access permissions, and identify the members of the role.

5. Save the role to begin using it.

Each role object has the following attributes:

Attribute Description

Name Identifies the role object. The name can contain letters and numerals only.
This name must be unique among roles. See “Object Namespace” on
page 248 for details.

Description Optional description that may contain any text characters.

Access Permissions Permissions for each class of objects assigned to this role. These are the
minimum permissions. A user may have a greater permissions assigned
individually to the class (see “Access Permissions Tab” on page 335) orto a
specific object.

Members Users associated with this role.

26

Rules

Rules monitor business activities by analyzing business views looking for metrics that meet specific
conditions. Rule conditions are spreadsheet-like formulas that evaluate the changing business metrics
looking for exceptional conditions. When a condition is found to exist, an alert of that incident is sent to
key personnel.

1. Rules monitor views IS Status ='Open'?

evaluating expressions.

I ’ 2. When the expression is —
\ true, execute an action.

WHEN [Status = 'Open'] FIRE [

You can create rules that send alerts every time the condition is found to exist (fire), create rules that send
alerts once and ignore subsequent events until the initial condition is resolved (raise), or create rules that
reset (lower) previously raised rules.

Note: Prior to Version 3.2, the rule could only monitor views derived from the scenario “default” view.
This restriction no longer applies.

In this Chapter:
e “Creating Rules” on page 300

e “Rule Attributes” on page 301

e “Rule Condition” on page 302

e "“Rule Action” on page 302

e “Monitoring Alerts” on page 303

e “Monitoring the System Log” on page 304

299

Adobe LiveCycle ES Rules
Business Activity Monitoring Server Reference Creating Rules 300

You can create rules from scratch or clone and modify existing rules. Both require the user to have Create
permission for business activities (see “Creating Permission” on page 258 for details), Read and Write
permission on the business activity that will contain the rule, and Read Only permission on the view that
will feed the rule.

> To create a new rule:

1. Open the Scenario Modeler.

2. Open an existing business activity.

3. Open an existing scenario.
4. Click the New Rule button.

5. Fillin the rule attributes (described below) in Step 1 of the Rule Definition form. Additionally:
e Choose the data source that the rule will monitor.

e If the scenario has a “default view’, that one appears selected by default. Choose another source to
monitor by clicking Select Data Source.

e Foraview, choose the view.

e For a cube, choose the dimension level in a cube. Optionally you may also apply a filter that further
restricts the data that the rule monitors.

If the source contains data, that data appears to provide a sample of what to expect. When the source is
empty, the form displays just the column names and the message “No Data Available”.

e For the Action Taken, identify the alert to activate when the rule condition is met. Do one of the
following:

e Select an existing alert by clicking this alert in the Rule effect field.

e Click Next to access the Alert Definition form and define or review the alert. See “Alert
Attributes” on page 29 for details about the fields on this form.

6. Finish creating the rule.

If the rule was saved enabled, it will immediately begin monitoring the view for events.

» To clone an existing rule:

1. Edit the rule you want to clone.
2. Change the rule name, and change the other attributes that differ from the original rule.

3. Choose “Save as New Rule.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Rule Attributes

Rules
301

Every rule has the following attributes:

Attribute

Description

Data source

Name

Status

Description

Rule condition

Holds for

Action taken

Identifies the business view or cube that the rule monitors.

Identifies the rule object. The name can contain letters and numerals only.
This name must be unique among rules within the same scenario. See
“Object Namespace” on page 248 for details.

Specifies if the rule is enabled (receiving new event information) or
disabled.

Note: When the containing scenario is disabled, you cannot make the rule
enabled. The scenario must be enabled before the rule may be
enabled.

Optional description that may contain any text characters.

The spreadsheet-like, true or false formula that is evaluated against the
associated business view. When the formula evaluates to True, the
condition is said to exist and the system then sends the alert. See “Rule
Condition” on page 302 for details.

Sends the alert only when the condition holds true for an entire specified
length of time. No alert is sent if the condition becomes false at any time
during the wait. When you omit the duration, the system sends the alert as
soon as the condition exists.

You can specify a value using one of the following methods:
« Specify a number to indicate the length of time wait.

» Specify the name of a column in the view that contains the number.
When you use this option, the rule takes the value from the event in
the view.

Note: In locales where daylight savings time is observed, durations of days,
months, and years are adjusted accordingly. As such, while 1 day is
typically 24 hours long, it may be 23 or 25 hours depending on the
time of year.

What to do when the condition exists. Rules can send alerts every time the
condition is found to exist (fire), send alerts once and ignore subsequent
events until the initial condition is resolved (raise), or reset (lower)
previously raised rules. See “Rule Action” on page 302 for details.

Adobe LiveCycle ES Rules
Business Activity Monitoring Server Reference Rule Condition 302

A rule condition is a formula that tests the row in the associated business view looking for a specific
condition. When the condition exists the rule action activates an alert. Formulas can be simple tests for a
value in a column in the view, such as Status='"Resolved', or they can be complex Boolean expressions with
functions, operators, and parenthesis groupings, such as (Status='"Resolved' OR Status='Assigned') AND
UPPER(cust_tier)="HIGH'".

A rule condition formula contains any number of column references, operators, and functions. However,
the formula must conform to the following:

The formula result must be Boolean, returning True or False.
All column references must be in the associated business view.

Only scalar functions (functions that apply to a single row in a view) may be used. To see which
functions are available, click More Functions when entering the rule condition. See “Functions” on
page 114 for detailed descriptions of the functions.

Rules can have one of three effects:

Send alerts every time the condition is found to exist (fire). A fire action sends an alert every time a rule
identifies an exceptional condition. For example, consider a customer support center that tracks
customer problems as ticket events, an alert might be fired every time a new ticket is opened.

Send alerts once and ignore subsequent events until the initial condition is resolved (raise). A raise
action sends an alert message when the rule’s condition applies but ignores subsequent events until
after the initial condition is resolved. A raise action is useful when you do not want multiple alerts for
situations where the rule condition is true for multiple, related events. For example, if an open
customer problem ticket is edited, you do not want another alert for the edit event, even though the
status of second event is still “open.”

The “for a specific occurrence” option allows you to send alerts once for each specific occurrence of the
named column. For example, to send an alert every time a new problem ticket is opened, you might
I 1

identify Ticket as the specific occurrence column. That way, one alert is sent for each ticket’s “open”
event, but the alert is ignored for all subsequent events to that ticket while its status remains “open.”

Reset (lower) previously raised rules to allow them to send alerts.

Adobe LiveCycle ES Rules
Business Activity Monitoring Server Reference Specific Occurrences 303

When a Raise rule activates an alert, the alert does not activate again — subsequent Raise rules for the
alert are ignored — until a Lower rule first resets it. For example, when a rule condition is “Status=Open”,
the first event below activates the alert, but the subsequent ones are ignored unless the alert’s state is first
lowered. For example:

Ticket Status

0703 Open << Raise
0706 Open << Ignore
0704 Open << Ignore
0705 Open << Ignore

In this example, it is more likely that you would want an alert for each Open event. To do that, you can use
a “For a specific” condition which activates an instance of the alert for each unique occurrence of the
values in the specified columns.

Raise someAlert when Status = 'Open' for unique occurrences of Ticket.
By identifying Ticket as the specific column, an alert instance will be activated, and a message sent, every

time for each Open event that does not already have an instance for the specific ticket number. Similarly,
you can reset each alert instance individually with specific Lower rules.

Lower someAlert when Status = 'Open' for unique occurrences of Ticket.

Note: If you ignore the specific fields in the Lower rule, the rule will reset all instances of the alert that
have been raised.

Rules typically analyze Business Views looking for metrics that meet specific conditions. However, rules can
also monitor generated alerts looking for conditions that require further attention with the IS_RAISED()
function.

. (Frstnie) (Frstion) =/ <]
Monitor an alert and send a ﬁﬁ
second one when the first

(second et) =]

remains raised.

For example, if an alert was sent 4 hours earlier and is still in a raised state, another rule might notice that
fact and generate a new, escalated alert. Consider these rule descriptions, where EscalateAlert is raised only
when OpenAlert remains raised for at least 4 hours:

Raise OpenAlert when Status = 'Open'

Reset OpenAlert when Status <> 'Open'

Raise EscalateAlert when IS RAISED ('OpenAlert') holds for 4 HOUR.
Reset EscalateAlert when NOT IS RAISED ('OpenAlert')

Adobe LiveCycle ES Rules
Business Activity Monitoring Server Reference Specific Alerts 304

When an alert is generated for unique occurrences of fields, the system tracks each alert by those field
values. For example, the following rule raises alerts and tracks the open ones by the unique values of the
Ticket field:

Raise OpenAlert when Status = 'Open' for unique occurrences of Ticket

To properly track this alert, the rule with the IS_RAISED() needs the same specific condition:

Raise EscalateAlert when IS RAISED('OpenAlert') holds for 4 HOUR
for unique occurrences of Ticket

If you were to omit the specific field condition, the EscalateAlert would be raised for the first OpenAlert only.
Similarly, you must reset the alerts with rule conditions specific to the same fields, or you will reset all of
the raised alerts.

Reset OpenAlert when Status <> 'Open' for unique occurrences of Ticket
Reset EscalateAlert when NOT IS RAISED ('OpenAlert')
for unique occurrences of Ticket

Business Activity Monitoring generates messages that facilitate software service and maintenance by
producing reports suitable for analysis by end users, system administrators, support engineers, and
software development teams. For details about the logging system, see “Understanding Logging” in
Using Business Activity Monitoring Workbench.

You can build a rule that monitors the messages looking for high priority error conditions, then report
them to key administrators. To do that, follow the steps in “Monitoring the Logs” in Using Business Activity
Monitoring Workbench.

27

Salesforce

You can access and import tables from a Salesforce system.

This is a two-step process. The first step is the creation of a Salesforce agent that connects to Salesforce

tables. The second step is the use of a separate extraction wizard to import Salesforce events and contexts.

The imported Salesforce objects can then be used as data sources for dashboard objects like business

views and cubes.

In this Chapter:

“Creating a Salesforce Agent” on page 306

“Importing Salesforce Events and Contexts” on page 307

“Salesforce Flattening Function” on page 309

“Salesforce Picklist Function” on page 310

“Salesforce Administration Console” on page 312

305

Adobe LiveCycle ES Salesforce
Business Activity Monitoring Server Reference Creating a Salesforce Agent 306

Creating a Salesforce Agent

A Salesforce agent imports Salesforce tables for use in events and contexts.

» To create an Salesforce agent:
1. Open the BAM Workbench Administration Console.

2. Click New Agent.

3. Choose Salesforce as the source type.

When you select the source type, the subsequent settings redisplay to show settings appropriate to
that type.

4. Enter a Name value and set Status to Enabled.

5. Enter a User name and Password.

Select Salesforce as Agent Type

Create Agent
Agent Type: | Salesforce w
Hame: i | Status| Enabled |+
Descripkion: N

Agent Details
URL b W/SDL File: {optional): | |

User name: | |

Password: | |

Type: | Partner b

=

Enter details for Salesforce Agent

6. Click OK.

You can now use a wizard to import Salesforce events and contexts into BAM Workbench as described
in the next section.

Adobe LiveCycle ES Salesforce
Business Activity Monitoring Server Reference Importing Salesforce Events and Contexts 307

Importing Salesforce Events and Contexts

Execute the following procedure to use the Import Salesforce Object Wizard.

» To import Salesforce events and contexts:
1. Open the BAM Workbench Administration Console.

2. Click on Wizards in the Navigation Tree.

This action lists the available wizards in the main panel to right.

3. Click Import Salesforce Object Wizard.
The Import Salesforce Table dialog displays.

Import Salesforce Object Wizard Help

Salesforce Agent: |EEEEENLEENE ¥

Import Salesforce Users Inko Users

List of Users Selected Users
USER@CELEQUEST.DEMO
Select Salesforce users ADMINGCELEQUEST.DEMO
to import. —
Remowve
Impott Salesforce Tables Inka Event
List of Tables Selected Tables
ACCOUNT Y
Select Salesforce Tables ACCOUNTCONTACTROLE =
: : ACCOUNTPARTMER
to |mport into event. ACCOUNTSHARE Add
APPROVAL
ASSET Remowve
ASSIGNMEMTRILE b

Import Salesfarce Tables Into Conbext
List of Tables Selected Tables

ACCOUNT
ACCOUNTCONTACTROLE
Select Salesforce Tables ACCOUNTPARTMER add

f f ACCOUNTSHARE
to import into context. APPROVAL

ASSET Remowve
ATSIGMMEMTRLULE

181

I

|

oo) cancel

4. For Salesforce Agent, select the agent you created in “Creating a Salesforce Agent” on page 306.

5. Select the users to import from List of Users.

6. Select the tables to import from List of Table for event and click Add.

When you add a table, it is removed from the List of Tables and placed in the Selected Tables list. To
move it back, click Remove.

Adobe LiveCycle ES Salesforce
Business Activity Monitoring Server Reference Importing Salesforce Events and Contexts 308

7. Select the tables to import from List of Table for context and click Add.
When you add a table, it is removed from the List of Tables and placed in the Selected Tables list. To
move it back, click Remove.

8. Click OK.

The events and contexts are created from the selected tables in Application Workbench with _events and
_context to the table name under Events and Contexts, respectively. For example, if you imported a
Salesforce table Account into an event, it has the event name Account_event.

Note: If a table in the Selected Tables list is being used for an event or a context, you cannot remove it
from Selected Tables. You must first delete the event or context.

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Salesforce

Salesforce Flattening Function

309

A function is available for use with Salesforce Agents that flattens a Salesforce table. However, the table

can only be flattened if the table represents a tree structure, where the top level represents the root
element of the tree. After the table is flattened the each row in the new table represents a leaf node of the
original tree. For example, consider the following table:

NodeName NodelD NodeParentid

A

lon)

O N

G

1

2

NULL

1

This table can be represented by the tree shown below. The tree has four levels where Level 0 has the root
element A.

A Level 0

B C Level 1

D E Level 2
/\

F G Level 3

After flattening, the rows in the new table represents the leaf nodes C, D,F, and G.

Level0 Levell Level2 Level3

A B D NULL

A B E F

A B E G

A C NULL NULL
Syntax

The flattening function has the following syntax:

FLATTEN (tableName,

idColumnName, parentIdColumnName

prefixForLevelColumns)

, nameColumn,

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Salesforce
Salesforce Picklist Function 310

Parameters

The parameters of the function are defined as follows:

tableName — The name of the table to flatten.

idColumnName — The ID column of the table (that is, the column to which parent IdColumnName
will join). For example, in the description above, the idColumnName is “NodelD.”

parentldColumnName — The column containing the node IDs of the parent nodes for each row. For
example, in the description above, node A has an ID of 1 and is the parent of node B; therefore, the
parent ID in the column “NodeParentID” for Node B is 1. Likewise, the parent node of node D is node B;
therefore, the NodeParentID for D is 2 because the node ID of node Bis 2.

nameColumn — The column representing the data to be shown in the flattened table.

prefixForLevelColumns — The string prefix that will be prepended to the column. In the description
above, the prefix is “Level.”

Remarks

You must have data caching with prefetch enabled in your context for the flatten function to work
properly. See “Caching Context Queries” on page 48 for details about enabling caching.

Example

The following is a table before flattening.

@[s -

Id

QOESO000000j&GEAZ
QOESO000000jAHEAZ
QOESO000000iALIEAZ
QOESO000000jALIEAZ
QOESO000000iAILKEAZ
QOESOO00000jALLEAZ
QOESO000000iALMEAZ
QOESOO00000jALIMEAZ

MNane
CEC

SYP, Customer Service & Support

SWP, Sales 8 Marketing
WP, Markeking

WP, Morth smerican Sales
Direckar, Channel Sales
Direckar, Direct Sales
CFQ

ParentRoleld RollupDescription

CED

QOESOO0O000jALGEAZ
QOESO00O000jAGEAZ
QOESOO00000jALIESZ
QOESOO00000jAUIESAZ
QOESOO00000iALKEAZ
QOESOO00000iALKEAZ
QOESOO0O000jALIGEAZ

The following is the table after it has been flattened with the function:

@l oo o |-

flatten (USERROLE, ID, ParentRoleID, Name, cg)

Id cg_1
OOESOO0O000jALUMNEAZ CEO
OOESOOOOOOOjALUCERZ CEC
OOESOO0O000jALURPERAZ CEO
OOESOOOOOOOjAUQEARZ CEC
OOESOO0O000jALUREAZ CEO
OOESOOOOOOOjAUSERZ CEO
OOESOO0O000jAUTERAZ CEO
OOESOOOOOOOjAUUEAZ CEC

g 2
CFO
o0

SYP, Customer Service & Suppork
SYP, Customer Service & Suppoark
SYP, Customer Service & Suppork

SYP, Hurman Resources
SVP, Sales & Marketing
WP, Sales & Marketing

cg_4

Custamer Support, Inkernational
Cuskomer Support, Morth America
Installation & Repair Services

VP, International Sales
WP, Marketing

SYWP, Customer Service & Suppork
WP, Sales & Markeking

WP, Marketing

WP, Maorkh American Sales
Directar, Channel Sales

Directar, Direck Sales

CFQ

og_5

Marketing Team

In addition to the flatten function, there is also a picklist function available for use with Salesforce agents.
The picklist function returns a single column dataset of the possible values for a picklist typed column in
Salesforce.

Adobe LiveCycle ES Salesforce
Business Activity Monitoring Server Reference Salesforce Picklist Function 311

Syntax

The flattening function has the following syntax:

PICKLIST(tableName,pickListColumn)

Parameters

The parameters of the function are defined as follows:
e tableName — The name of the table from which to return the single column dataset.

e pickListColumn— The column in the table specified by tableName to return.

Remarks

You must have data caching with prefetch enabled in your context for the picklist function to work
properly. See “Caching Context Queries” on page 48 for details about enabling caching.

The column to return must be a picklist typed column.

Example

The following picklist function returns the dataset of possible values from the LeadSource column in the
Opportunity table.

picklist (opportunity, leadsource)

The illustration below shows the Opportunity table.

AccountId Name LeadSource

1 | 0015000000GTw TAAT | GensPaoint Lab Generators

2 | 0015000000GTyr TAAT | GenePaint SLA Partner Referral
3 | 0015000000GTwr TAAT | GenePaint Skandby Generataor Partner Referral
4 | 0015000000GTwMAAT | Grand Hotels SLA Partner Referral
5 | 0015000000GTwrOAAT | Express Logistics Portable Truck Generators | Partner Referral
B | 0015000000GTwrOAAT - Express Logistics SLA Partner FReferral
T | 0015000000GTwrOAAT | Express Logistics Standby Generator ‘Weh

The picklist function retrieves the LeadSource column.

leadsource
Partner Referral
Partner Referral
Partner Referral
Partner Referral
Partner Referral
Weh

A [|G | P [

Adobe LiveCycle ES

Business Activity Monitoring Server Reference

Salesforce

Salesforce Administration Console 312

To obtain a Salesforce.com account you will need to access the Cognos LAVA for AppExchange
administration console. To access the console, enter the following in your browser:

On the page that displays, enter the following:

o Title

Company name

E-mail address

Your first and last name

Contact telephone

Administrator’s name.

Welcome to Cognos LAVA for AppExchange administration console.

Please provide the following infarmation
to get your account configuration
completed. Once you submit the farm,
you will receive a submission
confirmation to the email address you
provided. Please contact Cognos
Support at (866)736-1500 extension 8 or
email us at saas-support@cognos.com
in case you do not receive a
confirmation email fram us.

Note: Al fields are required unless
specified as optional. YWe would like to
ensure you that your admin username
and password is securely sent with S50
encryption. Providing your admin
usernarme and password will give LAVA
read-only access to your
Salesforce.com data and is required to
activate your LAVA Analytics
application.

http://[localhost]:[portl/bam/jsp/salesforceadmin.jsp

Under service package select either 14 Day Trail or Standard Service Subscription.

List the names of additional users for this account in the User’s List field.

First Name

Last Name

Title

Company Name
Telephone

Email

Admin User Name
Password

Please select your
service package
14 Day Trial hd

Users List - optional (comma separated)

Submit

After you click Submit, you will be sent an e-mail confirming that your request has been successfully
submitted. It will also inform you that a representative will contact you to confirm the submission and

provide you with the information about next steps to complete the configuration process.

28 SAP Connectivity

You can access and import fact tables (in the form of ODS objects) and cubes (in the form of OLAP cubes)
from an SAP system.

This is a three-step process. The first step is the creation of a standard JDBC agent that connects to the SAP
database. The second is the creation of an ERP agent that uses an SAP metadata JDBC agent to access the
SAP system as a source type. The third step is the use of a separate extraction wizard to import ODS
objects or OLAP cubes.

The imported ODS objects and cubes can then be used as data sources for dashboard objects like business
views and cubes.

» In this Chapter:
e “Creating an SAP Agent” on page 314

e “Importing ODS Objects” on page 315

e “Importing OLAP cubes” on page 317

313

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

SAP Connectivity
Creating an SAP Agent 314

Creating an SAP Agent

An SAP agent is an ERP agent that uses a JDBC agent to access the database for the SAP system.

» To create an SAP agent:

1. Open the BAM Workbench Administration Console.

2. Create a JDBC agent that connects to the SAP database.

For instructions on creating a JDBC agent, see “JDBC Agents” on page 224.

3. Click New Agent.

4. Choose ERP as the source type.

When you select the source type, the subsequent settings redisplay to show settings appropriate to

that type.

5. Enter a Name value and set Status to Enabled.

6. For ERP Source Type, select SAP (or variation thereof).

Note: This selection may cause the connectivity settings below to redisplay again.

Select ERP as Agent Type

Create Agent

Agent Tvpe: | ERFP v

Mame: |SAPEW Agent

| Status| Enabled

Description:

-

Agent Details

ERP Source Type: | SAP-BW

JDEC Agenk: | SAPIDEC Agent

ERF Metadata Connectivity Sektings

ERP User Mame: |jmarra

ERF Password: |-uuuu

Language (lang): |EN

A5Hosk: |192.168.1.26

Client: | 100

System Mumber: |DD|

I
Select SAP as ERP Source Type and JDBC Agent created for the SAP agent

7. For JDBC Agent, select the JDBC agent you created earlier to connect to the SAP database.

8. Complete the ERP Metadata Connectivity Settings as appropriate.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

SAP Connectivity
Importing ODS Objects 315

9. Click OK.

You can now use a wizard to import ODS objects and OLAP cubes into BAM Workbench, as described in

the following sections.

Execute the following procedure to use the Import ODS Object Wizard.

» To import ODS objects from an SAP system:

1. Open the BAM Workbench Administration Console.

2. Click on Wizards in the Navigation Tree.

This action lists the available wizards in the main panel to right.

3. Click Import ODS Object Wizard.

The Import ODS Table

dialog displays.

4. For ERP Agent, select the agent you created in “Creating an SAP Agent” on page 314.

5. Select the Info Group that contains the desired ODS object.

6. This selection populates the Table to Import dropdown list.

Select the ERP agent previously configured

Import ODS Table

To import an 203 Sbject From an Operational Data Store (0O03) as an Event or Conkesxt from an SAP-based ERP
syskem, please chooge the ERP Agent where the object is lacated, Choose the Info Group and the Object Mame,

ERP Agent:

SAPEW Agent |

as well as drans 35 L0 T 0 porE 1T,

Info Group: | DCRM_SERY_PROC 7|

Table to impart;

Descripkion:

0cr

Impork as: ?CR

< Select One = W

OCRM_CNFI
0CRM_COH
OCRM_COL
Impart Details o -0 FROH

CIFH |

PROT

Descripkion:

Irnpork as: @

@]
@]

Select the desired fact table from the populated list

7. From the Table to Import dropdown list, select the desired fact table.

Event {snapshot From Active Table)
Event {from Update Table)
Conkext (Ffrom Active Table)

Lo Cancel

Adobe LiveCycle ES SAP Connectivity
Business Activity Monitoring Server Reference Importing ODS Objects 316

8. Specify the following import parameters:

e ForImport as..., enter the name by which the resulting event or context will be identified in BAM
Workbench.

e For Description, enter an optional description.
e Specify how the imported ODS object will be utilized: Event (two options) or Context.

Note: For more information about Events and Contexts, see “Events” on page 76 and “Context” on
page 43.

9. Click OK.

The selected ODS object is imported and can now be accessed via the Events or Contexts, depending
on the import options selected.

Adobe LiveCycle ES SAP Connectivity
Business Activity Monitoring Server Reference Importing OLAP cubes 317

Execute the following procedure to use the Import ERP Cube Wizard.

» To import OLAP cubes from an SAP system:
1. Open the BAM Workbench Administration Console.

2. Click on Wizards in the Navigation Tree.

This action lists the available wizards in the main panel to right.

3. Click Import ERP Cube Wizard.
The Import ERP Cube dialog displays.

4. For ERP Agent, select the agent you created in “Creating an SAP Agent” on page 314.

5. Select the cube you wish to import.

6. Inthe Import as field, accept the automatic default (the same names as in SAP) or enter a new name by
which the imported cube will be identified in BAM Workbench.

Select the ERP agent previously configured

Import ERP Cube

Toimport an SLAP Jube from an ERP syskem, please choose the ERP Agent where the cube is located, all objects
necessaty For the Cube ko work will be created, referencing the remote data. Objects created will inchude Events,
Contexts, IMMeEnEonE, and Caoes.

ERP Agent: SAPBWY Agent W

Cube ko impart: |&E

Dt Salgs Order Ling Ikems

Import as: |3D_{TEMS

Select the desired cube from the populated list

7. Click OK.

The selected fact table is imported and can now be accessed via the Cubes panel.

29

Scenarios

A scenario is a collection of rules, alerts, and reportlets that identify exceptional business conditions. The

rules in the scenario are the tests that determine when the exceptional condition exists or when it no

longer exists.

—Business Activity
—Scenario
Rule
Rule
Rule
Alert
Reportlet

—Scenario

Rule
Alert

__—Business Activities are collections of
possible scenarios.

Scenarios identify exceptional
conditions within a business activity.

Tips:

e Deleting a scenario deletes its contained rules, alerts, and reportlets.

e Disabling a scenario disables its contained rules, alerts, and reportlets.

» In this Chapter:

e "“Creating Scenarios” on page 319

e “Scenario Attributes” on page 319

e "“Deleting Scenarios” on page 320

318

Adobe LiveCycle ES Scenarios
Business Activity Monitoring Server Reference Creating Scenarios 319

To create a scenario, you must have the following:

e Create permission for business activities (see “Creating Permission” on page 258 for details)

e Read and Write permission on the business activity that will contain the scenario

e (Optional) Read Only permission on the default view for the scenario.

» To create a new scenario:

1. Open the Scenario Modeler.
2. Select a Business Activity to contain the scenario
3. Click New Scenario

4. Fillin the fields of the New Scenario dialog.

Every scenario has the following attributes:

Attribute Description

Folder Status Specifies if the rule is enabled (receiving new event information) or disabled.
When an scenario is disabled, all of its rules, alerts, and reportlets are also
disabled.

Note: When the containing business activity is disabled, you cannot make
the scenario enabled. The business activity must be enabled before the
scenario may be enabled.

Scenario Name Identifies the scenario object. The name can contain letters and numerals
only. This name must be unique among scenarios. See “Object Namespace”

on page 248 for details.

Description Optional description of the scenario that may contain any text characters.

View Identifies the default business view that the rules of this scenario monitor,
and reportets report on. “No default view” requires that you pick a view for
rules and reportlets when you create them.

View Description Displays the description of the selected View.

Adobe LiveCycle ES Scenarios
Business Activity Monitoring Server Reference Deleting Scenarios 320

Deleting a scenario deletes its contained rules, alerts, and reportlets. Once deleted, they cannot be
restored.

» To delete a scenario:

1. Open the Scenario Modeler.
2. Select the business activity that contains the scenario.
3. Select the scenario to remove.

4. Click Delete Scenario.

30

SELECT

C-SQL SELECT statements define the views that manage information in Business Activity Monitoring. BAM
Workbench constructs SELECT statements based on the views you define in its graphical user interface,
and then passes them to the BAM Server(s) for instantiation. You can see the complete SELECT statement
that defines a view in the BAM Workbench by clicking the Displaying SQL Expressions option when
creating or editing a view.

Some of the advanced features of the SELECT command cannot be expressed by the options in the BAM
Workbench. For example, complex join conditions, query windows, and table expressions must be entered
manually in fields in the user interface.

This topic describes the syntax and features of the C-SQL SELECT command in detail.

Note: The C-SQL SELECT command is a subset and extension of ANSI SQL-99, a query language
standard. The C-SQL implementation supports outer joins using the ANSI outer join (left outer
join and right outer join) syntax, and aggregation functions in the select clause. Further, each
individual statement is treated as a transaction and is committed as soon as it executes.

In this Chapter:
e "“Syntax” on page 322

e “Select List” on page 322

e "“FROM Clause” on page 325

e "WHERE Clause” on page 328

e "“"GROUP BY Clause” on page 329
e "ORDERBY Clause” on page 331

321

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

SELECT
Syntax 322

The operators that define the SELECT specifications are:

SELECT selectList

FROM joinClauses

WHERE searchCondition]
GROUP BY groupClause]
WINDOW windowClause]
ORDER BY orderClause]

— /e

The operators are applied in the following order:

1.

2.

o

FROM Clause — specifies the base tables or views that provide data to this view.
WHERE Clause (optional) — filters the input to match specified criteria.

GROUP BY Clause (optional) — groups the resulting table on one or more columns.

Select List — defines the columns to appear in the resulting table.

WINDOW clause (optional) — defines windows used by aggregate functions in the Select list. This

clause is described in the section “Query Windows” on page 272.

ORDER BY (optional) — orders (sorts) the resulting table.

Defines the columns to appear in the resulting virtual table.

The select list immediately follows the SELECT keyword and has two forms:

Just an asterisk (*) to choose all columns that are part of the source table.

SELECT * ..

The resulting view contains the columns of each of the input tables or views, in the order that they
occur in the source, and in the order listed in the FROM Clause. For Quter Joins, resulting columns that

do not exist in both references are assigned NULL values.

A list of unique column names or derived columns.
SELECT columnNameList

Where each columnName is separated by a comma (,) and is defined as
columnName [[AS] aliasName [OVER (windowClause)] 1]

The AS option assigns a new name to the associated column. The literal “AS” is optional.

The OVER option defines an in-line window. See “Query Windows" on page 272 for details.

Where each columnName is one of the following:
e simple column reference — the column name.

current rental price

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference CASE Expression 323

e qualified column reference — one prefaced by the table name.
movie titles.current rental price

To select all columns from one table while selecting some columns from other tables, use a qualified
column reference and specify an asterisk (*) for the column name. For example, the following selects all
movie_title columns, and two columns from the media table:

movie titles.*, media.media type, media.name

e derived column — an expression (possibly a case expression, see “CASE Expression” for details):

MAX ((movie titles.current rental price/2)) AS Half Price

For derived columns the aliasName is required.

A CASE expression returns the result of an expression that corresponds to a matching true condition.
Optionally, each condition may return NULL instead. If no condition is found to be true, the expression
returns the result of the ELSE condition or NULL when ELSE is omitted.

There are two forms of CASE expressions:

e Simple condition — Evaluates the caseExpression and compares it against the result of each
equalsExpression until one matches, then returns the corresponding resultExpression result. Each of the
equalsExpression must of a type comparable to the caseExpression.

CASE caseExpression
[{ WHEN equalsExpression THEN { resultExpression | NULL }}...]
[ELSE { resultExpression | NULL }]

END

e Search condition — Evaluates each searchCondition until one is found to be true, then returns the
corresponding resultExpression result.

CASE WHEN searchExpression THEN { resultExpression | NULL }
[{ WHEN searchExpression THEN { resultExpression | NULL }}...]
[ELSE { resultExpression | NULL }]

END

These CASE expressions have the same result:

SELECT Tier AS
CASE WHEN Tier = 'High' THEN 'Priority customer'

SELECT Tier AS
CASE Tier WHEN 'High' THEN 'Priority customer'

Adobe LiveCycle ES

SELECT
Business Activity Monitoring Server Reference

CASE Expression 324

The following is an example that generates running totals for each ticket status at each tier level:

CREATE VIEW VTotal_Tickets AS
SELECT Tier,

SUM (CASE Status WHEN Open THEN 1 ELSE 0 END) AS Opens,
SUM (CASE Status WHEN Reopen THEN 1 ELSE 0 END) AS Reopens,
SUM (CASE Status WHEN Resolved THEN 1 ELSE 0 END) AS Closes,
(Opens+Reopens-Closes) AS Pending

FROM VCustomerTickets

GROUP BY Tier

Tier Opens Reopens |Closes Pending

High 2 0 0 2
Medium 1 2 3 0
Low 1 1 1 1

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference FROM Clause 325

Specifies the tables and views from which to build the new view.
FROM reference [[AS] aliasName]
[, reference [[AS] aliasName] ..]
Where a reference is:
e Simple reference:
tableOrView
e Join operation (see Join Operations” below, for details):

(reference [{LEFT | RIGHT} [OUTER] | INNER]
JOIN reference ON searchCondition)

e Table expression (see “Table Expressions” on page 327 for details):

(SELECT selectList FROM joinClauses [WHERE searchCondition]
[GROUP BY groupClause] [WINDOW windowClause])

Specifying a single, simple reference creates a view that is a snapshot view of the source table or view.
Including more than one reference specifies a join operation.

Views have these constraints of the sources to the FROM clause:
e Aview may be derived from an event table or another view.
e Aview may join an event table or view, and one or more context tables.

e Aview may not join two or more event streams, or views based on different event streams. (A
Consolidated Event is a special-case join of event streams.)

e Aview may not be derived from context tables only.

The C-SQL SELECT supports these join operations:

e Cross Joins

e Innerjoins

e Outer Joins

e Nested Joins

Including more than one reference causes a join operation. The resulting view is cross join unless you either

use the JOIN operator to specify another type of join condition or include a WHERE Clause that specifies a
join condition

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference Inner joins 326

If you omit the JOIN operator, you define a a view that is a cross join of the input views (also know as a
cartesian product), such as this join of the Product and Manufacturer views:

FROM Product AS P, Manufacturer AS M
Note: DO NOT create a cross join unless you are sure that is what you want. A cross join creates a view
whose count of rows is the equal to the count of rows in the first view times the count in the
second view (rows/®" = rows VeV * rowsV€W2) This severely impacts the system and does not
usually produce the view you desire.
Instead of creating a cross join, you should specify another type of join with the JOIN clause:

reference [joinType] JOIN reference ON searchCondition

The JOIN clause performs an inner join unless you specify a joinType. An inner join is one where the rows in
the result table are the rows from the first table that meet the specified criteria, combined with the
corresponding rows from the second table that meet the specified criteria.

FROM (Product AS P INNER JOIN Manufacturer AS M
ON P.productName = M.ProductName)

Note: Inner joins are sometimes called equi-joins.

An outer join is where the rows in the result table are the rows that would have resulted from an inner join
plus the rows from the first table (LEFT OUTER JOIN) or the second table (RIGHT OUTER JOIN) that had no
matches in the other table. For example:

FROM (Product AS P LEFT OUTER JOIN Manufacturer AS M
ON P.productName = M.ProductName

Note: The first table in a LEFT OUTER JOIN and the second table in a RIGHT OUTER JOIN must be an
event table or a view; it cannot be a context table.

Resulting columns that do not exist in both references are assigned NULL values.

Joins can be nested and there is no practical limit on the maximum level of nesting. For example:

FROM (Product AS P LEFT OUTER JOIN Manufacturer AS M
ON P.productName = M.ProductName)
AS Temp, inventoryContext AS INVvt

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference Table Expressions 327

A table expression, also called an in-line view, is a sub-query that creates a view that can be referenced by
the containing query. It is essentially a SELECT statement, bounded by parenthesis, and appearing in the
FROM clause. For example, the following is a table expression contained in a query:

SELECT =*
FROM Warehouse AS wh,
(SELECT *
FROM WarehouseQtyChange AS wqgc,
Product AS pr
WHERE wgc.wprod id = pr.pprod id) AS sv,
WHERE sv.warehouse id = wh.wh region id

The example above has the same result as WHRegionView in this example:

SummaryView:
SELECT *
FROM WarehouseQtyChange AS wgc,
Product AS pr
WHERE wgc.wprod_ id = pr.pprod id

WHRegionView:
SELECT *
FROM Warehouse AS wh,
SummaryView AS sv
WHERE sv.warehouse id = wh.wh region id

A table expression is a limited SELECT statement, enclosed in parenthesis, and with restrictions.

(SELECT selectList FROM joinClauses
[WHERE searchCondition]
[GROUP BY groupClause]
[WINDOW windowClause]) AS aliasName

In-line views have the same semantic restrictions as standard views. For example, a derived column in an
in-line view cannot have the same name or alias as a column in the containing selectList list. Additionally,
they have these restrictions and limitations:

e Must be enclosed in parenthesis.

e Must bein the same event stream (have the same base event table) as the other views and tables in the
containing query.

e Must be defined in the FROM clause only.

Some SQL implementations include a HAVING clause that allows you to filter the aggregate results of a
view. C-SQL does not include HAVING. However, you can construct a HAVING by using a WHERE Clause to
filter the results of an in-line view. Essentially:

SELECT * FROM (inlineView) WHERE filterCondition

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference WHERE Clause 328

For example, to create a view that filters the result of an aggregation, you first need to perform the
aggregation in an in-line view, then filter the results with the containing view. The following in-line view
sums the total sales for each product line, and then the containing view displays — in descending order —
only those results greater than $1,000,000.

SELECT FamilyTotals.family AS "Product Line",
FamilyTotals.sales for family AS "Total Sales"
FROM (SELECT family,
SUM (total price) AS sales for family
FROM OrdQtyDemand
GROUP BY Family
) AS FamilyTotals
WHERE "Total Sales" > 1000000
ORDER BY "Total Sales" DESC;

In the example above, as new events enter the OrdQtyDemand view, the totals are updated and the order
of product families can change. In fact, new families can enter the view as their sales totals exceed a
million.

A WHERE clause examines each row in the input and accepts only those that match the specified
condition. The syntax is

WHERE searchCondition
A searchCondition is a combination of Boolean predicates that together make a test. Only those input row

that pass the test are inserted into the new view. Rows that do not meet the condition are discarded, not
tracked, and not included in the calculations of a set function, moving set function, or rank function.

Note: All dependant views update and their functions recalculate, regardless of whether or not the
input met the condition. See “Updating Views Through Event Propagation” on page 356 for
more information.

A predicate is an Boolean expression that asserts a fact about values. Each expression may be stated alone
or compared to one of the Boolean test values. For example, these expressions are equivalent

WHERE (Age >= 21)
WHERE (Age >= 21) IS TRUE

The predicates that the WHERE clause supports are listed in “Operators and Constants” on page 249.

Predicates may include functions, but functions that reference columns may only reference event
columns.

C-SQL extends the ANSI standard to permit alias references in the WHERE clause. For example:

SELECT user_ age AS Age
FROM user list
WHERE (Age >= 21)

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference GROUP BY Clause 329

The GROUP BY clause groups the resulting virtual table one or more columns. The syntax is

GROUP BY [tableName.]columnName [, [tableName.]columnName ..]

Where tableName is a source table or view. All columnNames in the Select List that are not referred directly
by a rank function or scalar function must appear in the GROUP BY list.

Note: Another and more powerful way to group data is with the windows PARTITION clause. See
“Window Partitions” on page 282 for details.

The Group by option produces summary information for groups of rows whose values in the selected
fields are the same. Consider this set of data:

Name Quantity
Nano Webber 10
Fizzy Lifter 700
Nano Webber 50
Nano Webber 20
Nano Webber 15
Smoke Shifter 310

If you create a view that groups by Name and determines the sum of the quantity for each group, it would
look like the following:

SELECT product.name AS Name, SUM(product.quantity) AS Qsum
FROM product
GROUP BY product.name

Name Qsum
Nano Webber 95
Fizzy Lifter 700
Smoke Shifter 310

You can also group on multiple fields. For example,:

SELECT product.name AS Name, product.location AS Locale,
SUM (product .quantity) AS Qsum
FROM product
GROUP BY product.name, product.location

Name Location Qsum
Nano Webber West 10
Fizzy Lifter East 700
Nano Webber East 85
Smoke Shifter West 310

When the Select List includes a Moving Set function, each group contains a result for the moving set.

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference Aliases 330

C-SQL extends the ANSI standard to permit alias references in the GROUP BY clause. For example:

SELECT product.name AS Name, product.location AS Locale,
SUM (product .quantity) AS Qsum
FROM product
GROUP BY Name, Locale

When a view is defined with a GROUP BY clause, any view derived from that view has an implicit GROUP BY
clause. This is known as view merging or view expansion. For example, even though the SELECT statement
for View2 does not include a GROUP BY clause, its results include the same groups as View1.

Event SELECT Name, Qty, Cost
FROM Event, Prices
GROUP BY Name SELECT Name, (Qty*Cost) AS Total
WHERE Event.Name = Context.Name FROM View1
View1 View?2
Context Nam |Qty |Cost »-Nam [Total
Nam |Cost Item |3 15.50 Item [46.50
[tem [15.50 [tem 16 10.00 Item |60.00
[tem [10.00
ltem [24.95

When a view contains a GROUP BY clause, that view is a stateful view; it maintains information from
previous events, not just the most recent event. (See “Stateless and Stateful Views” on page 356 for
details.) As such, View2 in the example above is stateful even though its SELECT definition does not
contain a set function or an explicit GROUP BY clause; rather, it is stateful because it is derived from a
stateful view.

Adobe LiveCycle ES SELECT
Business Activity Monitoring Server Reference ORDER BY Clause 331

The Order BY clause orders (sorts) the resulting view based on column names or on expression results. The
syntax is

ORDER BY columnName [{ASC|DESC}] [, [columnName [{ASC|DESC}]]

Without this clause, there is no guarantee that the same query will produce rows in the same order on
subsequent queries.

Note: Any sort key mentioned in the ORDER BY must refer to a column name in the Select List.

By default, the view is ordered in ascending order (ASC). To order in descending order, specify the DESC
option.

The following is an example that orders the view first by supplier name in ascending order and then by
price in descending order within each supplier:

SELECT Product.prod _id AS ProductID,
orderStatusEvent.0S_PRICE AS Price,
Supplier.supp name AS SupplierName
FROM orderStatusEvent, Product, Supplier
WHERE orderStatusEvent.OS PROD ID = Product.prod id AND
Product.prod_supp_id = Supplier.supp_id
ORDER BY Supplier.supp name ASC, orderStatusEvent.OS PRICE DESC

31 Users

Each user that interacts with Business Activity Monitoring is known to the system by their user account
information. When administrators create or edit accounts, or when users views their Account Settings,
they access specific account information from these tabs:

e User Details Tab, which details the attributes that describe a user.

e Delivery Profiles Tab, which specifies how and where a user may receive alerts.

e Access Permissions Tab, which provides access to the permissions assigned to the user.

» In this Chapter:
e "“System User” on page 333

e "“User Details Tab” on page 333

e "“Delivery Profiles Tab” on page 334

e "“Access Permissions Tab” on page 335

332

Adobe LiveCycle ES Users
Business Activity Monitoring Server Reference System User 333

Every installation has a default system user who is identified during installation and who has all
permissions. That user creates other users and assigns permissions. Among the permissions that system
user may grant is the ability to create users. See the Release Notes or contact Adobe Systems Incorporated
to learn your installation’s default system user username and password.

» To edit your own account information:

e Click Account Settings at any time.

» To create, edit, or delete a user account:

1. Open the Administration Console.

2. Click Users to see a list of all users currently defined in the system. To

e Create a new user account, click New User and specify the user’s User Details Tab and Delivery
Profiles Tab. Optionally, you can specify Access Permissions Tab as well.

e Edit an existing user’s account information by double-clicking the name in the list.

e Delete an existing user by selecting one or more users in the list and clicking Delete Users. Note that
you cannot delete the system user or yourself.

User details identify a user with the following attributes:

Attribute Description

Username Login name of the user. The name can contain letters and numerals only. This name
must be unique among business activities and users; you cannot have a user with
the same name as a business activity. See “Object Namespace” on page 248 for

details.
Password User password. Any combination of letters, numerals, or characters.
Roles Roles that this user may belong too, and which ones the user does belong to. See

“Roles” on page 296 for details.

User Details Delivery Profiles

User name: |Skyler

PaSSWDI’d: SESSES SR SRR EREERERER

Confirm Password: | sessssssssssssssssss

[Directar
[JExecutive
Roles: Irrvenkary
E'Sales

Adobe LiveCycle ES Users
Business Activity Monitoring Server Reference Delivery Profiles Tab 334

Delivery profiles specify where and how to deliver alerts and data feeds to the user. Users may have
multiple profiles, and in the Alert Manager in the BAM Dashboard, they can identify which profiles receive
which alerts. Further, every user has at least one profile; Dashboard Profile sends notifications to the Alert
Manager in the BAM Dashboard.

At least one of the profiles must be designated as the one to use when subscribing to an alert. All profile
flagged as Auto are automatically added to new alert subscriptions.

User Details | Delivery Profiles Access Permissions

Name Type Descriptit b, i Type: IEmaiI 'I

Dashboard Profile {aubo) Dashboard Specifies O

Profile Mame; |Wl:|rk e-maill
wark e-mail (Auka) Ermnail skyler.work

"Prnfile Dekails

Home e-mail Emai skyler@em. Ermail Address |skyler.kmp@celequest.com
Partal Web Service =i

¥ futomatically add this profile ta new Alert
Subscriptions.

The profile types are the possible delivery mechanisms available in the installation, and they include:
e Dashboard Profile — The Alert Manager in BAM Dashboard. You cannot delete this profile.
e E-mail — An e-mail account to receive the generated alert message.

e Web Service — A Web Services method that receives the alert notification and attached reportlet as
XML data.

E-mails is An address where the user receives e-mail messages. It has the following attributes:

Attribute Description
Profile Name Identifies this profile. The name can contain letters and numerals only.
E-mail address E-mail address to use.

Web Service receives the alert notification and any attached reportlets as XML data. Web Service has the
following attributes:

Attribute Description

Web service URL HTTP location of the application providing the DOC (SOAP) service. Note
that RPC style messages are not supported.

Method Method of the Web service to use.

Username (optional) Account name to use when connecting to the service.

Adobe LiveCycle ES Users

Business Activity Monitoring Server Reference Access Permissions Tab 335
Attribute Description
Password (optional) Password for the account.
UDF (optional) A user-defined function (UDF) used to launch the Web

Service. If a UDF is not specified, the default WSDL is used to invoke
the Web Service. (See “Working with UDFs and JAR Files” on page 94 in
the BAM Workbench documentation and “User-Defined Functions” on
page 346 for information about UDFs.)

To use a Web Service, your administrator will need to reference the AlertMessage.xsd and the
AlertService.wsdl file which describes the subscription service, the data it provides, and how to exchange
data with the service.

Note: This service publishes a SOAP doc-style message, not an RPC style message.

Your administrator can locate the file on Business Activity Monitoring CD-ROM in this directory:

BAM/api/wsalert

For more information about Business Activity Monitoring use of Web Services, see “Web Services” on
page 362.

Access Permissions Tab

Access permissions are the global permissions that a user may have. From this tab, administrators (or
anyone who has access to BAM Workbench) can assign the user’s permissions to classes of objects. For a
detailed discussion about permissions, see “Permissions” on page 253.

User Details Delivery Profiles Access Permissions

Minimurn lewvel of permissions for object byvpe:

Business Ackivities: |Read||'write with grant ability and readfwrite granting ; Can create and grank create Edit...

Wiews, Cubes and Dimensions: |Read||'write with grant ability ; Can create and grant create Edit...

Contexts and Events: |Read,|'write access) Cannok create Edit...

Active Feports: |Read—0n|y with grant ability and read-only granting ; Cannot create Edit...

Users: |Read-0n|y arccess ; Cannok create Edit...

Roles: |Read-on|y access) Cannok create Edit...

Agents: |Read||'write access ; Cannok create Edit...

Global Svstem Properties: |Read-on|y arcess Edit...

Dashboard: IRead-onIy access) Cannok create Edit...

Dashboard Objects: |Read—0n|y access ; Cannok create Edit...

External Processes: |Read,|'write access) Can creake Edit...

B RRRRRRE

Note: Every new user has No Access permissions for everything. This allows the user to receive and
view alerts and reportlets as the result of mandatory subscriptions, but they may not subscribe
to any.

Adobe LiveCycle ES Users
Business Activity Monitoring Server Reference Access Permissions Tab 336

When an administrator creates or edits permissions, they can specify which objects a user may create and
assign permissions to all existing objects.

User Details Delivery Profiles Access Permissions ‘

Mimimumm level of permissions For object bype:

Business Ackivities: |Read||'write with grant ability and read/write granking ;- camcreate and grank create| |

‘Wiewss, Cubes and Di

Business Activity Permissions for "Shyler"

Contexks anc
Granting user-specific permissions will onky have an effect if greater than existing
Active permissions inherited From role membership

Role-Granted Permissions

|Nl:| access ; Cannok create

Additional User-Specific Permissions
|Read,|'write with grant ability and readfwrite grar;l |Can create and grank cre;l

Global Svstem Pr

Da Effective Permissions

Dashboard |Read,|'write with grant ability and readfwrite granting ; Can create and grant create

External Processes; JFEadfwnte access ioan create

For a detailed discussion about assigning permissions, see “Permissions” on page 253.

32

TIBCO Rendezvous

TIBCO Rendezvous is a messaging system for business applications. Business applications publish

messages to the stream managed by TIBCO Rendezvous transport servers. Each message has a name that

identifies the subject of the message. Other applications monitor the stream looking for messages that,

when found, are provided to other applications, such as Business Activity Monitoring TIBCO Rendezvous
Agents.

In this Chapter:

“How It Works” on page 338

“TIBCO Rendezvous Tables” on page 338

“Creating a TIBCO Rendezvous Event Table” on page 341

“TIBCO Rendezvous Agents” on page 344

337

Adobe LiveCycle ES TIBCO Rendezvous
Business Activity Monitoring Server Reference How It Works 338

Business Activity Monitoring event tables receive TIBCO Rendezvous messages as events. Each event table
corresponds to a single message subject. The tables identify the message subjects to a listening daemon
application through the agent. When the daemon locates a new message of the requested subject, it
passes the message to the table through the agent. The table definition then maps the message into the
table as a new event.

Applications publish messages to
TIBCO Rendezvous by subject, each of

which map to new events.

Event
Listen for SubjectX Listen for SubjectX 1BCO Rendezvous
e e
- BAM agent - (producer)
— New event ——— New message

about SubjectX about SubjectX.

A TIBCO Rendezvous event table receives messages from a business application through a TIBCO
Rendezvous message stream. Each message is identified by subject, and each new message for a subject is
a new event. When the table receives a new message, it first maps the message data into the event table
data types.

All messages for an event subject must be in the same form: every message must have the same fields,
though a field may be empty. Furthermore,

e Business Activity Monitoring does not support nested messages.

e Some TIBCO Rendezvous data types are not supported and cannot be mapped into a Business Activity
Monitoring event. See “Mapping TIBCO Rendezvous Data Types” on page 342 for details.

Before creating a TIBCO Rendezvous event, you need:

e Permission — Create permission for tables (see “Creating Permission” on page 258) and Read Only
access permission on the agent that will feed the table.

e Anagent — An existing TIBCO Rendezvous agent that connects to the TIBCO Rendezvous message
stream. Create an agent with the BAM Workbench Administration tab. See “TIBCO Rendezvous Agents”

on page 344 for details.

e The subject name — Each TIBCO Rendezvous message has a subject name that identifies the event
source. You identify the subject name and the agent will monitor the message stream looking for the
messages. When it finds one, it passes the message information to the event table. Subject names
consist of one or more elements separated by dot characters (periods), such as: SUPPORT.TICKETS

e The format of the message — Each TIBCO Rendezvous message contains fields of information. You tell
the event object what fields to extract from the message, and how they map into Business Activity
Monitoring data types.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

TIBCO Rendezvous

Prerequisites

339

e Asample file — (optional) If the message contains a complex string, it is helpful to have a sample file
that contains data in the format of the actual event string. You can use this sample when you create the
event to ensure that the fields map correctly into the event table by seeing how the data lines up in the

columns.

For the details of the subject name and message format, consult the IT specialist who maintains your
TIBCO Rendezvous system. A TIBCO Rendezvous event table has the following attributes:

Attribute Description

Name Identifies the event object. This name must be unique among views,
events, context, and consolidated events. See “Object Namespace” on
page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events) or disabled

Log event data for recovery

Process events in the order of
arrival

TIBCO Rendezvous agent

Subscription

(not monitoring for events).

When on, logs event data that arrived after the last checkpoint started.
This “recovery” log is used to restore the state of the system in the
event of an abnormal shutdown of the servers. For complete details,
see “Working with Checkpoint and Recovery” in Using Business Activity
Monitoring Workbench.

Choose this option when events must be processed in the order
received. Otherwise, if events may be processed out of order, turn on
this attribute.

Note: To join events in a view, the events must be processed in order:
leave this option off to join the events.

An existing agent that connects to the TIBCO Rendezvous message
stream. Create an agent with the BAM Workbench Administration tab.
See “TIBCO Rendezvous Agents” on page 344 for details.

Identifies the subject on which the message is being sent, and defined
by the message publisher. Typically, this string looks similar to:
com.celequest.mytibcotopic.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

TIBCO Rendezvous
Prerequisites 340

Attribute

Description

Column Information

Clear State Interval

The Column Information fields define how to map the fields from the
TIBCO Rendezvous message into columns in the event table. There is
one column for every field in the event table. See “TIBCO Column
Information” on page 341 for details.

This tab contains several options for clearing persisted event data that
is propagated from the event in the views, objects, and dashboards
that depend on it.

The three options are:
« Do Not Clear State —This is the default. Data persists.

+ Clear State on a Schedule — Select to clear the state on a
schedule. Selecting this option activates the scheduling feature
positioned to the right.

« Always Clear State (Every Event) — The state is refreshed each
time the event is updated.

Adobe LiveCycle ES TIBCO Rendezvous
Business Activity Monitoring Server Reference Creating a TIBCO Rendezvous Event Table 341

Use the following procedure to create a TIBCO Rendezvous event table.

» To create a TIBCO Rendezvous event table:
1. Open the BAM Workbench Administration Console.

2. Create a new event.

3. Select TIBCO Rendezvous as the agent type.

4. ldentify the Subject of the message events to collect. See Prerequisites above, for details.
5. Select an existing TIBCO Rendezvous agent.

6. ldentify the fields in the message, and how they map to Business Activity Monitoring data types. See
TIBCO Column Information for details.

Save the TIBCO Rendezvous table as enabled and it will immediately be ready to receive event messages.

The Column Information fields define how to map the fields from the TIBCO Rendezvous message into
columns in the event table. There is one column for every field in the event table.

Each field in the message can be a simple field that maps directly into a event column, or it can be a
complex field (a flat file field) that contains several fields that each map into columns in the table. Complex
fields are treated as Flat Files in either delimited (CSV), fixed-width, or XML formats. See “Flat Files” on
page 81 for detailed descriptions of these file types.

Each column in the event table has the following attributes:

Attribute Description
Field Name Name of the column in the event table.
Message Name Name of the field in the message. When mapping a MessageField, the name

for each embedded field is N/A and uneditable.

Data Type Data type of the event column. See “Mapping TIBCO Rendezvous Data Types”
on page 342 for details.

Format (optional) Format of the event column for VACHAR (string) and DECIMAL
values.

Adobe LiveCycle ES TIBCO Rendezvous
Business Activity Monitoring Server Reference Mapping TIBCO Rendezvous Data Types 342

Add columns by clicking Add Field or Add Flat File Field.

A Flat File Field creates a
message field of embedded

Column 1nd fi€lds, each of which mapsto a

column in the event table.

Add Field Add Flak File Field. ..

Field NE}A‘IE Message Mame Data Type Formak
MessageField Flat Fila; Delir s %

To edit the definition of a
message field, select the
<Change Format> Format.

» To add a message field:

1

2.

6.

. Click Add Flat File Field.

Choose the flat file type of the message field.

(Optional for fixed-width and delimited files.) Identify a sample file to assist in mapping the columns. This
file is a sample of the real data file. Data from this file appears in the next step to assist you as you map
the event data into the table.

For fixed-width files, define the positions of the data columns with the Set Field Widths dialog.

Identify the flat-file attributes. See “Flat File Event Tables” on page 82 for details.

Define the format-specific Column Information. For details about the source type, see:
e "Fixed-Width Files” on page 94.

e “Delimited Files” on page 93
e “XML Files” on page 95

Click Save Event to save the message field definition.

» To edit the definition of a message field:

In the field’s Format column, change the value from “Flat File: file type” to “<Change Formatting>".

Note: When editing a message field, the sample file option for delimited and fixed-width file types is
not available.

Each message is a set of fields that each contain one data item of a specific data type. You identify each
field by its defined name and specify the field’s associated Business Activity Monitoring data type.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

TIBCO Rendezvous

Mapping TIBCO Rendezvous Data Types

343

The TIBCO Rendezvous data types map to Business Activity Monitoring Data Types as follows.

Business Activity Monitoring

TIBCO Rendezvous Type Type

Custom Data Types Not Supported
BOOL Boolean
DATETIME Timestamp
F32 Double
F32ARRAY Not Supported
F64 Double
F64ARRAY Not Supported
116 Integer
116ARRAY Not Supported
132 Integer
132ARRAY Not Supported
164 Decimal
I64ARRAY Not Supported
18 Integer
IBARRAY Not Supported
IPADDR32 Not Supported
IPPORT16 Not Supported
MSG Not Supported
OPAQUE Not Supported
STRING (see note below) Varchar

u16 Integer
UT6ARRAY Not Supported
uU32 Decimal
U32ARRAY Not Supported
u64 Decimal
U64ARRAY Not Supported
us Integer

Adobe LiveCycle ES TIBCO Rendezvous
Business Activity Monitoring Server Reference TIBCO Rendezvous Agents 344

Business Activity Monitoring

TIBCO Rendezvous Type Type
UBARRAY Not Supported
XML Varchar

A TIBCO Rendezvous agent communicates with a TIBCO Rendezvous daemon running in the application
server environment. The daemon listens for messages on a TIBCO Rendezvous message stream. When the
daemon finds a message requested by one of the TIBCO Rendezvous Tables, it retrieves the message data
and passes it to the table through the agent.

Note: TIBCO Rendezvous agents are asynchronous, they receive event messages as the events occur as
summarized in the following table. You cannot retrieve context from a TIBCO Rendezvous agent.

Event push Event pull Context pull

Yes No No

Before creating an agent, you need to:

e Create permission for agents (see “Creating Permission” on page 258 for details).

e Connect to the TIBCO Rendezvous listener daemon.

Note: To connect, you need the Service, Network, and Daemon names. For specific values, consult the
IT specialist who maintains your TIBCO Rendezvous system .

A TIBCO Rendezvous agent has the following attributes:

Attribute Description

d

Name Identifies the agent. This name must be unique among agents. See “Object Namespace'
on page 248 for details.

Description Optional description that may contain any text characters.

Service TIBCO Rendezvous service port. Leave this blank to use the default port 7500. Change
this value only if your TIBCO Rendezvous administrator gives you another port.

Network Identifies the network interface to use when the host is connected to more than one
network, or when the host supports multicasting (in which case the address will look
similar to ;222.1.2.3). Change this value only when the host machine is not on the
default network, then use the IP address provided by your TIBCO Rendezvous
administrator.

Adobe LiveCycle ES TIBCO Rendezvous
Business Activity Monitoring Server Reference Creating a TIBCO Rendezvous Agent 345

Attribute Description

Daemon Port of the routing daemon on the TIBCO Rendezvous host found on the network and
identified by the Network attribute. Leave this blank to use the default port 7500.
Change this value only if your TIBCO Rendezvous administrator gives you another port.

Status Whether or not the agent is enabled (monitoring for events) or disabled (not monitoring
for events).

Use the following procedure to create a TIBCO Rendezvous agent.

» To create a TIBCO Rendezvous agent:
1. Open the BAM Workbench Administration Console.

2. Click New Agent...
3. Choose TIBCO Rendezvous as the source type
4. Fill in the fields that define the agent’s attributes.ef

Save the agent as enabled and it will immediately begin monitoring for events.

33 User-Defined Functions

User-defined functions (UDFs) provide a mechanism for extending C-SQL by defining your own functions
for use in queries, views, and rules. With this feature you can define a scalar function or set function by
implementing the appropriate Business Activity Monitoring Java interfaces.

UDFs are Java programs that take arguments and return a value, just like the internal Business Activity
Monitoring functions. For example, you might have a UDF that takes a set of values and concatenates
them alphabetically while ignoring NULL values. You would use that UDF in an expression like this:

ConcatSet (Product .Name)

After compiling the Java program, you deploy (load) it into Business Activity Monitoring where it is then
available to all users who can create or edit queries, views, and rules.

For information about creating user-defined functions, see Creating and Using a UDF,” below. For further
details about the interfaces, see “com.celequest.api.function” in the Javadoc documentation. You can
access the Javadoc documentation with a Web browser directly from Business Activity Monitoring
CD-ROM by pointing your browser to: <cd>/helpdocs/javadoc/index.htm.

» In this Chapter:
e "UDF Restrictions” on page 347

e “Creating and Using a UDF” on page 347

e “Manifest Files” on page 348

346

Adobe LiveCycle ES User-Defined Functions
Business Activity Monitoring Server Reference UDF Restrictions 347

User-defined functions have these restrictions:

Scalar and set functions only; no rank functions.

UDFs can define Scalar functions by implementing the IlUDScalarFunction interface, or Set functions by
implementing the IUDAggregateFunction and IUDAggregateState interfaces. See
“com.celequest.api.function” in the Javadoc documentation for details.

UDFs are not exposed to the BAM Workbench.

The formula editor does not recognize UDFs. As such, you are responsible to keeping track of which
UDFs are registered with the system.

All users have access to all UDFs.

You cannot apply access permissions to a UDF. Similarly, multiple users may define different UDFs with
the same name. In that case, the system uses the first on it finds.

Set functions must implement object serialization and maintain backward compatibility.

Failure to implement meaningful serialization/deserialization routines may result in unpredictable
behavior in many areas including checkpoint and recovery, and parallel execution.

UDFs are never pushed as predicates to a remote source.

Essentially, UDFs are never sent to a DBMS for evaluation. See “Context Column Limitations in Queries”
on page 46 for more details.

These instructions use the ConcatSet sample UDF included on the product CD-ROM in the /samples/udf/
directory. To follow along using the sample, first copy the contents of that directory to a location on your
local machine. See the README.txt file in that directory for more information about the sample.

» To create and use a UDF:

1.

Implement the interfaces.

2. Create your UDF by implementing the appropriate com.celequest.api.function interfaces.

Note: See the Javadoc documentation for details about the interfaces.

Compile your implementation.

When you compile your UDF implementation, include the cognosAPl jar file. (The file in on the product
CD-ROM in the /BAM/CognosAPI/ directory.) For example:

javac -classpath <CD-ROM>/BAM/cognosAPI/cognosAPI.jar
src/samples/udf/concatset/*.java src/samples/udf/concatlist/*.java
src/samples/udf/util/*.java -d jar

Create a manifest for the UDF JAR file.

A manifest is an XML file that describes the UDF JAR file to Business Activity Monitoring. For a
description of the file and a sample listing, see “Manifest Files” on page 348.

Adobe LiveCycle ES User-Defined Functions
Business Activity Monitoring Server Reference Manifest Files 348

5. Create the UDF JAR:

Create a JAR file containing your class(es) (such as ConcatSet.class) and the manifest (manifest.xml).
The manifest must appear under com/celequest/manifest in the jar. For example:

jar -cvf udf.jar samples/* com/celequest/manifest/manifest.xml

6. Add the UDF to the list of available UDFs.
e Login to the BAM Workbench and open the BAM Workbench tab.
e Select the User Defined Functions folder and choose New User Defined Function.
e Specify or load the JAR file that contains the function, and click Continue.
e Select the functions to add, and optionally assign new names to them.
e Choose Finish to add the UDFs to the list.

7. Use the UDF in formulas. Once the UDF is deployed, you can use it in formulas, similar to this:

ConcatSet (Product .Name)

This completes the steps for creating and using a UDF.

» To alter an existing UDF:

1. Change the implementation and create an updated JAR file.
2. Upload the JAR over the existing one.

3. Re-add the UDFs to the list of User Defined Functions.

A manifest is an XML file that describes the contents of the UDF JAR to Business Activity Monitoring. For
every function in your jar file, define <UDF> and <name> elements. Further, for every data-type that the
function can return, define a <UDFDescriptor> element. Finally, if subsequent calls to the same function
with the same argument values can return different values, set the <isVariant> element to true. For
example, the CURRENT_TIMESTAMP() internal function takes no arguments but returns a different result
each time it is called. That function is “variant”.

The following is a sample manifest for the ConcatSet() function. This listing is adapted from the file in the
samples directory at /samples/udf/jar/com/celequest/manifest.xml.

Adobe LiveCycle ES User-Defined Functions
Business Activity Monitoring Server Reference Manifest Files 349

Sample manifest.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<jarManifest xsi:schemalocation="http://www.celequest.com/3
jarManifest.xsd" xmlns="http://www.celequest.com/3"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<jarManifestXSDVersion>1l</jarManifestXSDVersion>
<author>Adobe Systems Incorporated</author>
<UserDefinedFunctionss>
<UDF'>
<name>ConcatSet</name>
<description>Concatenate a set of values alphabetically into a
large string. Ignores nulls.</description>
<implementor>com.udfcelequest.concatset.ConcatSet</implementor

<UDFDescriptorss>
<UDFDescriptors
<result>VARCHAR</result>
<argument>
<type>ANY</type>
</argument >
</UDFDescriptors>
</UDFDescriptors>
<isVariant>false</isVariant>
</UDF>
</UserDefinedFunctionss>
</jarManifest>

34

Views

Business views are data models that provide a real-time picture of a business activity. Records of changes
and transactions in your business enter Business Activity Monitoring as events. Each new event drives an

immediate update of the views — the business models — derived from that event, thereby providing a

real-time picture of the business metrics. Further, after a view has been updated, the system evaluates the

rules associated with the view looking for exceptional business conditions that require attention.

A business view is a virtual table that resides in memory and whose contents come from one or more

sources as defined by a C-SQL SELECT query statement. You define views with the graphical user interface
in the BAM Workbench. That system then constructs a well-formed SELECT statement before passing it to

the Business Activity Monitoring servers for execution and maintenance. For details about the SELECT
statement and its syntax and usage, see “SELECT” on page 321.

You can limit the rows that a user sees by associating an access filter to the view, and applying the filter to

users or roles that see the view. See “Access Filters” on page 15 for complete details.

Note: The data in the context views are static or slowly changing. As such, the query engine does not

update the view due to changes in the context tables. Changes in the context table are,
however, reflected in the view when the context table is joined with the next event row.

» In this Chapter:

You need Create permission for views (see “Creating Permission” on page 258) and Read Only access
permission on the table (and optional views) that will feed the new view.

“Creating Views"” on page 350

“View Attributes” on page 352

“View Constraints” on page 353

“Synchronized Joins” on page 353

“Consolidated Events” on page 355

"Aggregate Views” on page 355

“Updating Views Through Event Propagation” on page 356

“Stateless and Stateful Views"” on page 356

“View Initialization” on page 357

“Maintaining Events in Stateless Views"” on page 358

“Persisting Views to a Database” on page 359

“Enabling Drill Back to Detail” on page 361

» To create views with the BAM Workbench:

1.

2. Select the existing event, view, or views on which to build your view.

Click the New View button.

350

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Copying a View 351

3. Fillin the fields in the Create View form.

» To create views for a specific events with the BAM Workbench:

1. Select the existing event, view, or views on which to build your view.
2. Click the New View For This Event button.

3. Fillin the fields in the Create View form.

You can also copy the definition of an existing view to a new view.

» To clone an existing view:

1. Edit the view you want to copy.

2. Change the view name, and change the other attributes that differ from the original view.

3. Choose “Save as New View”,

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

Views

View Attributes 352

Every view has the following attributes:

Attribute Description

Name Identifies the view object. The name can contain letters and numerals only. This
name must be unique among views, events, context, and consolidated events.
See “Object Namespace” on page 248 for details.

Status Specifies if the view is enabled (receiving new event information) or disabled.
When an view is disabled, all objects that depend on the view are also disabled,
including rules, alerts, and reportlets.

Description Optional description that may contain any text characters.

Workset Event table and or views on which the view is derived.

Field list Columns to include in the view, including columns whose values are derived from

Maintain in view

From Clause

Where Clause

Window Clause

Order by Clause

View Persistence

Drill Back to Detail

formulas. This is the Select List in the underlying SELECT statement.

The Group By option identifies columns on which to group the results. This is the
GROUP BY Clause in the underlying SELECT statement.

7

Allows tracking of past event information for stateless views. See “Maintaining
Events in Stateless Views" on page 358 for details.

How to join the information from multiple tables and views in the Workset. This is
the FROM Clause in the underlying SELECT statement.

Identifies which source information to include in the new view. Events which do
not meet the specification are not included in the view. This is the WHERE Clause
in the underlying SELECT statement.

Note that even though an event’s information might be discarded, derived views
will still update, though they too will not contain the event information. See
“Updating Views Through Event Propagation” on page 356 for details.

Defines windows for aggregating sets of rows in the view. See “Query Windows”
on page 272 for details.

Sorts the resulting view based on column names or on expression results. This is
the in the underlying SELECT statement.

Save view data to a database for later analysis. See “Persisting Views to a
Database” on page 359 for details.

Enables the ability for users to see the details about the data presented by a
dashboard object. See “Enabling Drill Back to Detail” on page 361 for details.

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference View Constraints 353

Business Activity Monitoring views have these constraints:
e Aview may be derived from an event table or another view.

e Aview may not join different event steams. (Though a Consolidated Event is a union of two identical
event streams; see “Consolidated Events” on page 355 for details.)

e Aview may join two views of the same event stream. (A synchronized join is a view derived from
multiple views based on the same event stream; see “Synchronized Joins” on page 353 for details)

e Aview may join an event table and one or more context tables.
e Aview may join a view and one or more context tables.

e Aview may not be derived from context tables only.

A synchronized join is a view derived from two views based on the same originating event stream. In a
synchronized join, the resulting view contains rows that are the combination of the same events in the
source views.

| Synchronized I

A view that is a synchronized join
combines rows from the same
source event.

Context

Synchronized joins are always based on the event’s internal ID; there is an implicit join condition on the
internal event column. However, you still should define a WHERE clause or join condition in the FROM
clause to avoid a possible cross join result (see “Cross Joins” on page 326 for details).

Note: A synchronized join stream always results in a stateless view.

A synchronized join requires that events be processed in the order that they arrive. As such, the source
event object must have Process events in the order of arrival turned on.

One example of a synchronized join is one shown in the following illustration which determines the ratio
of total sales by region. One view (SalesTotal) determine the total sales for all events, while the other
(SalesByRegion) determines the totals for each region. Finally, the synchronized join (SalesRatiosByRegion)

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Example 354

determines the percentage of each region by joining the two “total” views and dividing the region totals
into the grand total.

SELECT SUM (SalesEvents.Amount) AS TotalSales
FROM SalesEvents

SalesTotal

The SalesRatiosByRegion view determines the ratio
of sales that each region represents.

SalesEvents I | SaIesRatiosByRegiod

SELECT SalesByRegion.Region AS Region,
(SalesByRegion.TotalForRegion/
SalesTotal.TotalSales) AS RatioOfTotal

SalesByRegion FROM SalesByRegion, SalesTotal

SELECT SalesEvents.Region AS Region,
SUM (SalesEvents.Amount) AS TotalForRegion
FROM SalesEvents
GROUP BY Region

Note that the above synchronized join is a cross join, which in this case is acceptable. However, consider
this next example that determines each sales representatives ratio relative to the total sales:

SELECT SalesEvents.Region AS Region,
SalesEvents.Rep AS Rep,
SUM (SalesEvents.Amount) AS Amount
FROM SalesEvents
GROUP BY Region, Rep

|SalesTotaIsByRepRegion|

The SalesRatiosPerRepRegion view
determines a representative sales as a
ratio of the total.

| SalesEvents | SaIesRatlosPerRepReglonI

SELECT SalesTotalsByRepRegion.Rep AS Rep,
SalesByRegion.Region AS Region,
SalesTotalsByRepRegion.Amount /

SalesByRegion.TotalForRegion AS RatioPerRep
FROM SalesTotalsByRepRegion
INNER JOIN SalesByRegion

SalesByRegion ON SalesByRegion.Region =
SalesTotalsByRepRegion.Region

SELECT SalesEvents.Region AS Region,
SUM (SalesEvents.Amount) AS TotalForRegion
FROM SalesEvents
GROUP BY Region

In the above illustration, you do not want a cross join because it creates one row for each sales
representative in every region, including the regions that the representatives do not belong too. Instead,
the SalesRatiosPerRepRegion view declares an inner join to limit the results by region.

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Consolidated Events 355

Consolidated events are special views that accept events from two different event streams. For a detailed
discussion, see “Working with Consolidated Events” in Using Business Activity Monitoring Workbench.

A key power of business views is the ability to aggregate event and context information to extract, analyze,
and combine the information into meaningful business metrics. Aggregate views have at least one field
definition that includes an aggregation or GROUP BY Clause.

For example, consider this simple view that tracks the total count of events that arrived in the last hour.
Every time a new event arrives the MOV_COUNT() function recalculates the count of all events in the view,
thereby providing a real-time metric about the event stream:

SELECT MOV_COUNT(*, HOUR, 1) AS "Events in the last hour"
FROM Events

You can make the previous example a little more complex by limiting the events that the view sees. For
example, to count only those events whose Status value is Open:

SELECT MOV_COUNT(*, HOUR, 1) AS "Opens in the last hour"
FROM Events
WHERE Status='Open'

By combining the aggregate information with other context, you can generate more meaningful metrics.
For example, this view reports the count of events whose Status value is Open, and groups them by
Feature:

SELECT Context.Topic AS Topic,
MOV_COUNT(*, HOUR, 3) AS "Opens in 3 hours"
FROM Events INNER JOIN Context ON Event.Feature = Context.Feature
WHERE (Status='Open')
GROUP BY Feature

Feature Opens in 3 hours

Configuration 12
Install 3
Servers 6

For detailed information about aggregate and moving set functions, see “Function Types” on page 109.

Adobe LiveCycle ES

Views

Business Activity Monitoring Server Reference Updating Views Through Event Propagation 356

Wh

en a view receives a new event, it attempts to update itself with the new information, and if the update

occurred, the view then notifies all dependant views to also update. However, these exceptions can keep

the

view from updating:

If a view is empty when it receives an event, and it remains empty after processing the event, it never
notifies the dependant views.

If a stateful view becomes empty as a result of a deletion, such as when an existing event is discarded
from a moving set function set, all dependant views are notified to update as well.

An update may cause a stateless view to become empty, and any dependant views will also be empty.
If subsequent event also results in an empty view, the view will appear to have not updated, even
though it did.

If the new event is discarded because it does not meet some criteria, the stateful view is not updated.
However, it still publishes a snapshot of itself to all dependant views which can cause dependant
moving set functions to update their views.

If an error occurs when processing an event while updating a view, all rows related to the entire event are
discarded, and the view remains valid and enabled.

All views in Business Activity Monitoring are either stateless or stateful:

Stateful views contain the results of aggregations derived from past events in a single row. A view is
stateful if it

e contains an set function, or moving set function in the SELECT clause, or

e contains a GROUP BY Clause (in which case each group contains only one row), or

e is derived from a stateful view.

Stateless views are any views that are not stateful.

Generally, a stateless view shows the information about a single event, such as a single purchase order. A
stateful view, on the other hand, shows the aggregate information about multiple events, such as the
average price of multiple purchase order events.

Adobe LiveCycle ES

Views

Business Activity Monitoring Server Reference View Initialization 357

Each view maintains two snapshots of the data it contains:

Current view — This is the data currently in the view. For a stateful view, the snapshot shows all rows in
the view. For a stateless view, it shows all the rows corresponding to the last event, which after
aggregation might be an empty set.

Recent view — A snapshot of the last non-empty current view. When the view has a moving set
window, the recent view contains the last non-empty rows in the window. For example, if the window
is 2 days, the recent view contains the last 2-day set that was not empty, event if the current view is
empty. A recent view is what appears in the BAM Workbench when editing an object that displays view
results, and what is used by derived views during view initialization.

When you create or enable a view, it is initialized to a state based on the data in the base view as follows.
When a view is derived from a

stateful view, the new view is initialized with the data in the base view’s current view snapshot. For
example, consider a stateful base view which tracks sales by region:

SELECT region, SUM(sales) AS region sales GROUP BY region

When you derive a new view from sales_by_region, the new view is immediately populated with the
data in sales_by_region's current view.

SELECT SUM(region sales) AS total sales FROM sales by region

stateless view, the new view is initialized with the data in the base view’s recent view snapshot. For
example, consider this stateless view. This view’s current snapshot is empty when no sales are greater
than 1,000,000.

SELECT region, sales WHERE sales > 1000000

However, a view derived from this view will be initialized with the data in the view’s recent view
snapshot

event table, the new view is empty; event tables do not maintain snapshots.

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Maintaining Events in Stateless Views 358

By default, a stateless view contains only rows representing the last event and which satisfied the view
condition; rows from previous events are discarded. If the event did not meet the condition, the view will
be empty. With the Maintaining Events in a Stateless View option you can specify a set of recent non-empty
event information to maintain in the view.

Use this option to include the recent events in

e The BAM Workbench when displaying a the view’s contents on the Results tab. This tab displays the
current rows in the view.

e External applications that receive the view as a real-time data feed. This allows the external application
to perform trend or historical analysis.

» To maintain events in a stateless view:
1. Open the View Editor on a view to persist.
e On an existing view choose Edit View, or

e When creating a new view...
2. Check Maintain in view.

3. Enter either the count or time-span of events to retain.

e Anevent count is the maximum number of non-empty events to maintain. The view discards the
oldest event rows that do not fit in the specified size.

e Atime interval defines a set of the most recent events. The count of events in the view varies
depending on the number of events in the interval when the view was updated. For example, if an
event arrived that did not meet the view criteria, it is excluded from the view, but the view
recalculates the interval that time.

Note: The set of events is determined when the last event was inserted, not at the current time. For
example, an interval of one hour shows all the events that arrived in the view for the hour
previous to the last update. If no events were inserted in the last day, the view might still show
an hour’s worth of events from the previous day. However, as soon as new event arrives at the
view, all those events are discarded.

See also “Moving Set Functions” on page 150 for a means of performing aggregations on sets of recent
events.

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Persisting Views to a Database 359

Business Activity Monitoring can persist business view data to an external DBMS for future reporting by
third party tools. The information in the table is sufficient for the reporting tools to recreate a complete
snapshot of the view. When persisting, the view information is written to a table in the DBMS at a rate
following a policy that you define.

Note: Business Activity Monitoring can create the table automatically, or you can predefine the table in
the DBMS. See the table in “View Persistence Attributes” below for details.

» To activate view persistence:

1. An application specialist must have first define a JDBC Agent to the RDBMS that will store the view
data. See “JDBC Agents” on page 224 for details about creating this agent.

2. Open the View Editor on a view to persist.
e On an existing view, choose Edit This View...

e When creating a new view, choose New View...
3. Select the Other tab.
4. Under View Persistence, Click Define...

5. Fillin the fields in the Define Database Connection dialog. (See the table under “View Persistence
Attributes.)

The view begins persisting data as soon as it is enabled.

The database connection attributes include:

Attribute Description
JDBC Agent Agent to the RDBMS defined in step 1 above.
Table Target table in the RDBMS to receive the persisted data. If you omit this name,

the table will have the same name as the business view.

The columns in the target table must have the same names as the columns in
the view, appear in the same order as in the view, and they must be at least the
same width as the columns in the view. When a column width in the target is
smaller, the RDBMS either silently truncates the data to fit or generates an
error. Similarly, the target table must support row lengths at least as long as
the rows in business view.

Create this table ifit Indicates that the application specialist or database administrator has not

isn't there already created the named table. If this option is selected, Business Activity
Monitoring attempts to create the target table using a CREATE TABLE
command in the JDBC user’s default table space.

Adobe LiveCycle ES Views

Business Activity Monitoring Server Reference View Columns to Persist 360
Attribute Description
Persistence Policy Persistence depends on whether the view is stateless or stateful. Stateful views

are written as snapshots that are persisted based on the specified interval, and
only the snapshots are persisted. Stateless views are written as snapshots as
well but are also logged so that the condition between snapshots is captured
as well.

Number of Events Specifies the number of events to write to the database. For example, if the
number of events is set to 10, then 10 events must occur before they are
written to the database. Setting the events to 1 will cause a write with every

event.

Time interval Specifies the interval at which to write to the database.

Stop logging after... Specifies how many consecutive errors to write to the error log before
disabling persistence. This option prevents the server from repeating the same
error.

The database receives all of the columns and rows currently in the view. Additionally, each row contains
these additional internal columns:

Column Description

VC_EVENT_ID Event identifier identifies the event that produced the most recent row
included in the view.

VC_LATEST_EVENT_ID Latest event identifier identifies the last event that caused the view to
update, though data from that event might not be included in the view.

VC_TIMESTAMP Event timestamp identifies when the last event was included in the view.

Adobe LiveCycle ES Views
Business Activity Monitoring Server Reference Enabling Drill Back to Detail 361

You can create views that make it possible to drill back to detail on a chart. This allows users to see the
details about the data presented by a dashboard object. “Drill Back to Detail” has the following
requirements:

e The data source of the dashboard object must be a cube.

e The view on which the cube is build must be stateless (see “Maintaining Events in Stateless Views” on
page 358).

e The dimensions of the cube must come from a single external database and the database should be
the same as the measures for the cube.

e If there is more than one table in a view, you can use a persisted table for the drill back to detail table.
(see “Persisting Views to a Database” on page 359).

» To activate drill back to detail:

1. An application specialist must have first defined a JDBC Agent to the RDBMS that will store the view
data. See “JDBC Agents” on page 224 for details about creating this agent.

2. Open the View Editor on a view for which you want to enable Drill Back to Detail.
e On an existing view, choose Edit This View...

e When creating a new view, choose New View...
3. Click the Advanced tab and under Drill Back to Detail area, click Define...

4. Fillin the fields in the Define Drill Back to Detail dialog.

Define the conneckion to the database for Crill Back: Agent to the RDBMS
defined in step 1 above.

JDBC Agents: | IDECContext w

Table: |Product
able: |Product| Table in the RDBMS to use for the

drill-back-to-detail information.

5. Click OK.

6. Save the view.

35

Web Services

A Web service is an interface to an application running on a Web application server. The service can be a
simple database lookup script, or a complex enterprise application integration (EAI) product, like those
provided by Siebel or SAP. Business Activity Monitoring connects to Web services to do the following:

o Receive events (as describe in “Web Service Events” on page 363),

e Retrieve context (as described in “Web Service Context” on page 366),

e Publish alert messages:

e toasubscriber’s delivery profile (see “Delivery Profiles Tab” on page 334 for details)

e on anindividual basis as initiated by a user viewing the message in the BAM Dashboard (“Web
Service External Processes” on page 371 for details).

» In this Chapter:

o "“Web Service Events” on page 363

o “Web Service Context” on page 366

e "“Web Service Agents” on page 370

e "“Web Service External Processes” on page 371

362

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Web Service Events 363

Web services publish event data as XML through HTTP directly to the Business Activity Monitoring servers.
All Web service publishers use the same URL. As such, encoded in XML with the event data is the name of
the event to receive the data as well as the Business Activity Monitoring account that has access to the
event table. When the servers receive the event data, they parse the XML, decode the data, and insert it
into the identified event stream.

http://../bam/webservice/eventstream
Web service
application Event data as XML

Web services publish event data Event table
as XML via HTTP to Business

Business Activity
Monitoring

y

The Web service event table
maps the data from XML into
the event stream.

Activity Monitoring.

Each Web service event table has the following attributes:

Attribute Description

Name Identifies the table and is the name accessed by the Business Views that
depend on this table. This name must be unique among views, events, context,
and consolidated events. See “Object Namespace” on page 248 for details.

Description (optional) Description of the table.

Status Whether or not the object is enabled (able to receive and pass data) or disabled
(not receiving or passing data).

Log event data for When on, logs event data that arrived after the last checkpoint started. This

recovery “recovery” log is used to restore the state of the system in the event of an
abnormal shutdown of the servers. For complete details, see “Working with
Checkpoint and Recovery” in Using Business Activity Monitoring Workbench.

Process events in the Choose this option when events must be processed in the order received.
order of arrival Otherwise, if events may be processed out of order, turn on this attribute.

Note: To join events in a view, the events must be processed in order. Leave this
option off to join the events.

Disable event after Disables the event when a consecutive count of errors occur. For example, if set

this number of to 5, disables the event after 5 consecutive errors. However, if 4 errors occur,

consecutive errors and then no errors occur followed by 2 errors, the event remains enabled. The
default is off: Do not disable.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Creating a Web Service Event 364

Attribute Description

Column Information The Column Information fields define the columns in the event table and are
the same name as the fields in the XML message, as described in the WSDL for
the event.

Clear State Interval ~ This tab contains several options for clearing persisted event data that is
propagated from the event in the views, objects, and dashboards that depend
onit.

The three options are:

« Do Not Clear State — This is the default. Data persists.

e Clear State on a Schedule — Select to clear the state on a schedule.
Selecting this option activates the scheduling feature positioned to the
right.

« Always Clear State (Every Event) — The state is refreshed each time the
event is updated.

7

Before creating a Web service event table, you need to create permission for tables (see “Creating
Permission” on page 258).

» To publish event from a Web service:

1. Create a Web service event in the BAM Workbench.

2. (Optional) Create a Business Activity Monitoring user account for the Web service to use when
publishing the event. The account must have at least Read-Write on the event table to publish to the
event stream.

3. Retrieve the event WSDL definition using HTTP.

http://<host:port>/bam/wsdl/eventstream.wsdl
The eventstream.wsdl file describes all defined Business Activity Monitoring Web service events
streams. See the documentation in the WSDL for descriptions of the XML elements and attributes.

4. Create the Web service publisher and define the XML event data to conform to the WSDL.

This example of XML carries data to the OrderWSEvent event stream:

e The account used to access the event stream (WSInputAccount)

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Creating a Web Service Event 365

e There are four columns of data defined in the <OrderWSEventData> element

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<soapenv:Body>
<OrderWSEvent input xmlns="http://www.celequest.com">
<cgesi>
<eventname>0OrderWSEvent</eventname>
<username>WSInputAccount</username>
<password>wspwd</password>
</cqgesi>
<OrderWSEventData>
<ProdName>Plywood</ProdName >
<OrderQuantity>150</OrderQuantity>
<OrderTotal>987.34</0OrderTotal>
<IsBackordereds>true</IsBackordered>
</OrderWSEventDatas>
</OrderWSEvent inputs
</soapenv:Body>
</soapenv:Envelope>

5. Publish events to the URL identified in the eventstream.wsdl file, similar to the following:
http://<host:port>/bam/webservice/eventstream.wsdl
If you later change the machine that hosts the Business Activity Monitoring servers, be sure to re-query
the WSDL file to determine the correct URL.

This completes the steps for creating and using a Web service event.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Web Service Context 366

Business views request rows from a context table that match one or more input values, such as a list of
suppliers that supply an item, where the item ID is the input. That input is then passed to the Web service
application though the agent as XML. The application then returns one or more rows of data as XML,
which are then mapped into the context table. The table then passes the requested data to the requesting
business view.

Web services provide context

Business data in response to a request
k from a context table.
Input
\ Data for
,.’L Web —» (Web
Contex [¥~ -
™~ Requested =
[~
Outpu
|

Business Activity Monitoring Web service agents are synchronous: they retrieve context data as the result
of a specific request. When requesting data, the agent uses Simple Object Access Protocol (SOAP binding)
to communicate with the application through an HTTP connection. The application then returns one or
more rows of data in XML, following the Web service definition language (WSDL) format, Doc-type format.
(Note that WSDL RPC-style is not supported.)

Note: For details about context agents, see “Web Service Agents” on page 370

Before creating a Web service context table, you must:

e Create permission for tables (see “Creating Permission” on page 258)

e Have a Web service agent that will feed the table (see “Web Service Agents” on page 370 for details)

e Read Only access permission on the agent.

A Web services table has the following attributes:

Attribute Description

Name Context table name. This name must be unique among views, events, context, and
consolidated events. See “Object Namespace” on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the table is enabled (monitoring for events), or disabled (not
monitoring for events).

Web Service An existing Web service agent that connects to a Web service application. Create an
Agent agent with the BAM Workbench Administration tab. See “Web Service Agents” on
page 370 for details. This value cannot be changed.

Method Method of the Web service to use. When the service provides multiple methods,
you need to choose which one to use. This value cannot be changed in this release.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Creating a Web Service Context Table 367
Attribute Description
XPath Root Identifies the XPath root of the repeating elements in the output, typically

/Envelope/Body. This path is prepended to all paths in the Output Field Name list.

Disable context Count of consecutive errors to receive before the system disables this context. Once
after errors disabled, a context must be re-enabled manually.

Outputs Columns that receive the information from the Web service. See “Output Columns”

on page 368 for details.

Inputs Columns that contain the data which identify what to look up in the query. See

“Input Columns” on page 368 for details.

Caching See “Caching Context Queries” on page 48 for details about this feature.

Use the following procedure to create a Web service context table.

» To create a Web service context table:

1.

In the BAM Workbench, Workbench tab, create a New context and choose Web service as the table
type.

Select an existing Web service agent.

Select the service method to use. Each Web service provides one or more methods for accessing the
data it provides according its WSDL file definition (the URL location of which you specified when
creating the Web service agent). Choose the method that performs the query your context needs.

Define columns that receive information from the Web service — the Output columns. By default, the
editor defines one column for each element returned by the method. See “Output Columns” on
page 368 for details about defining these columns.

Define the columns that contain the data that identify what to look up in the query — the Input
columns. By default, the editor defines one column for each element returned by the method. See
“Input Columns” on page 368 for details.

Specify how many results to cache, if any. See “Caching Context Queries” on page 48 for details about
this feature.

Save the Web services table as enabled and it will immediately be ready to receive context.

Adobe LiveCycle ES

Web Services

Business Activity Monitoring Server Reference Output Columns

368

The Output columns receive the information from the Web service and define the table to receive the data.
The editor automatically defines one column for each element returned by the method. Further, each
column has the following attributes:

Attribute

Description

Column Name

Output Field Name

XSD Data Type

Business Activity
Monitoring Data

Type

Formatting

Name of the table column that contains the result returned by the Web service.
By default, the name is the same as the element in the Output Field Name. You
may assign any valid name.

(Cannot be changed.) Identifies the element in the XML returned by the service.
Note that you can view the entire path to the element by opening the
Hide/Show dialog.

(Cannot be changed.) Identifies the data type of the element in the XML.

Note that only the basic data types are supported: numbers, strings, dates, and
boolean. Complex types like ANY and ARRAY and mime types are not
supported.

Data type of the column in the table. Choose a data type appropriate to the
data returned.

Formats the String, Date-Time, or DECIMAL value returned. This option is not
available for other data types. See “Data Types” on page 55 for details.

To exclude columns from the result, open the Hide/Show dialog and deselect the fields to exclude.

The Input columns pass information to the Web service to identify the information to return (the Outputs).
The editor automatically defines one column for each element identified by the method. Each column has
the following attributes:

Attribute

Description

Column Name

Input Field Name

Name of the column that contains the information passed to the Web
service query. For example, it might contain an ID that identifies a product
to look up. This column is populated by the business view that requires the
context information. By default, the name is the same as the element in the
Input Field Name. You may assign any valid name.

(Cannot be changed.) Identifies the element in the XML passed to the
service. Note that you can view the entire path to the element by opening
the Hide/Show dialog.

String Replacement Text A string to pass to the service which contains values inserted by the

business view requesting the information. See “String Replacement
Templates” on page 369for details.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference String Replacement Templates 369
Attribute Description
XSD Data Type (Cannot be changed.) Identifies the data type of the element in the XML.

Note that only the basic data types are supported: numbers, strings, dates,
and boolean. Complex types like ANY and ARRAY, and mime types are not
supported.

Business Activity Data type of the Column Name attribute. Choose a data type appropriate to
Monitoring Data Type the data to pass.

Formatting Formats the String, Date-Time, or DECIMAL value returned. This option is

not available for other data types. See “Data Types” on page 55 for details.

To exclude unnecessary columns from the query, open the Hide/Show dialog and deselect the fields to
exclude.

Use a String Replacement Template when the Web service requires a string with embedded lookup data.
For example, some services require an expression that is the query to issue to the data source. The
illustration below contains returns context, where Part_ID and Qty_On_Hand values are provided by the
business view requiring the information. In the illustration, each Column Name (Alias) is a column in the
context table. When the Web service is queried, the values in those columns are inserted in the string
passed to the service.

Inpuks

Column Mame | Input Field Na... |5tring Replace...| XsD Data Type |Eelequest D

po_part_id Ervelope/Bodyra':dr[t)_ID= 7 kring VAR CHAR
po_arder_qtw kv_on_Hand
——
Template expression (mark replacement Fields with "7 —"
Toinclude an actual question mark proceed the |
character with a "', {example: "™ Replacement fields:

Part_ID= 7 AMND Qty_On_Hand == 7 ;| |p.:. _part_id -
LI Ipl:u_-:nrl:ler_qtﬂ

Template Preview:

Part_ID= po_part_id AMND Qby_On_Hand ==
po_order_qty

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Web Service Agents 370

» To use string replacement templates:
1. Click on the (...) to open the template editor.
2. Type the template expression and enter a question mark (?) for each piece of information to retrieve

from a column. Each question mark corresponds to one replacement field. The fields are the column
names in the context table and appear in the order that the question marks appear in the expression.

Save the template to update the Inputs column display.

A Web service agent communicates with an application running on a Web application server for the
purpose of retrieving context data. The agent connects to the application through an HTTP connection,
using Simple Object Access Protocol (SOAP).

Note: Web service agents are synchronous, they retrieve context data as the result of a specific request
as summarized in the following table.

Event Push Event Pull Context Pull

Yes No Yes

Before creating a Web services agent, you need:

e To create permission for agents (see “Creating Permission” on page 258 for details).

e To know the HTTP location of the WSDL file that defines the service to use. Note that the service must
publish its data in SOAP binding; RPC binding is not supported.

A Web service agent has the following attributes:

Attribute Description

Name Identifies the agent. This name must be unique among agents. See “Object
Namespace” on page 248 for details.

Description Optional description that may contain any text characters.

Status Whether or not the agent is enabled (monitoring for events) or disabled (not

monitoring for events).

URL HTTP location of the Web service definition language file (WSDL) that describes the
service, the data it provides, and how to exchange data with the service. Note that
returned data must be a SOAP doc-style message; RPC binding is not supported.

User name (optional) User name to use when connecting to the service. This parameter is
passed to the server when the server requires a user name.

Password (optional) User password to use when connecting to the service. This parameter is
passed to the server when the server requires a password.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Creating a Web Service Agent 371

Use the following procedure to create a Web service agent.

» To create a Web service agent:
1. In the BAM Workbench, Administration Console, click New Agent...
2. Choose Web Service as the source type.

3. Fillin the fields that define the agent’s attributes.

Save the agent as enabled and it will immediately be ready to retrieve data.

External Web service processes are methods that receive XML documents that describe the alert message
or dashboard object that a BAM Dashboard user is viewing, and which was sent to the service by the user.
The XML document describes all of the data in the item that the user was viewing.

» To publish an item to an external Web service:

1. Define the external process to receive the message in the BAM Workbench. See Creating an External
Process.

2. Send the item from the BAM Dashboard. When viewing an alert message or dashboard object, select
Take Action > Initiate Process and select the process.

3. The external service receives the item as an XML document and processes it. See “Implementing the
External Service” on page 372 for details about the document.

Each external process has the following attributes:

Attribute Description

Name External process name to appear in the Initiate Process dialog in the BAM
Dashboard. This name must be unique among external processes. See “Object
Namespace” on page 248 for details.

Description Optional description that may contain any text characters. This description appears
in the Initiate Process dialog in the BAM Dashboard.

Status Whether or not the process is enabled (sending XML documents) or disabled (not
sending documents).

Web Service URL HTTP location of the application providing the RPC (SOAP binding) service. Note
that DOC style messages are not supported.

Method Method of the Web service to use.

Adobe LiveCycle ES Web Services

Business Activity Monitoring Server Reference Creating an External Process 372
Attribute Description
Username (Optional) Account to use when connecting to the service.
Password (Optional) Password for the account.

Define an external process in the Administration Console of the BAM Workbench.

Before creating a Web services external process, you need:

e An already defined, external Web service method to receive the published method. You will need to
know the URL for connecting to the service, the name of the method that will receive the message, and
any user or account name and password required by the service. See Implementing the External
Service for additional details.

e Create permission for external processes (see “Creating Permission” on page 258 for details).

» To create an external process

1. In the BAM Workbench, open Administration Console > External Processes list, and click New Process.
2. Define the attributes for the process.

3. Save the process and it is immediately available to all users with access to it.

To use the process, in the BAM Dashboard, choose Take Action > Initiate Process and select the process.

Note: To see and use a process from the BAM Dashboard, users will need Read permission for that
process. You can assign permissions for the new object by clicking Permissions in the External
Processes list, or an administrator can grant Read access to the class of external processes for the
users. See “Accessing Permissions” on page 255 for details.

To implement the external Web service,
e Define it to receive a SOAP binding message with the fields in the external action XSD, and

o Create a WSDL (definition file) following Business Activity Monitoring target and import requirements.

The XML message fields are defined in the invokeExternalAction.xsd definition file. You can find this (and
all XSD files) in the /api/metadata directory on the product CD-ROM file. For more information about XML
and XSD files in Business Activity Monitoring, see “XML/XSD" on page 375.

Note: You will also need common.xsd located in the same directory.

Every message contains at least these fields:
e description — Description of the external process defined in the BAM Workbench

e actionName — Name of the external process defined in the BAM Workbench.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Web Service WSDL 373

e severity — Severity either of the original alert message, or as chosen by the user that initiated the
message.

Other fields are included as necessary based on the object that the user was viewing in the BAM
Dashboard when they initiated the action, such as the subject of an alert message, or the row set of the
data in the view on which a chart was presenting. See the XSD file for details.

When implementing the Web service, define it to receive a SOAP message and with the following

attributes:

Attribute Value Comment

style rpc Do not use “document”.

target namespace (tns) http://www.celequest.com —

encoding (soap:body) encoded Do not use “literal”.

import namespace http://www.celequest.com/2 Defines Business Activity Monitoring data
types. Alternatively, you can define the
types in the WSDL, but that is beyond the
scope of this document.

import location Installation-specific Location of invokeExternalAction.xsd in

your installation.

Adobe LiveCycle ES Web Services
Business Activity Monitoring Server Reference Web Service WSDL 374

The following is an example WSDL that handles the invokeExternal Action message on a machine and port
named host:80. Note that it imports the invokeExternalAction.xsd definition file.

<?xml version="1.0" encoding="utf-8" ?>

<definitions
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlng:impl="http://www.celequest.com/2"
xmlns:tns="http://www.celequest.com"
targetNamespace="http://www.celequest.com"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.celequest.com/2"
location="/celequest/api/metadata/invokeExternalAction.xsd"/>

<message name="invokeExternalActionRequest">
<part name="request" element="impl:invokeExternalAction" />
</message>

<portType name="invokeExternalActionPortType">
<operation name="invokeExternalActionOperation"s>
<documentation>Receives a COGNOS LAVA external action.
</documentations>
<input message="tns:invokeExternalActionRequest"/>
</operation>
</portType>

<binding name="invokeExternalActionBinding"
type="tns:invokeExternalActionPortType" >
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="rpc" />
<operation name="invokeExternalActionOperation"s>
<soap:operation soapAction=""/>
<input>
<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.celequest.com" use="encoded"/>
</input>
</operation>
</binding>

<service name="invokeExternalActionService">
<port name="invokeExternalActionService"
binding="tns:invokeExternalActionBinding">
<soap:address
location="http://host:80/axis/services/invokeExternalActionService"/>
</port>
</service>
</definitions>

36

XML/XSD

All Business Activity Monitoring Objects and many system operations can be expressed in XML format and
uploaded into the system. The XML must be properly formatted as defined by XML schema files (XSD). For
a complete list of the objects defined and operations you can perform, see “Business Activity Monitoring
XSD files” on page 383.

Note: Details about XML and XSD are beyond the scope of this documentation. For information about
XML and XSD, see www.xml.org.

In this Chapter:

“About XML and XSD Files in Business Activity Monitoring” on page 376

“Uploading XML Files” on page 377

“Defining an Object with XML" on page 379

“Defining Multiple Objects with XML"” on page 380

“Altering an Existing Object with XML"” on page 382

“Issuing Commands with XML" on page 383

“Business Activity Monitoring XSD files” on page 383

375

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference About XML and XSD Files in Business Activity Monitoring 376

All XML files in Business Activity Monitoring have schema files that define the structure of the XML. The
XSD files and sample XML files, are provided on the product CD-ROM.

/api/metadata XSD files
/samples/metadata Sample XML files

In addition to the samples, another way to see properly defined XML files is to first create objects in the
BAM Workbench or BAM Dashboard, then use the Administration Console to export the entire set. All
exported objects are written as XML files to the export directory on the server. For more information about
this procedure, see “Importing/Exporting Metadata” in Using Business Activity Monitoring Workbench.

Most of the objects in the system depend on other objects. When you define a new object, all of its
dependences must be defined first. Do that by defining and uploading base objects in the order of
dependency, or by defining them in batch as described in “Defining Multiple Objects with XML" on

page 380.

When an XML element value contains multiple, contiguous white space characters that must be retained,
direct the system to keep the spaces with xml:space="preserve". Otherwise, the XML specification says to
remove extra spaces. For example, without the preservation directive, the following description would be
trimmed of the trailing spaces and would have only one space between the words:

<description xml:space="preserve">A note </description>

The characters “<” and “&” are illegal in XML. Some other characters are legal but can cause confusion
when looking at them. For these characters, use these XML escape entities instead.

Sequence Result

< < Lessthan

> > Greater than
& & Ampersand
' " Apostrophe
" " Quotation mark

For example, when expressing a query that contains a less-than symbol, use < instead, for example:

<query>SELECT cl, c¢2 FROM eventl WHERE c3<=100 AND
c2=' CQST' </query>

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Character Data 377

Instead of using escape characters, another way to express special characters is to use a CDATA tag. This
tag tells the parser to ignore all special characters and treat them as literals. For example:

<query><! [CDATA[SELECT cl, c2 FROM eventl
WHERE c3<=100 AND c2='CQST']l]></query>

There are two ways to upload XML files into Business Activity Monitoring:

e From a Command Line with the cqupload.jar utility.

e From a Web Browser with the fileupload.jsp script.

Both methods require that the Business Activity Monitoring server to be running. Also, each method uses a
Business Activity Monitoring user account to log in to the server and perform the action. In each case, the
account must have create rights to the class of objects to create, or administration rights to the operations
to perform. See “Users” on page 332 for information about user accounts.

From a command line, use the cqupload.jar utility to upload files. You can find it on the product CD-ROM in
the /BAM/CQUpload/ directory.

This utility has three options:

Option Description
-s applicationURL A URL that locates Business Activity Monitoring
-u userName (Optional) User account to use. Omit this option to use the default system

administrator account.

-p password Password for the user account. Required if you include -u.

For example, to upload an XML using the default system administrator account:

java -jar <CD-ROM>/BAM/CQUpload/cqupload.jar
-s http://<applicationServers>/lava createUserSkyler.xml

To include a username or password:

java -jar cqupload.jar -u skyler -p roo -s

A successful operation occurs silently; however, if the operation fails, the utility returns an error message to
the command window. Review the error message to identify the problem. For example, this message
indicates an error in the XML:

Error uploading file: createUserSkyler.xml

java.io.IOException: Error parsing an XML document. Ensure that the
XML conforms exactly to the XML schema definition. The XML that
cannot be parsed is:

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference From a Web Browser 378

Further down the message you can find the actual cause: an invalid element:

Caused by:
javax.xml.bind.UnmarshalException: Unexpected element
{http://www.celequest.com/2} :nome

The fileupload.jsp script presents a form where you identify the XML file to upload. It includes a file picker
where you to identify the XML file to load and displays a message with the results of the upload.

» To upload from a Web browser:

1. Run the fileupload.jsp script. Use an address similar to the following URL. Use the localhost only if you
are running the browser on the same host as Business Activity Monitoring servers; otherwise, use the
same location that you use to run the BAM Workbench.

http://localhost/bam/jsp/fileupload.jsp
2. ldentify the user name and password of the Business Activity Monitoring account to use.
3. Identify the XML file to upload.
4. Choose Upload to perform the action.

The results page displays the name of the XML file uploaded and its result. If the Status is Failed, review the
exception to see what went wrong and correct the problem. For example, this message reveals that the
operation failed because the user object Rolf did not exist.

Exception Encountered
com.celequest.exception.VCException: Cannot alter the [User]
named [Rolf] because that object does not exist.

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Defining an Object with XML 379

This section describes how to define and upload a single XML definition. To upload multiple XML files —
especially objects with dependencies — follow the instructions in the next section, “Defining Multiple
Objects with XML"” on page 380.

» To define an object with XML:

1. Create XML definition. Use the associated XSD file to determine the valid elements of the XML file. See
Example: Create User below for an example of a complete XML file.

2. Ensure that Business Activity Monitoring is running.

3. Upload the XML file.

Use either of the methods described in “Uploading XML Files” on page 377. To upload the file from the
command line with the cqupload jar utility:

java -jar <CD-ROM>/BAM/CQUpload/cqupload.jar
-s http://<applicationServers>/lava createUserSkyler.xml

This completes the steps for creating a new object.

<?xml version="1.0" encoding="UTF-8"?>
<createUser
xsi:schemalocation="http://www.celequest.com/2

../../api/metadata/createUser.xsd"
xmlns="http://www.celequest.com/2 "
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<name>Skyler</name>
<description xml:space="preserve">A power user</description>
<Password>roo</Password>

</createUser>

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Defining Multiple Objects with XML 380

When defining multiple objects — especially objects with dependencies — use commandBatch.xsd: the
“batch mode” XML definition object. When you use the batch mode, include all of the XML in a single file,
then upload that file. All of the operations must be valid or none of them are accepted. To define and
upload a single XML object, follow the instructions in “Defining an Object with XML" on page 379.

» To define multiple objects with XML:

1. Create an XML batch file. Use commandBatch.xsd as the definition. Within the file, nest each definition
within a <command> element and place them all in a single <commands> element in the order that
the objects must be defined.

Note: See “Example: Batch command” on page 381 for a listing that defines multiple, dependant
objects.

2. Ensure that Business Activity Monitoring is running.

3. Upload the batch XML file. Use the cqupload.jar utility to upload the XML file the application server
running Business Activity Monitoring. For example, to upload the example batch file:

java -jar <CD-ROM>/BAM/CQUpload/cqupload.jar
-8 http://<applicationServer>/lava commandBatchSkyler.xml

This completes the steps for defining multiple objects.

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Example: Batch command 381

This batch command defines a user account, two delivery profiles for the user, a user preference, and
assigns one permission to the user.

<?xml version="1.0" encoding="UTF-8"?>
<commandBatch
xsi:schemalocation="http://www.celequest.com/2
../../api/metadata/commandBatch.xsd"
xmlng="http://www.celequest.com/2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<commands>
<commands>
<createUser>
<name>Skyler</name>
<description xml:space="preserve">A power user</descriptions>
<Password>roo</Password>
</createUser>
</command>
<commands>
<createUserProfile>
<name xml:space="preserve">Work e-mail</name>
<UserName>Skyler</UserName>
<isDefaults>true</isDefault>
<EmailProfile><typeName/ >
<emailAddress>skyler@celequest.com</emailAddress>
</EmailProfiles
</createUserProfile>
</command>
<command>
<createUserProfile>
<name xml:space="preserve">Second profile</name>
<UserName>Skyler</UserName>
<isDefault>false</isDefault>
<EmailProfile><typeName/ >
<emailAddress>skyler@viewceler.com</emailAddress>
</EmailProfiles
</createUserProfiles>
</command>
<command>
<setUserPreferences>
<userName>Skyler</userName>
<userPreferences>
<operation>set</operations
<names>polling interval</name>
<value>5</value>
</userPreference>
</setUserPreferencess>
</command>
<command>
<setPrivileges>
<operation>GRANT</operations
<privilegeTuple>
<objectType>VIEW</objectType>

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Altering an Existing Object with XML 382

<privilege>UPDATE</privilege>
<accessorType>USER</accessorType>
<accessorName>Skyler</accessorName>
</privilegeTuple>
<withGrants>false</withGrants>
</setPrivilege>
</command>
</commands >
</commandBatch>

To alter an existing object’s definition, use the same XML and schema as when creating the object, but
include an <alterinformation> element to identify the alter operation. (The <alterinformation> element is
defined in common.xsd.) For example, this definition renames a view from OldName to NewName; note
that it uses the createView.xsd schema:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<createView xsi:schemalocation="http://www.celequest.com/2
/api/metadata/createView.xsd"
xmlng="http://www.celequest.com/2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<alterInformation>
<previousName>0ldName</previousName>
</alterInformations
<name>newName</name>
<description>My test view</descriptions>
<query>SELECT c1l, c2 FROM eventl WHERE c3<=100</query>
</createView>

No matter what change you are implementing, you must use <previousName>. If you are not changing
the object’s name, use the same name for both <previousName> and <name> elements, like this:

<alterInformations>

<previousName>0OldName</previousName:>
</alterInformations>
<name>01ldName</name>
<description>New description</descriptions>
<query>SELECT cl1l, c2 FROM eventl WHERE c3<555</query>

By default, an alter operation fails if the existing object does not exist. However, you can force the object to
be created regardless of the existence of the existing object by including a <createlfNotFound> element,
like this:

<alterInformation>
<previousName>0OldName</previousName>
<createIfNotFound>true</createIfNotFound>
</alterInformation>

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Dependencies 383

When you alter an existing object all other objects that depend on the altered object are evaluated and
made “invalid” if their definition is broken as a result of the change. You will have to alter the invalid
objects and correct their definitions before they can be re-enabled.

Many system operations can be performed with XML commands. Here are some of the common

operations:

Operation Schema

Enable an object enableObject.xsd
Disable an object disableObject.xsd

Drop (delete) an object dropObiject.xsd

Set a system property setProperty.xsd

Import or export the system metadata performimportExport.xsd
Perform a “checkpoint” systemCommand.xsd

The following is an example operation.

To enable an object and all of its dependencies, use the enableObject.xsd schema. You must identify the
name of the object and its object type. (The valid <type> values are defined in common.xsd by the
<VCEnableObjectType> element.)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<enableObject xsi:schemalLocation="http://www.celequest.com/2
/api/metadata/enableObject.xsd"
xmlns="http://www.celequest.com/2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<name>MyView</name>

<type>VIEW</type>

<cascade>true</cascade>
</enableObject>

This example enables all dependent objects because <cascade> is set to true. Omit this element, or set it
to false to enable just the named object.

These are Business Activity Monitoring XML schema files, arranged by category:

e “Users, Profiles, and Roles” on page 385" (below)

e "“Dashboard” on page 385

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Business Activity Monitoring XSD files 384

e "“Rules, Alerts, and Reportlets” on page 385

e "“Events, context, cubes, and views” on page 387

e “Scenarios and business activities” on page 387

e "“Agents” on page 388

e “System administration” on page 388

e “Object management” on page 388

e “Miscellaneous files” on page 389

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

XML/XSD

Business Activity Monitoring XSD files 385

The files are located are located on the product CD-ROM in this directory: /api/metadata.

Users, Profiles, and Roles

Schema Description
addMembersToRole.xsd Adds one or more existing users to an existing role.
addMemberToRole.xsd Adds an existing user to an existing role.

createRole.xsd
createSecurityFilter.xsd
createUser.xsd
createUserProfile.xsd

setPrivilege.xsd

setUserPreferences.xsd

Creates a user role object.

Creates an access filter

Creates a user object.

Creates a user delivery profile object.

Sets a user’s or role’s permission on an object or class of
objects.

Set a user’s preferences.

Dashboard
Schema Description
createBookmarks.xsd Creates a dashboard bookmark

createDashboard.xsd
createPlan.xsd
createPortlet.xsd
createTask.xsd

createTaskMessage.xsd

Creates a dashboard

Creates dashboard references and plans
Creates a dashboard object

Creates a dashboard task

Creates a dashboard task message

Rules, Alerts, and Reportlets

Schema

Description

alertCommon.xsd
alertMessage.xsd
alterAlertState.xsd
alterRule.xsd
createAlert.xsd

createExcelTemplate.xsd

Common alert XSD definitions.

Alert message to be delivered to a Web Service.
Alters the state of an existing alert.

Alters an existing rule object.

Creates an alert object.

Creates a Excel Template object that describes the template

that a reportlet might use.

Adobe LiveCycle ES XML/XSD
Business Activity Monitoring Server Reference Business Activity Monitoring XSD files 386

Rules, Alerts, and Reportlets

Schema Description

createReportlet.xsd Creates a reportlet object.

createRule.xsd Creates a rule object.

createRuleBundle.xsd Specifies the values associated with parameters in a rule

template, and generates the rules, alerts and reportlets based
on the template definition.

createRuleTemplate.xsd Creates a template of parameterized definitions of a set of
rules, the alert used by the rules, and the reportlets associated
with the alert.

ruleCommon.xsd Contains common rule XSD definitions.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

XML/XSD
Business Activity Monitoring XSD files 387

Events, context, cubes, and views

Schema

Description

createConsolidatedEventView.xsd

createContext.xsd
createCube.xsd
createDimension.xsd

createEventStream.xsd

createView.xsd

createViewPersistence.xsd
ffsourceType.xsd
jdbcSource.xsd

messageSource.xsd

queryCube.xsd

querylnformation.xsd
sourceDefinition.xsd

sourceDefinition.xsd

tableDefinition.xsd

webServiceSource.xsd

Creates a consolidated event view based on an
existing event stream and one or more additional
event streams or views.

Creates a context object based on an existing source.
Creates a cube object.
Creates a cube dimension

Creates an event (stream) object based on an existing
source.

Creates a view object based on an existing source
table (event stream) and other, optional (joined) tables
(event or context).

Creates a view persistence definition.
A flat-file event object.
A JDBC context object.

A message object passed from an agent to an event or
context, used by JMS, TIBCO RV, log4j, and HTTP.

Issues a query on a cube against measures in
dimensions.

Contains the elements of a query (SELECT statement).
Source types (agent types) supported by the system.

Contains common source definitions for event and
context object XSD definitions.

Supports event source definition.

A Web Service event object.

Scenarios and business activities

Schema Description
createBusinessActivity.xsd Creates a business activity object.
createScenario.xsd Creates a scenario object in an existing business view and

linked to an existing view.

Adobe LiveCycle ES XML/XSD

Business Activity Monitoring Server Reference Business Activity Monitoring XSD files 388
Agents
Schema Description
FFConnection.xsd A flat-file agent.
jdbcConnection.xsd A JDBC agent.
JMSTopicConnection.xsd A JMS agent.
log4jConnection.xsd A log4j messaging agent (used internally for logging).
procSource.xsd Stored procedure definitions.
RVConnection.xsd ATIBCO RV agent.
SOAPConnection.xsd A Web Service connection.
xmlBuffer.xsd An XML buffer, holds part of a message.

System administration

Schema Description

propertyTypeDefinition.xsd Describes a system property.

setLoglLevel.xsd Sets the logging level is a system logger (logging module).
setProperty.xsd Command to set a system property.

systemCommand.xsd Performs a checkpoint.

Object management

Schema Description

createKeyRelationship.xsd Creates a relationship between two objects.
disableObject.xsd Disables an object.

dropObject.xsd Deletes an object

enableObject.xsd Enables an object.

setObjectRelation.xsd Relates two objects.

Adobe LiveCycle ES
Business Activity Monitoring Server Reference

XML/XSD
Business Activity Monitoring XSD files 389

Miscellaneous files

Schema

Description

commandBatch.xsd

common.xsd

createJar.xsd
createUDF.xsd

invokeExternalAction.xsd

jarManifest.xsd
performlmportExport.xsd

schedule.xsd

Defines multiple objects to be loaded (defined) in batch.
All definitions must be valid or no objects are defined.

Contains common XSD definitions used by most XSD
schemas.

Creates a JAR object.
Creates a UDF object.

Describes an external action message sent to a Web
service. For more information about this file, see “Web
Service External Processes” on page 371.

Defines the manifest in a JAR.
Command to the system to perform an import or export

Contains common schedule and schedule interval
definitions used by XSD definitions.

Glossary

business data modeling

A technique for describing the events, context, views, and rules that depict how your business functions.
cascade

A operation that propagates the exact same operation to all dependant objects.

consolidated event

An event table that captures events from different, but similar event sources and combines them into a
single event stream. See Working with Consolidated Events for details.

current view

A snapshot of the data currently in a view. For a stateful view, the snapshot shows all rows in the view. For
a stateless view, it shows all the rows corresponding to the last event, and might be an empty set. See
“View Initialization” on page 357 for details.

delivery profile

Specifies where and how to deliver alerts and data feeds to the user. See “Delivery Profiles Tab” on
page 334 for details.

enabled

An object that is accepting new data and is processing them. All objects are created enabled. See “Object
Status” on page 244 for details.

disabled

An object that is not accepting new data. Disabling an object does not affect the definition or existence of
that object; rather, it just keeps new data from flowing into the object and to all objects that rely on the
target object. See “Object Status” on page 244 for details.

inner join

A join where the rows in the resulting view are the rows from the first table or view that meet the specified
criteria, combined with the corresponding rows from the second view that meet the specified criteria.
Inner joins are sometimes called equi-joins.

invalid

An object that has a reference to another object which cannot be satisfied. A reference can be invalid
because an object does not exist or because some attribute of an object does not match the requirements
of the dependent (such as a data type mismatch), not because the dependent is disabled. Note that all
objects that depend on an invalid object are also invalid. See “Object Status” on page 244 for details.

invalid and disabled

An object that is both disabled and invalid; it cannot receive data and it has no state. See “Object Status”
on page 244 for details.

390

Adobe LiveCycle ES Glossary
Business Activity Monitoring Server Reference 391

metrics

Measurements taken over time that monitor, assess, and communicate vital information about the results
of a program or activity.

moving set function

A function that performs calculations on a set of the latest rows in a view. The set of rows to include is
determined only when a new event arrives. For more information, see “Moving Set” on page 110.

outer join

A join where the rows in the result table are the rows that would have resulted from an inner join and the
rows from the first table (LEFT OUTER JOIN) or the second table (RIGHT OUTER JOIN) that had no matches
in the other table.

query window

Specifies a set of rows that are used in calculations with respect to the current row (event) under
examination. The calculation may be for computing a moving set function, a join, or expiring rows from a
view. See “Query Windows" on page 272 for details.

rank function

A function that computes the scalar result for each value in a set, with respect to the entire set. A rank
function may only be used in the selection list of a SELECT statement. For more information, see “Rank” on

page 110.

recent view

A snapshot of the last non-empty current view. A recent view is what appears in the BAM Workbench
when editing an object that displays view results. See “View Initialization” on page 357 for details.

scenarios

Test business data models for expected or possible outcomes, and to identify exceptional business
conditions. See “Scenarios” on page 318 for detailed information.

scalar expression
An expression without a set function.
scalar function

A function operates within the bounds of a single event and provides a single result for each row, such as
the absolute value of a number or concatenation of two strings. These functions may appear in any C-SQL
expression. For more information, see “Scalar” on page 109.

set function

A function performs calculations on a column in a set of rows in a view, such as the average value of the
cost of some similar product orders. A set function may only be used in the selection list of a SELECT
statement. For more information, see “Set” on page 110.

snapshot view

A view that is a replica of a view at the time the query executed; constructed with SELECT *. Note that the
view might not reflect those events which have arrived in the system but which have not yet been
processed at the time of the query.

Adobe LiveCycle ES Glossary
Business Activity Monitoring Server Reference 392

stateful view

A view that contains the results of aggregations derived from past events in a single row. A view is stateful
if it contains an set function or moving set function in the SELECT clause, or contains a GROUP BY Clause
(in which case there is one row for each group), or is derived from a stateful view. See “Stateless and
Stateful Views” on page 356 for details.

stateless view

A view that is not a stateful view. See “Stateless and Stateful Views” on page 356 for details.

terminal set function

a set function that has only scalar arguments.
terminal rank function

A rank function that has only scalar arguments.
tumbling set function

A function that performs calculations on a windowed set of the rows in a view. The set of rows to include is
determined when a new event arrives, and the set empties when full. For more information, see “Tumbling
Windows” on page 286.

user-defined functions

(UDFs) provide a mechanism for extending C-SQL by defining and your own functions for use in formulas,
including queries, field expressions, and rules. See “User-Defined Functions” on page 346 for detailed
information.

virtual table
A table or view where the rows are derived as they are required in memory.

window

See query window.

Index

A
ABS() 118
absolute value 118
access filters 15
assigning 21
behavior 18
condition 16
cubes, creating on 20
restrictions 18
user context 16
views, creatingon 19
access permissions 255
acknowledged alerts 33
addition, decimal results 60

addMembersToRole.xsd file 385
addMemberToRole.xsd file 385
administrator, see system user 333

agents 23

altering 26

creating 25

editing 26

flat file 89

JDBC 224,314

JMS 210, 213

Rendezvous 344

TIBCO Rendezvous 344

Web service 370

XSD file 388
aggregate views 355
aggregation functions 113
alert functions 111

alert states, testing for raised 136

alertCommon.xsd file 385
alertMessage.xsd file 385
alerts 27
acknowledged 33
escalation 33
fired 33
graphics, embedded 30
HTML, embedded 30
importance 29

mandatory subscriptions 31

message text 30

messages, consolidated 34
monitoring with rules 303

optional subscriptions 31
permissions for 259
raised 33

reportlets 36

stateful 33

stateless 33

subscribers 31

XSD file 385

aliases in dimensions 71

Allow Short Rows, delimited files option 93

alterAlert.xsd file 385

<alterInformation> element 382

alterRule.xsd file 385

AND operator 252

ANSI SQL-99 321
appending string lists 123
appending strings 122, 124

application interface, JDBC API 228

archiving view data 359
AS option 322
average 114,118

MACD moving average example 118

moving 154
tumbling 184
AVG() 118

BEA WebLogic Portal Server 263

BETWEEN operator 251
bookmarks
XSD file 385
Boolean
data types 68
functions 111
truth tables 68
business activities 41
attributes 42
creating 42
deleting 42
XSD file 387
business views 350

C

caching context query results 48

cartesian product 326
cascade operation 390
CASE expression 323
CAST() 120
casting data types 56
numeric to string 58
numeric types 58
CDATA 377
CEIL() 121
CHAR_LENGTH() 122
CHARACTER_LENGTH() 122
characters
length of a string 122
lowercase conversion 141

uppercase conversion 194

checkpoint
XSD file 388

393

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
394

cognosAPl jar file 347
column references 322

naming in selection 322
columns, value of previous row 166
combining numeric types 58
comma separated value 93
commandBatch.xsd file 380, 389
commit 321
common.xsd file 389
comparison operators 251
CONCAT() 122
concatenating strings 122

lists 123

sets 124
concatList() 123
concatSet() 124
ConcatSet() sample UDF 347
Connection interface 229
connection pool 226
consolidated alert messages 34
consolidated events 355

XSD file 387
constants 252
constraints on views 325,353
context 43

creating 45

editing 46

how it works 44

limitations in queries 46

query caching 48

query limitations 46

tables, name 45

Web services 366

XSD file 387
converting data types 56
count star function 125

tumbling window set 185
count star function, moving set 155
COUNT() 125
country codes 131
cqgjdbcclient.jar driver 229
cqupload.jar utility 377,379
Create permission 258
createAlert.xsd file 385
createBookmarks.xsd file 385
createBusinessActivity.xsd file 387
createConsolidatedEventView.xsd file 387
createContext.xsd file 387
createCube.xsd file 387
createDashboard.xsd file 385
createDimension.xsd file 387
createEventStream.xsd file 387
createExcelTemplate.xsd file 385
<createlfNotFound> element 382
createlar.xsd file 389
createKeyRelationship.xsd file 388
createPlan.xsd file 385
createPortlet.xsd file 385
createReportlet.xsd file 386
createRole.xsd file 385

createRule.xsd file 386
createRuleBundle.xsd file 386
createRuleTemplate.xsd file 386
createScenario.xsd file 387
createSecurityFilter.xsd file 385
createTask.xsd file 385
createTaskMessage.xsd file 385
createUDF file 389
createUser.xsd file 385
createUserProfile.xsd file 385
createView.xsd file 387
createViewPersistence.xsd file 387
cross joins 326
CSV 93
cubes 50

creating 53

XSD file 387
cumulative distribution function 134
currency, displaying money 129
current date and time 126
current view snapshot 357
CURRENT() 125
CURRENT_TIMESTAMP() 126
CURRENT_USER() 127
C-sQL

data types 55

functions 114

D
dashboard objects
XSD file 385
Dashboard Profile
delivery profile 334
dashboards
XSD files 385
data flow
context entering the system 44
events entering the system 77
data from external sources 77
data types 55
Boolean 68
casting 56
casting order of precedence 56
converting to other types 56
date-time 61, 63
DECIMAL 57
DECIMAL, casting to string 58
DOUBLE 57
DOUBLE, casting to string 58
INTEGER 57
Java int data type values 233
JDBC 224
numeric 57
JMS 209
numeric 57,58
Rendezvous 342
string 60, 61
TIBCO Rendezvous 342
VARCHAR 60

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
395

DATA_TYPE column, values 233
DatabaseMetaData JDBC interface 230
Data-Driven Subscription tab 31
date functions 111
DATE_ADD() 127
DATE_DIFF() 128
date-time data types 61
adding a duration 127
comparisons 62
converting between strings 62
current 126
formatting 66
interval between two 180
last day of a month 137
locale 62
strings, converting to 181
subtracting a duration 128
time-zone 62
date-time intervals 63
day-time intervals 65
DB2
JDBC agentto 225
DECIMAL data type 57
casting to string 58
decimals 59
precision and scale results 59
removing from a number 183
truncating 121
delimited
file format 93
identifiers (object names) 245
delivery profiles 334
Dashboard Profile 334
e-mail 334
Web service 334
derived column 323
dimensions 69
alias names 71
creating 74
examples of 70
hierarchy of levels 70
key columns 73
XSD file 387
disabled state 244
disableObject.xsd file 388
disabling objects 244
DISPLAY_MONEY() 129
division
decimal results 59
remainder 148
doc (WSDL) format 366
DOUBLE data type 57
casting to string 58
Driver JDBC interface 229
dropObject.xsd file 388

E

e constant 132
e-mail

delivery profile 334
importance of alert messages 29
enabled objects 244
enabled state 244
enableObject.xsd file 388
equi-joins 326
Erlang distribution 134
esape characters in XML 376
Escape character (delimited files) 93
event identifier 360
Event Key field 84
event timestamp 360
events 76
consolidated events 355
creating 79
editing 79
how it works 77
HTTP Post 197
multiple-row events 84
order of processing 77
propagating to views 356
properties 78
table name 78,363
TIBCO Rendezvous source 338
URLS, data embedded in 201
Web service 363
XSD file 387
EVENTS clause 276
event-series windows 276
eventstream.wsdl file 364
examples
JDBC 235
EXP() 132
explicit casting of data types 56
exponential distribution 134
exponents 132
export
XSD file 389
external process 371
XML format 372
external sources 77

F
FALSE constant 68
FFConnection.xsd file 388
ffsourceType.xsd file 387
fields, replacement in context query 369
FileAgent.xml file 91
files

agent program 90

agents 89

delimited format 93

event tables 82

event tables, creating 84

fixed-width format 94

flat text files 81

XML samples 376

XML schema files (XSD) 383
fileupload.jsp script 378

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
396

Filtered / Read only permission 22
filters
access filters 15
fired alerts 33
fixed-width, file format 94
flat file 81
agent program 90
agents 89
event tables 84
events 82
multi-row events 84
time zone
custom 87
time zones 86
FLOOR() 133
for a specific clause 303
formulas 108
FROM clause 325
functions
ABS() 118
AVG() 118
CAST() 120
categories 111
CEIL() 121
CHAR_LENGTH() 122
CHARACTER_LENGTH() 122
CONCAT() 122
concatList() 123
concatSet() 124
count star 125
count star, moving set 155
count star, tumbling window set 185
COUNT() 125
CURRENT() 125
CURRENT_TIMESTAMP() 126
DATE_ADD() 127
DATE_DIFF() 128
descriptions 114
DISPLAY_MONEY() 129
EXP() 132
FLOOR() 133
formulas, usagesin 109
gammaDist() 134
GREATEST() 135
IS_RAISED() 136
LAST_DAY() 137
LEAST() 138
listofall 114
LOG() 139
logNormDist() 140
LOWER() 141
LPAD() 142
LTRIM() 143
MAX() 144
median() 145
MIN() 147
MOD() 148
mode() 149
MOV_AVG() 154
MOV_COUNT() 155

G

MOV_MAX() 156
MOV_MIN() 157
MOV_STD_DEVIATION() 159
MOV_SUM() 158
MOV_VARIANCE() 160
moving set 110
NTILE() 161
POSITION() 163
POWER() 164

PREV() 165
PRIOR_VALUE 166
rank 110

RANK() 167
RATIO_TO_REPORT() 169
reference 114
ROUND() 170

RPAD() 171

RTRIM() 172

set 110

SIGN() 174

SQRT() 175
STD_DEVIATION() 179
SUBSTR() 176
SUBSTRING() 176
SUM() 177
TIMESTAMP_DIFF() 180
TO_CHAR() 181
TO_DATE() 182
TRUNC() 183

tumble 287
TUMBLE_AVG() 184
TUMBLE_COUNT() 185
TUMBLE_MAX() 186
TUMBLE_MIN() 188

TUMBLE_STD_DEVIATION() 191

TUMBLE_SUM() 190
TUMBLE_VARIANCE() 193
tumbling set 110

types of 109

UPPER() 194

VARIANCE() 195

gamma distribution 134
gammaDist() 134
geography maps 72
geoography maps

categories 72

grant permissions 258
graphicsin alerts 30
GREATEST() 135
GROUP BY clause

H

implicit 330

moving sets, interacting with 153

stateful views 330

HAVING clause 327
hierarchy of dimension levels 70

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
397

Holds for attribute, rules 301
HTML

code in alerts 30

forms (event posting) 201
HTTP Post event 197

event tables 198

posting data to 201

tables, creating 199

URL 201

|
IBM WebSphere Portal Server 264
identifiers 245
implicit casting of data types 56
import

XSD file 389
importance 29
IN operator 251
Individual Subscription tab 31
INITIALIZE clause 288,289
in-line

query windows 274

views 327
inner joins 326
INT() function, MS Excel 133
INTEGER data type 57
integer time-series query windows 281
interfaces (API) 229
INTERVAL data type

literal 63
intervals

date-time 63

day-time 65

year-month 64
invalid

objects 244

state 244
invokeExternalAction.xsd 372
IS operator 252
IS_RAISED() 136

J
JAR
manifest, XSD file 389
XSD file 389
jarManifest.xsd file 389
Java
data type values 233
date-time data type 63
numeric data type 57
SimpleDateFormat class 66
string data type 61
Java Database Connectivity
See JDBC
Java Messaging Service
JBoss Portal Server 265
JDBC 216
agents 224,314
API 228

context tables 217
data types 224
date-time 63
event tables 217
interface examples 235
interfaces 229
polling 221
JDBC data types
date-time 63
numeric 57
jdbcConnection.xsd file 388
jdbcSource.xsd file 387
JMS
agents
JMS Queue 210
JMS Topic 213
data types 209

event tables, creating 207

events 205

MapMessage body type 205
JMSTopicConnection.xsd file 388

joins
cross, declaring 326
inner 326
nested 326
outer 326
synchronized 353
JSR-168 portal integration 261

K

key columns
dimensions 73

L

language codes 130
largest value of a set 135
LAST_DAY() 137
latest row in a set 125
leap second 129
leap year 129
LEAST() 138
LIKE operator 251
limitations of views 325, 353
literals
INTERVAL 63
TIMESTAMP 63
locale 62
LOG() 139
log4jConnection.xsd file 388
logarithm 139
logging
XSD file 388
logical functions 111
logical truth tables 68
loging name
returning 127
lognormal distribution 140
logNormDist() 140
LOWER() 141

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
398

lowercase conversion 141
LPAD() 142
LTRIM() 143

M
MACD 118
maintaining events in stateless views 358
mandatory subscriptions 31
manifest files, user-defined functions 348
MapMessage JMS body type 205
math functions 111
MAX() 144
mean average 114,118

moving 154

tumbling 184
measures 50
median() 145
message text, alerts 30
messageSource.xsd file 387
metrics, in real-time 355
MIN() 147
mixing numeric types 58
MOD() 148
mode() 149
modulus function 148
money, displaying currency 129
months, last day of 137
MOV_AVG() 154
MOV_COUNT() 155
MOV_MAX() 156
MOV_MIN() 157
MOV_STD_DEVIATION() 159
MOV_SUM() 158
MOV_VARIANCE() 160
moving averages, MACD example 118
moving sets 150

See also sets

functions 110

GROUP BY, interacting with 153
moving windows of stateless view 358
multiple row events 84
multiplication, decimal results 59
MySQL

date-time data type 63

numeric data type 58

string data type 61

N
name
event 78,363
names, restrictions on 245
namespace 248
nested joins 326
"No Data Available" in rule definition 28, 300
No Access permission 255
NOT operator 252
NTILE() 161
NULL
constant, testing for 252

value semantics 68
number sign 174
numbers

rounding 121

rounding down 133

rounding up 170

truncating 183
numeric

casting 58

combining 58

data types 57

decimal precision results 59

operators 250

o
objects 243
altering 244
altering with XML 382
defining with XML 379
disabling 244
enabling 244
invalidating 244
management XSD files 388
name restrictions 245
name uniqueness constraints 248
relationship, XSD file 388
status 244
operators 249
optional subscriptions 31
OR operator 252
Oracle
date-time data type 63
dstring data type 61
JDBC agentto 225
numeric data type 57
ORDER BY (query window) clause 279
ORDER BY (SELECT) clause 331
outer joins 326

P
PARTITION BY clause 282
partitions 282
performlmportExport.xsd file 389
permissions 253
access 255
Create 258
dependencies 259
Filtered / Read only permission 22
grant 258
inheritance 259
No Access permission 255
Read-Only permission 255
Read-Write permission 255
restrictions 259
setting 335
persisting view data 359
plans
XSD file 385
pool, connection 226

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
399

POSITION() 163
POWER() 164
precision and scale, declaring 59
PREV() 165
previous row in a set 165
PRIOR_VALUE functions 166
probability mass function 134
process order of events 77
processes 267
procSource.xsd file 388
profiles 334
properties

XSD file 388
propertyTypeDefinition.xsd file 388

Q

qualified column reference 323
query windows 272
advancement 285
declarations 274
event-series windows 276
frames 273
initialization 288
in-line declarations 274
integer time-series 281
partitions 282
reference, update 288
references 274
sliding 285
time-series windows 277
tumbling 286
update references 288
queryCube.xsd file 387
queryIinformation.xsd files 387

R
raised alerts 33
RANGE clause 278
rank functions 110
rank values
as a ration to the set 169
by percentage of set 169
into tiers 161
within the entire set 167
RANK() 167
ranking functions 112
RATIO_TO_REPORT() 169
Read-Only permission 255
Read-Write permission 255
real-time metrics 355
recent view snapshot 357
recovery file for event data 78,363
REFERENCE clause 288
references
XSD file 385
regular identifiers 245
Relative XPath 95
remainder of a division 148
Rendezvous, See TIBCO Rendezvous

replacement fields 369
reporting on view data 359
Reportlet data based on option 38
reportlets 290
access filters, interaction with 18
alerts, attached to 36
Cognos LAVA attributes 291
creating 291
external attributes 293
filtering 36
permissions for 259
XSD file 385
reserved words 245
ResultSet JDBC interface 231
ResultSetMetaData JDBC interface 231
roles 296
access filters, with 21
attributes 298
creating 298
ROUND() 170
rounding numbers
ceiling 121
down 133
up 170
rows
current 125
latest 125
previous 165
RPAD() 171
RPC style messages 370
RPC, WSDL 366

RTRIM() 172

ruleCommon.xsd file 386

rules 299
access filters, interaction with 18
action 302

alerts, monitoring 303
for a specific clause 303
functions 112
Holds for attribute 301
permissions for 259
XSD file 385
RV, See TIBCO Rendezvous
RVConnection.xsd file 388

S
samples
ConcatSet() UDF 347
XML objects 376
SAP 362
Save as New Alert option 28
Save as New Rule option 300
Save as New View option 351
scalar expression 391
scalar function 391
scenarios 318
attributes 319
creating 319
deleting 320

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
400

permissions for 259
XSD file 387
schedule.xsd file 389
schedules
XSD file 389
Schema XPath 95
See JMS
SELECT command 321
FROM clause 325
ORDER BY clause 331
select list 322
WHERE clause 328
select list 322
Separator character 93
set functions 110
setLoglLevel.xsd file 388
setObjectRelation.xsd file 388
setPrivilege xsd file 385
setProperty.xsd file 388
sets
See also moving sets
currentrow 125
latest row 125
previous row 165
setUserPreferences.xsd file 385
Siebel 362
sign of a number 174
SIGN() 174
simple column reference 322
Simple Object Access Protocol 366
SimpleDateFormat, Java class 66
SLIDE clause 285
sliding window
See moving sets
snapshot view 391
SOAP 366
SOAPConnection.xsd file 388
sourceDefinition.xsd file 387
sources of external data 77
space characters in XML files 376
SQL-99 321
SQLException 229
SQL-Server
date-time data type 63
JDBC agentto 225
numeric data type 58
string data type 61
SQRT() 175
square root 175
standard deviation 179
moving window set 159
tumbling window set 191
stateful
alerts 33
views 356
views and GROUP BY 330
stateless
alerts 33
maintaining more than one event 358
views 356

Statement JDBC interface 230
statistical functions 112
AVG() 118
median() 145
mode() 149
status 244
STD_DEVIATION() 179

string replacement templates (Web Service) 369

strings
appending characters 171
appending lists of 123
appending to 122
appending to a set 124
concatenating 122
concatenating a list 123
concatenating a set 124
converting to non-string data types 61
data types 60
dates, converting to 182
functions 112
inserting characters 142
length, determining 122
lowercase conversion 141
operators 250
padding, left 142
removing characters 143
removing characters from right 172
search for a characterina 163
substring 176
uppercase conversion 194
width declaration 60

subscribers 31

subscriptions
mandatory 31
optional 31

SUBSTR() 176

SUBSTRING() 176

subtraction, decimal results 60

SUM() 177

superuser 333

Sybase
JDBC agentto 225
limitations 47
numeric data type 58
string data type 61

synchronized joins 353

system
administraction, XSD files 388
property, XSD file 388
user 333

systemCommand.xsd file 388

T
table names
events 78,363
tableDefinition.xsd file 387
tables
expressions 327
names, context 45

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
401

virtual 392
virtual, declaring 321
tasks
message XSD file 385
XSD file 385
TestAgent.xml file 90
text
files 81
functions 112
Text qualifier 93
TIBCO Rendezvous 337
agents 344
data types 209, 342
event table, prerequisites 338
event tables 338
event tables, creating 341
limitations 338
time
current date-time 126
functions 111
See date-time data types
time-series
aggregations, functions for 113
aggregations, spans 152
See moving set functions
windows 277
windows, integer based 281
TIMESTAMP data type
formatting 66
interval between two 180
literal 63
TIMESTAMP_DIFF() 180
time-zone 62
toaset 124
TO_CHAR() 181
TO_DATE() 182
total
moving 158
set,ofa 177
tumbling 190
transaction 321
TRUE constant 68
TRUNC() 183
truth tables 68
tumble functions 287
TUMBLE_AVG() 184
TUMBLE_COUNT() 185
TUMBLE_MAX() 186
TUMBLE_MIN() 188
TUMBLE_STD_DEVIATION() 191
TUMBLE_SUM() 190
TUMBLE_VARIANCE() 193
tumbling
set functions 110
windows 286

U

UDFs, See user-defined functions
Unicode, character length 122

UNKNOWN constant 68
upload utility 377,379
UPPER() 194
uppercase conversion 194
user name, returning 127
user-defined functions 346
altering 348
creating 347
manifest file 348
restrictions 347
XSD file 389
users 332
access filters, with 21
attributes 333
context, as 16
creating 333
delivery profiles 334
details 333
profiles 334
system user 333

\'}
valid state 244
VARCHAR data type 60
width declaration 60
VARIANCE() 195
VC_<string> reserved names 245
VC_EVENT_ID column 360
VC_LATEST_EVENT_ID column 360
VC_TIMESTAMP column 360
view expansion 330
view merging 330
views 350
access filtered, derived from 18
access, limiting 15
aggregation 355
API 228
archiving, see persisting views
attributes 352
consolidated events 355
constraints 325, 353
creating 350
current snapshot 357
derived from GROUP BY views 330
filtered access 15
functions specificto 113
initialization 357
in-line views 327
limitations 325,353
persisting to database 359
recent snapshot 357
restricted access 15
retaining events in stateless views 358
stateful 356
stateful when using GROUP BY 330
stateless 356
table name, context 45
tables 78,363
updating for new events 356

Adobe LiveCycle ES
Business Activity Monitor Server Reference

Index
402

workset 352

XSD file 387
virtual tables 392

declaring 321

w
Web portal server integration 261
Web services 362

agents 370

context 366

context, creating 367

delivery profile 334

events 363

external process 371

external process, XML format 372
webServiceSource xsd file 387
WHERE clause 328
white space in XML files 376
WINDOW clause 274
windows

stateless view, of 358

See also moving sets

See query windows
workset 352
WSDL

doc format 366

RPC format 366

X
XML 375
altering an object with 382
CDATA 377
character literals 377
defining an object with 379
escape characters 376
example files 376
sample files 376
schema files 383
souce files (flat-file agent) 95
upload errors 377,378
uploading files 377
white space in files 376
XSD files 383
XML format
external Web service process 372
xmlBuffer.xsd file 388
XPaths 95
relative 95
schema 95
XSD
data types (flat-file agent) 96
files 383
See also XML

Y

year-month intervals 64

	Contents
	Introduction
	Access Filters
	Access Filter Conditions
	Naming Users
	Context Filters
	Users as Context
	Summary

	Access Filter Behavior and Restrictions
	Creating a View Access Filter
	Creating a Cube Access Filter
	Assigning an Access Filter to Users and Roles

	Agents
	External Sources
	Creating Agents
	Editing Agents

	Alerts
	Creating Alerts
	Alert Attributes
	Message Subject and Body Text
	Alert Subscribers
	Managing Alert Notification Messages
	Alert States
	Alert Escalation

	Consolidating Multiple Messages
	Setting an Alert to Invoke an External Web Service
	About the Web Service User-Defined Function

	Alert Reportlets
	Send As

	Reportlet Filtering
	Reportlet Data Based On Option
	Example

	Business Activities
	Creating Business Activities
	Business Activity Attributes
	Deleting Business Activities

	Context
	How It Works
	Creating Context Tables
	Editing Context Tables
	Context Column Limitations in Queries
	Sybase Limitations

	Caching Context Queries
	On-Demand Caching
	Prefetch Caching

	Cubes
	Measures
	Dimensions
	Creating Cubes
	Measure Columns
	Dimension Columns
	Prerequisites
	Creation Steps

	Data Types
	Data Type Conversion
	Explicit Cast
	Implicit Cast
	Order of Precedence

	Numeric
	Third party Data Types
	Combining Numeric Types
	Casting Numeric Types
	To Strings
	Decimal Precision Results
	Casting
	Multiplication
	Division
	Addition and Subtraction
	All Other Functions

	String
	String Width
	Third Party Data Types
	String Concatenation
	String Literal
	Converting Strings to Other Data Types

	Date-Time
	Converting Between Date-Time and Strings
	Comparing Date-Time Values
	Date-Time Arithmetic
	Third party data types
	TIMESTAMP Literal
	INTERVAL Literal
	Year-Month Intervals
	Precision of Year-Month Intervals
	Day-Time Intervals
	Precision of Day-Time Intervals

	Date-Time Formatting

	Boolean
	Truth Table for NOT
	Truth Table for AND
	Truth Table for OR
	Truth Table for IS

	Dimensions
	What are Dimensions?
	Level Hierarchy
	Alias Names
	Order By
	Geo Categories
	Key Columns
	Creating Dimensions

	Events
	How It Works
	External Sources
	Event Properties
	Creating Event Tables
	Editing Event Tables

	Flat Files
	How It Works
	Flat File Event Tables
	Creating a Flat-File Source Event
	Multi-Row Events
	Time Zones for Flat File Events

	Flat File Agents
	File Processing
	Prerequisites
	Creating a Flat File Agent
	Configuring the File Agent Program
	TestAgent.xml
	Example
	FileAgent.xml
	Elements
	Example

	Delimited Files
	Fixed-Width Files
	XML Files
	XPaths
	XML Field Information
	XML Data Types
	How XML Files are Flattened
	Handling Missing Elements
	Handling Attributes
	Ignored Elements
	Index Predicates
	Evaluating Elements
	XML Flattening Issues

	Formulas
	Functions
	Function Types
	Scalar
	Set
	Rank
	Moving Set
	Tumbling Set

	Function Categories
	Alerts
	Conversion
	Date and time
	Math
	Ranking
	Rules
	Statistical
	Text and String
	Time-Series and Aggregation
	Views

	Functions
	ABS
	AVG
	CASE
	CAST
	CEIL
	CHARACTER_LENGTH
	CONCAT
	concatList
	concatSet
	COUNT
	CURRENT
	CURRENT_TIMESTAMP
	CURRENT_USER
	DATE_ADD
	DATE_DIFF
	DISPLAY_MONEY
	EXP
	FLOOR
	gammaDist
	GREATEST
	IS_RAISED
	LAST_DAY
	LEAST
	LOG
	logNormDist
	LOWER
	LPAD
	LTRIM
	MAX
	median
	MIN
	MOD
	mode
	MOV_function
	Time-Series Spans
	View Warning
	Interacting with GROUP BY

	MOV_AVG
	MOV_COUNT
	MOV_MAX
	MOV_MIN
	MOV_SUM
	MOV_STD_DEVIATION
	MOV_VARIANCE
	NTILE
	POSITION
	POWER
	PREV
	PRIOR_VALUE
	RANK
	RATIO_TO_REPORT
	ROUND
	RPAD
	RTRIM
	SAFE_DIVIDE
	SIGN
	SQRT
	SUBSTRING
	SUM
	SUM_OVER_GROUPS
	STD_DEVIATION
	TIMESTAMP_DIFF
	TO_CHAR
	TO_DATE
	TRUNC
	TUMBLE_AVG
	TUMBLE_COUNT
	TUMBLE_MAX
	TUMBLE_MIN
	TUMBLE_SUM
	TUMBLE_STD_DEVIATION
	TUMBLE_VARIANCE
	UPPER
	VARIANCE
	yield

	HTTP Post
	How It Works
	HTTP Post Event Tables
	Creating an HTTP Post event table
	HTTP Post Column Information

	Posting to an HTTP post event
	Posting to Message Fields
	Posting Values in the URL
	Multiple Lines (Events) of Input

	Java Messaging Service (JMS)
	How It works
	JMS Event
	Limitations
	Prerequisites
	Creating a JMS Event Table
	JMS Column Information
	Mapping JMS Data Types

	JMS Queue Agents
	JNDI Properties For Connecting to a Remote Namespace
	Examples

	Creating a JMS Queue Agent

	JMS Topic Agents
	JNDI Properties For Connecting to a Remote Namespace
	Examples

	Creating a JMS Topic Agent

	Message Driven Beans (MDB)

	JDBC
	JDBC Tables
	Context Tables
	Event Tables
	Creating a JDBC Source Event or Context Table
	Query Source
	Sybase Limitations

	Example of Context
	Example of Event Using a Polling Query
	Polling the JDBC Source
	Stored Procedure Source
	Example of Receiving Context Using a Stored Procedure
	Example of Receiving Events Using a Stored Procedure
	Mapping JDBC Data Types

	JDBC Agents
	Attributes
	Creating a JDBC Agent

	JDBC Access to View Data
	Classpath
	JDBC View Interfaces
	Data Type Mappings
	getColumns() Column Summary
	DATA_TYPE Return Values

	JDBC Accessor Examples
	Java
	Complete Sample

	Example: Establishing a connection to the BAM Server
	Example: Querying the Contents of a View
	Example: Querying a View’s Column Specifications
	Example: Querying Column Metadata
	Example: Querying View Metadata

	Objects
	Object Status
	Object Names
	Reserved Words

	Object Namespace

	Operators and Constants
	Numeric Operators
	Prefix operators
	Infix Operators

	String operators
	Comparison operators
	LIKE Operator

	Logical operators
	Constants

	Permissions
	Application of Permissions
	Accessing Permissions
	Class Level Access Permissions
	Specific Object Access Permissions

	Creating Permission
	Granting Permissions
	Permission Restrictions
	Permission Inheritance and Dependencies
	Dependencies

	Portal Server Integration
	Before You Start
	Integrating with BEA WebLogic Portal Server
	Converting the lavaJSR168.war
	Deploying the lavaJSR168.war into WebLogic Portal Server

	Integrating with IBM WebSphere Portal Server
	Integrating with JBoss Portal Server
	Creating Multiple Portlet Instances on a JBoss Portal Server

	Processes
	How It Works
	Creating and Using Processes
	Event Streams
	Context Search Table
	Process Definitions
	Process Diagrams

	Query Windows
	Overview
	Window Types

	Window Declarations and References
	In-Line
	Reference by Name
	Multiple Windows Per Query
	Extending One Window Definition with Another
	Restrictions

	Event-Series Windows
	EVENTS Clause
	Examples

	Current Event

	Time-Series Windows
	RANGE Clause
	Examples

	Which Events Are Included?
	ORDER BY Clause
	Out-of-Order Arrival
	Descending
	NULL Value Timestamps
	Integer Time-Series

	Window Partitions
	PARTITION BY Clause
	View Update for a Simple GROUP BY
	View Update for a Partition with Frame Reference
	View Update for a Partition with Operator Reference
	Advantage of Partitions over Groups
	Using Windows to Expire GROUP BY
	Historical Results from Partitioned Views

	Window Advancement
	SLIDE Clause
	Tumbling Windows
	Trailing Tumbling Windows
	Tumble Functions

	Window Update Reference
	REFERENCE Clause

	Window Initialization
	INITIALIZE Clause
	Another Example

	Reportlets
	Creating Reportlets
	Reportlet Attributes
	External Reportlet Attributes
	Reportlet Views

	Roles
	Overview
	Creating roles
	Role Attributes

	Rules
	Creating Rules
	Rule Attributes
	Rule Condition
	Rule Action
	Specific Occurrences

	Monitoring Alerts
	Specific Alerts

	Monitoring the System Log

	Salesforce
	Creating a Salesforce Agent
	Importing Salesforce Events and Contexts
	Salesforce Flattening Function
	Salesforce Picklist Function
	Salesforce Administration Console

	SAP Connectivity
	Creating an SAP Agent
	Importing ODS Objects
	Importing OLAP cubes

	Scenarios
	Creating Scenarios
	Scenario Attributes
	Deleting Scenarios

	SELECT
	Syntax
	Select List
	CASE Expression

	FROM Clause
	View Constraints
	Join Operations
	Cross Joins

	Inner joins
	Outer Joins
	Nested Joins
	Table Expressions
	Syntax
	Restrictions
	“HAVING” Example

	WHERE Clause
	Predicates
	Aliases

	GROUP BY Clause
	Aliases
	Derived Views
	Stateful View Semantics

	ORDER BY Clause

	Users
	System User
	User Details Tab
	Delivery Profiles Tab
	E-mail
	Web Service

	Access Permissions Tab

	TIBCO Rendezvous
	How It Works
	TIBCO Rendezvous Tables
	Limitations
	Prerequisites

	Creating a TIBCO Rendezvous Event Table
	TIBCO Column Information
	Mapping TIBCO Rendezvous Data Types

	TIBCO Rendezvous Agents
	Prerequisites
	Attributes
	Creating a TIBCO Rendezvous Agent

	User-Defined Functions
	UDF Restrictions
	Creating and Using a UDF
	Manifest Files

	Views
	Creating Views
	Copying a View

	View Attributes
	View Constraints
	Synchronized Joins
	Restriction
	Example

	Consolidated Events
	Aggregate Views
	Updating Views Through Event Propagation
	Stateless and Stateful Views
	View Initialization
	Maintaining Events in Stateless Views
	Persisting Views to a Database
	View Persistence Attributes
	View Columns to Persist

	Enabling Drill Back to Detail

	Web Services
	Web Service Events
	Web Service Event Attributes
	Creating a Web Service Event

	Web Service Context
	Creating a Web Service Context Table
	Output Columns
	Input Columns
	String Replacement Templates

	Web Service Agents
	Web Service Agent Attributes
	Creating a Web Service Agent

	Web Service External Processes
	External Process Attributes
	Creating an External Process
	Implementing the External Service
	Message fields
	Web Service WSDL

	XML/XSD
	About XML and XSD Files in Business Activity Monitoring
	Dependencies
	White Space
	Escape Characters
	Character Data

	Uploading XML Files
	From a Command Line
	From a Web Browser

	Defining an Object with XML
	Example: Create User

	Defining Multiple Objects with XML
	Example: Batch command

	Altering an Existing Object with XML
	Dependencies

	Issuing Commands with XML
	Example: Enabling an Object and Its Dependencies

	Business Activity Monitoring XSD files

	Glossary
	Index

