
Acrobat JavaScript Scripting
Reference

Adobe Acrobat 7.0

June 27, 2005

 Adobe Solutions Network — http://partners.adobe.com

http://partners.adobe.com
http://partners.adobe.com

© 2005 Adobe Systems Incorporated. All rights reserved.

Acrobat® JavaScript Scripting Reference

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of
this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or
otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under
copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies
that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to
obtain any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Acrobat Capture, Distiller, PostScript, the PostScript logo and Reader are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Apple, Macintosh, and Power Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. PowerPC
is a registered trademark of IBM Corporation in the United States. ActiveX, Microsoft, Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. UNIX is a registered trademark of The Open
Group. All other trademarks are the property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The Software and
Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and
“Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent
with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial
Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those
rights as are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws
of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe
agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended,
Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973,
as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations
contained in the preceding sentence shall be incorporated by reference.

Acrobat JavaScript Scripting Reference 3

Contents

Contents

Preface . 27

Description. 27

Audience . 27

Resources. 28

Online Help. 28

References . 28

Document Conventions. 29

Font Conventions Used in This Book . 29

Quick Bars. 31

Acrobat JavaScript Scripting Reference . 35

ADBC Object . 35

ADBC Properties . 36
SQL Types . 36
JavaScript Types . 37

ADBC Methods. 38
getDataSourceList . 38
newConnection . 38

Alerter Object . 40

Alerter Object Methods . 40
dispatch . 40

AlternatePresentation Object . 42

AlternatePresentation Properties . 43
active . 43
type . 43

AlternatePresentation Methods . 43
start . 43
stop . 44

Annot Object . 45

Annotation Types . 45

Annotation Access from JavaScript . 48

Annot Properties . 48
alignment . 49
AP . 49
arrowBegin . 50
arrowEnd . 50
attachIcon . 51
author . 51
borderEffectIntensity . 51

Contents

4 Acrobat JavaScript Scripting Reference

borderEffectStyle . 51
callout . 52
caretSymbol . 52
contents . 52
creationDate . 53
dash . 53
delay . 53
doc . 54
doCaption . 54
fillColor . 54
gestures . 55
hidden . 55
inReplyTo . 55
intent . 55
leaderExtend . 56
leaderLength . 56
lineEnding . 56
lock . 57
modDate . 57
name . 57
noteIcon . 58
noView . 58
opacity . 59
page . 59
point . 59
points . 60
popupOpen . 60
popupRect . 60
print . 61
quads . 61
rect . 61
readOnly . 61
refType . 62
richContents . 62
richDefaults . 63
rotate . 63
seqNum . 63
state . 64
stateModel . 64
strokeColor . 64
style . 65
subject . 65
textFont . 65
textSize . 66
toggleNoView . 66
type . 66
soundIcon . 67
vertices . 67
width . 67

Annot Methods . 67
destroy . 67

Acrobat JavaScript Scripting Reference 5

Contents

getProps . 68
getStateInModel . 69
setProps . 70
transitionToState . 70

Annot3D Object. 72

Annot3D Properties . 72
activated . 72
context3D . 72
innerRect . 72
name . 73
page . 73
rect . 73

App Object . 73

App Properties . 73
activeDocs . 73
calculate . 74
constants . 75
focusRect . 75
formsVersion . 76
fromPDFConverters . 76
fs . 76
fullscreen . 77
language . 77
media . 78
monitors . 78
numPlugIns . 79
openInPlace . 79
platform . 79
plugIns . 79
printColorProfiles . 80
printerNames . 80
runtimeHighlight . 80
runtimeHighlightColor . 81
thermometer . 81
toolbar . 81
toolbarHorizontal. 82
toolbarVertical . 82
viewerType . 82
viewerVariation . 83
viewerVersion . 83

App Methods. 83
addMenuItem . 83
addSubMenu . 85
addToolButton . 86
alert . 88
beep . 90
beginPriv . 91
browseForDoc . 91
clearInterval . 93

Contents

6 Acrobat JavaScript Scripting Reference

clearTimeOut . 93
endPriv . 94
execDialog . 94
execMenuItem .109
getNthPlugInName .111
getPath .111
goBack .112
goForward .113
hideMenuItem .113
hideToolbarButton .113
launchURL .114
listMenuItems .115
listToolbarButtons .116
mailGetAddrs .116
mailMsg .117
newDoc .118
newFDF .120
openDoc .121
openFDF .123
popUpMenu .124
popUpMenuEx .124
removeToolButton .126
response .127
setInterval .128
setTimeOut .129
trustedFunction .130
trustPropagatorFunction .133

App.media Object .138

App.media Object Properties .138
align .138
canResize .139
closeReason .139
defaultVisible .140
ifOffScreen .140
layout .140
monitorType .141
openCode .141
over .142
pageEventNames .142
raiseCode .143
raiseSystem .143
renditionType .144
status .144
trace .145
version .145
windowType .145

App.media Object Methods .146
addStockEvents .146
alertFileNotFound .146
alertSelectFailed .147

Acrobat JavaScript Scripting Reference 7

Contents

argsDWIM .148
canPlayOrAlert .148
computeFloatWinRect .149
constrainRectToScreen .150
createPlayer .150
getAltTextData .153
getAltTextSettings .153
getAnnotStockEvents .155
getAnnotTraceEvents .155
getPlayers .155
getPlayerStockEvents .156
getPlayerTraceEvents .157
getRenditionSettings .157
getURLData .158
getURLSettings .158
getWindowBorderSize .160
openPlayer .160
removeStockEvents .162
startPlayer .162

Bookmark Object . .163

Bookmark Properties . .163
children .163
color .164
doc .164
name .164
open .165
parent .165
style .165

Bookmark Methods . .165
createChild .165
execute .166
insertChild .167
remove .168
setAction .168

Catalog Object .169

Catalog Properties .169
isIdle .169
jobs .169

Catalog Methods .169
getIndex .169
remove .170

CatalogJob Generic Object. .170

Certificate Object . .171

Certificate Properties . .171
binary .171
issuerDN .172
keyUsage .172
MD5Hash .172

Contents

8 Acrobat JavaScript Scripting Reference

SHA1Hash .172
serialNumber .173
subjectCN .173
subjectDN .173
ubRights .173
usage .175

Collab Object .176

Collab Methods .176
addStateModel .176
removeStateModel .177

Color Object .178

Color Arrays. .178
Color Properties . .179
Color Methods . .180

convert .180
equal .181

Column Generic Object . .181

ColumnInfo Generic Object .182

Connection Object . .182

Connection Methods . .183
close .183
newStatement .183
getTableList .183
getColumnList .184

Console Object .185

Console Methods .185
show .185
hide .186
println .186
clear .187

Data Object .187

Data Properties .187
creationDate .187
modDate .188
MIMEType .188
name .188
path .188
size .188

DataSourceInfo Generic Object . .189

Dbg Object . .189

Dbg Properties. .190
bps .190

Dbg Methods. .191
c .191
cb .191

Acrobat JavaScript Scripting Reference 9

Contents

q .191
sb .192
si .193
sn .193
so .194
sv .194

Dialog Object .194

Dialog Methods .195
enable .195
end .195
load .196
store .196

Directory Object .197

Directory Properties .197
info .197

Directory Methods .200
connect .200

DirConnection Object . .201

DirConnection Properties . .201
canList .201
canDoCustomSearch .201
canDoCustomUISearch .202
canDoStandardSearch .202
groups .202
name .202
uiName .203

DirConnection Methods . .203
search .203
setOutputFields .205

Doc Object . .206

Doc Access from JavaScript. .206

Doc Properties . .207
alternatePresentations .207
author .208
baseURL .208
bookmarkRoot .208
calculate .209
creationDate .209
creator .209
dataObjects .209
delay .210
dirty .210
disclosed .211
docID .211
documentFileName .212
dynamicXFAForm .212
external .212
filesize .213

Contents

10 Acrobat JavaScript Scripting Reference

hidden .213
icons .214
info .214
innerAppWindowRect .215
innerDocWindowRect .216
keywords .216
layout .216
media .217
metadata .217
modDate .218
mouseX .218
mouseY .218
noautocomplete .218
nocache .219
numFields .220
numPages .220
numTemplates .220
path .221
outerAppWindowRect .221
outerDocWindowRect .221
pageNum .222
pageWindowRect .222
permStatusReady .222
producer .223
requiresFullSave .223
securityHandler .223
selectedAnnots .224
sounds .224
spellDictionaryOrder .224
spellLanguageOrder .225
subject .225
templates .225
title .226
URL .226
zoom .226
zoomType .227

Doc Methods . .227
addAnnot .227
addField .229
addIcon .230
addLink .231
addRecipientListCryptFilter .233
addScript .234
addThumbnails .234
addWatermarkFromFile .235
addWatermarkFromText .237
addWeblinks .239
bringToFront .240
calculateNow .241
closeDoc .241
createDataObject .242

Acrobat JavaScript Scripting Reference 11

Contents

createTemplate .243
deletePages .244
deleteSound .245
embedDocAsDataObject .245
encryptForRecipients .246
encryptUsingPolicy .248
exportAsText .251
exportAsFDF .252
exportAsXFDF .254
exportDataObject .255
exportXFAData .257
extractPages .259
flattenPages .260
getAnnot .261
getAnnot3D .261
getAnnots .261
getAnnots3D .263
getDataObject .263
getDataObjectContents .263
getField .265
getIcon .266
getLegalWarnings .267
getLinks .268
getNthFieldName .268
getNthTemplate .269
getOCGs .269
getOCGOrder .270
getPageBox .270
getPageLabel .271
getPageNthWord .271
getPageNthWordQuads .272
getPageNumWords .272
getPageRotation .273
getPageTransition .273
getPrintParams .274
getSound .274
getTemplate .275
getURL .275
gotoNamedDest .276
importAnFDF .277
importAnXFDF .277
importDataObject .278
importIcon .279
importSound .280
importTextData .281
importXFAData .283
insertPages .283
mailDoc .284
mailForm .285
movePage .286
newPage .287

Contents

12 Acrobat JavaScript Scripting Reference

openDataObject .288
print .289
removeDataObject .291
removeField .291
removeIcon .292
removeLinks .292
removeScript .293
removeTemplate .293
removeThumbnails .294
removeWeblinks .294
replacePages .295
resetForm .296
saveAs .297
scroll .299
selectPageNthWord .300
setAction .300
setDataObjectContents .301
setOCGOrder .303
setPageAction .303
setPageBoxes .304
setPageLabels .305
setPageRotations .306
setPageTabOrder .307
setPageTransitions .307
spawnPageFromTemplate .308
submitForm .309
syncAnnotScan .315

Doc.media Object .316

Doc.media Object Properties. .316
canPlay .316

Doc.media Object Methods. .318
deleteRendition .318
getAnnot .318
getAnnots .319
getOpenPlayers .320
getRendition .321
newPlayer .321

Error Objects . .322

Error Properties .323
fileName .323
lineNumber .323
extMessage .323
message .324
name .324

Error Methods .324
toString .324

Event Object . .324

Event Type/Name Combinations .325

Acrobat JavaScript Scripting Reference 13

Contents

Document Event Processing . .334

Form Event Processing. .335

Multimedia Event Processing .335

Event Properties . .336
change .336
changeEx .337
commitKey .338
fieldFull .338
keyDown .339
modifier . 339
name .340
rc .340
richChange .340
richChangeEx .341
richValue .342
selEnd .342
selStart .343
shift .343
source .344
target .344
targetName .344
type .345
value .345
willCommit .346

Events Object .347

Events Object Methods .347
add .347
dispatch .348
remove .349

EventListener Object. .350

EventListener Object Methods. .351
afterBlur .351
afterClose .352
afterDestroy .352
afterDone .353
afterError .353
afterEscape .354
afterEveryEvent .354
afterFocus .355
afterPause .356
afterPlay .356
afterReady .357
afterScript .358
afterSeek .359
afterStatus .360
afterStop .361
onBlur .361
onClose .361
onDestroy .363

Contents

14 Acrobat JavaScript Scripting Reference

onDone .363
onError .363
onEscape .364
onEveryEvent .364
onFocus .365
onGetRect .365
onPause .366
onPlay .367
onReady .367
onScript .368
onSeek .368
onStatus .369
onStop .369

FDF Object . .370

FDF Properties . .370
deleteOption .370
isSigned .370
numEmbeddedFiles .371

FDF Methods . .371
addContact .371
addEmbeddedFile .372
addRequest .373
close .373
mail .374
save .375
signatureClear .375
signatureSign .376
signatureValidate .377

Field Object .378

Field Access from JavaScript .378

Field Properties .380
alignment .380
borderStyle .381
buttonAlignX .382
buttonAlignY .382
buttonFitBounds .383
buttonPosition .383
buttonScaleHow .384
buttonScaleWhen .384
calcOrderIndex .384
charLimit .385
comb .385
commitOnSelChange .386
currentValueIndices .386
defaultStyle .387
defaultValue .388
doNotScroll .389
doNotSpellCheck .389
delay .389

Acrobat JavaScript Scripting Reference 15

Contents

display .390
doc .390
editable .391
exportValues .391
fileSelect .392
fillColor .392
hidden .393
highlight .393
lineWidth .394
multiline .394
multipleSelection .394
name .395
numItems .395
page .395
password .396
print .396
radiosInUnison .397
readonly .397
rect .397
required .398
richText .398
richValue .399
rotation .400
strokeColor .401
style .401
submitName .402
textColor .402
textFont .402
textSize .404
type .404
userName .405
value .405
valueAsString .406

Field Methods .406
browseForFileToSubmit .406
buttonGetCaption .407
buttonGetIcon .408
buttonImportIcon .409
buttonSetCaption .410
buttonSetIcon .410
checkThisBox .411
clearItems .412
defaultIsChecked .413
deleteItemAt .413
getArray .414
getItemAt .414
getLock .415
insertItemAt .416
isBoxChecked .416
isDefaultChecked .417
setAction .417

Contents

16 Acrobat JavaScript Scripting Reference

setFocus .418
setItems .419
setLock .420
signatureGetModifications .421
signatureGetSeedValue .423
signatureInfo .423
signatureSetSeedValue .425
signatureSign .428
signatureValidate .430

FullScreen Object . .431

FullScreen Properties. .431
backgroundColor .431
clickAdvances .432
cursor .432
defaultTransition .432
escapeExits .432
isFullScreen .433
loop .433
timeDelay .433
transitions .433
usePageTiming .434
useTimer .434

Global Object .434

Creating Global Properties .434

Deleting Global Properties .435

Global Methods .435
setPersistent .435
subscribe .436

Icon Generic Object .437

Icon Stream Generic Object .437

Identity Object .437

Identity Properties .438
corporation .438
email .438
loginName .438
name .438

Index Object . .439

Index Properties . .439
available .439
name .439
path .439
selected .440

Index Methods . .440
build .440

Link Object . .441

Link Properties . .441

Acrobat JavaScript Scripting Reference 17

Contents

borderColor .441
borderWidth .441
highlightMode .441
rect .442

Link Methods. .442
setAction .442

Marker Object . .442

Marker Object Properties .443
frame .443
index .443
name .443
time .443

Markers Object .444

Markers Object Properties .444
player .444

Markers Object Methods .444
get .444

MediaOffset Object .445

MediaOffset Object Properties . .446
frame .446
marker .446
time .446

MediaPlayer Object .447

MediaPlayer Object Properties. .447
annot .447
defaultSize .447
doc .448
events .448
hasFocus .448
id .448
innerRect .449
isOpen .449
isPlaying .450
markers .450
outerRect .450
page .451
settings .451
uiSize .451
visible .452

MediaPlayer Object Methods .452
close .452
open .453
pause .454
play .455
seek .455
setFocus .457
stop .457
triggerGetRect .458

Contents

18 Acrobat JavaScript Scripting Reference

where .458

MediaReject Object .459

MediaReject Object Properties. .459
rendition .459

MediaSelection Object .460

MediaSelection Object Properties. .460
selectContext .460
players .461
rejects .461
rendition .461

MediaSettings Object .462

MediaSettings Object Properties .462
autoPlay .462
baseURL .462
bgColor .462
bgOpacity .463
endAt .463
data .464
duration .464
floating .465
layout .466
monitor .466
monitorType .467
page .468
palindrome .468
players .468
rate .469
repeat .469
showUI .470
startAt .470
visible .470
volume .471
windowType .471

Monitor Object .472

Monitor Object Properties .472
colorDepth .472
isPrimary .473
rect .473
workRect .473

Monitors Object. .474

Monitors Object Properties . .474
Monitors Object Methods . .475

bestColor .475
bestFit .475
desktop .476
document .476
filter .477

Acrobat JavaScript Scripting Reference 19

Contents

largest .478
leastOverlap .478
mostOverlap .479
nonDocument .479
primary .480
secondary .480
select .480
tallest .481
widest .482

OCG Object. .482

OCG Properties .482
constants .482
initState .483
locked .483
name .484
state .484

OCG Methods .485
getIntent .485
setAction .485
setIntent .486

PlayerInfo Object . .486

PlayerInfo Object Properties .486
id .486
mimeTypes .487
name .487
version .487

PlayerInfo Object Methods .488
canPlay .488
honors .488
canUseData .493

PlayerInfoList Object . .493

PlayerInfoList Object Properties . .493
PlayerInfoList Object Methods . .494

select .494

PlugIn Object .495

PlugIn Properties .495
certified .495
loaded .495
name .495
path .496
version .496

printParams Object. .496

PrintParams Properties. .496
binaryOK .496
bitmapDPI .497
colorOverride .497
colorProfile .497

Contents

20 Acrobat JavaScript Scripting Reference

constants .498
downloadFarEastFonts .498
fileName .499
firstPage .499
flags .500
fontPolicy .502
gradientDPI .502
interactive .503
lastPage .503
nUpAutoRotate .504
nUpNumPagesH .504
nUpNumPagesV .505
nUpPageBorder .505
nUpPageOrder .505
pageHandling .506
pageSubset .507
printAsImage .508
printContent .508
printerName .509
psLevel .509
rasterFlags .510
reversePages .511
tileLabel .511
tileMark .511
tileOverlap .512
tileScale .512
transparencyLevel .512
usePrinterCRD .513
useT1Conversion .513

Rendition Object .514

Rendition Object Properties .514
altText .514
doc .514
fileName .515
type .515
uiName .515

Rendition Object Methods .516
getPlaySettings .516
select .517
testCriteria .518

RDN Generic Object .518

Report Object .518

Report Properties .519
absIndent .519
color .519
size .519
style .520

Report Methods . .520
breakPage .520

Acrobat JavaScript Scripting Reference 21

Contents

divide .520
indent .521
outdent .521
open .521
save .522
mail .523
Report .523
writeText .524

Row Generic Object .525

ScreenAnnot Object . .525

ScreenAnnot Object Properties .525
altText .525
alwaysShowFocus .526
display .526
doc .526
events .526
extFocusRect .527
innerDeviceRect .527
noTrigger .528
outerDeviceRect .528
page .528
player .528
rect .529

ScreenAnnot Object Methods .529
hasFocus .529
setFocus .529

Search Object .530

Search Properties .530
attachments .530
available .531
docInfo .531
docText .531
docXMP .531
bookmarks .532
ignoreAccents .532
ignoreAsianCharacterWidth .532
indexes . 532
jpegExif .533
legacySearch .533
markup .533
matchCase .533
matchWholeWord .533
maxDocs .534
objectMetadata .534
proximity .534
proximityRange .534
refine .535
soundex .535
stem .535

Contents

22 Acrobat JavaScript Scripting Reference

thesaurus .535
wordMatching .536

Search Methods . .536
addIndex .536
getIndexForPath .537
query .537
removeIndex .538

Security Object . .538

Security Constants .539
Security Properties .540

handlers .540
validateSignaturesOnOpen .541

Security Methods .541
chooseRecipientsDialog .541
chooseSecurityPolicy .544
exportToFile .545
getHandler .545
getSecurityPolicies .546
importFromFile .548

SecurityPolicy Object .549

SecurityPolicy Properties .549

SecurityHandler Object . .549

SecurityHandler Properties . .550
appearances .550
digitalIDs .551
directories .552
directoryHandlers .552
isLoggedIn .552
loginName .553
loginPath .553
name .553
signAuthor .554
signFDF .554
signInvisible .554
signValidate .554
signVisible .554
uiName .555

SecurityHandler Methods . .555
login .555
logout .558
newDirectory .559
newUser .559
setPasswordTimeout .561

SignatureInfo Object. .561

SignatureInfo Object properties . .562

SOAP Object . .571

SOAP Properties . .572

Acrobat JavaScript Scripting Reference 23

Contents

wireDump .572
SOAP Methods . .572

connect .572
queryServices .574
resolveService .577
request .580
response .590
streamDecode .592
streamDigest .592
streamEncode .593
streamFromString .593
stringFromStream .594

Sound Object .594

Sound Properties .594
name .594

Sound Methods .595
play .595
pause .595
stop .595

Span Object .595

Span Properties .596
alignment .596
fontFamily .596
fontStretch .596
fontStyle .597
fontWeight .597
text .597
textColor .597
textSize .597
strikethrough .598
subscript .598
superscript .598
underline .599

Spell Object .599

Spell Properties .599
available .599
dictionaryNames .600
dictionaryOrder .600
domainNames .600
languages .601
languageOrder .602

Spell Methods .602
addDictionary .602
addWord .603
check .603
checkText .604
checkWord .605
customDictionaryClose .606

Contents

24 Acrobat JavaScript Scripting Reference

customDictionaryCreate .607
customDictionaryDelete .608
customDictionaryExport .608
customDictionaryOpen .609
ignoreAll .610
removeDictionary .611
removeWord .611
userWords .612

Statement Object . .613

Statement Properties. .613
columnCount .613
rowCount .613

Statement Methods .613
execute .613
getColumn .614
getColumnArray .615
getRow .615
nextRow .616

TableInfo Generic Object .617

Template Object .618

Template Properties .618
hidden .618
name .618

Template Methods .618
spawn .618

Thermometer Object .620

Thermometer Properties .620
cancelled .620
duration .620
value .620
text .621

Thermometer Methods .621
begin .621
end .621

TTS Object .622

TTS Properties .622
available .622
numSpeakers .622
pitch .623
soundCues .623
speaker .623
speechCues .623
speechRate .623
volume .623

TTS Methods .624
getNthSpeakerName .624
pause .624

Acrobat JavaScript Scripting Reference 25

Contents

qSilence .625
qSound .625
qText .625
reset .626
resume .626
stop .626
talk .626

this Object .627

Variable and Function Name Conflicts . .627

Util Object .628

Util Methods .628
iconStreamFromIcon .628
printf .629
printd .631
printx .634
scand .635
spansToXML .636
streamFromString .636
stringFromStream .637
xmlToSpans .637

XFAObject Object. .638

XMLData Object .638

XMLData Object Methods. .639
applyXPath .639
parse .643

New Features and Changes . 647

Acrobat 7.0 Changes . .647

Introduced in Acrobat 7.0 . .647

Modified in Acrobat 7.0 .651

Acrobat 6.0 Changes . .652

Introduced in Acrobat 6.0 . .652

Modified in Acrobat 6.0 .660

Deprecated in Acrobat 6.0 .662

Introduced in Acrobat 6.0.2. .662

Acrobat 5.0 Changes. .669

Introduced in Acrobat 5.0 . .669

Modified in Acrobat 5.0 .676

Deprecated in Acrobat 5.0 .677

Modified in Acrobat 5.05 .677

Modified in Adobe 5.1 Reader . .678

Contents

26 Acrobat JavaScript Scripting Reference

Security and Technical Notes . 679

Security Notes . .679

Technical Notes . .680

Acrobat JavaScript Scripting Reference 27

Preface

Description

JavaScript is the cross-platform scripting language of Adobe Acrobat®. Through its
JavaScript extensions, Acrobat exposes much of the functionality of the viewer and its
plug-ins to the document author/form designer/plug-in developer. This functionality,
which was originally designed for within-document processing of forms, has been
expanded and extended in recent versions of Acrobat to include the use of JavaScript in
batch processing of collections of PDF documents, for developing and maintaining an
online collaboration scheme, for communicating with local databases through ADBC, and
for controlling multimedia events. Acrobat JavaScript objects, properties and methods can
also be accessed through Visual Basic to automate the processing of PDF documents.

The Acrobat JavaScript Scripting Reference describes in detail all objects, properties and
methods within the Acrobat extension to JavaScript, and gives code examples. The section
New Features and Changes summarizes the new features and changes introduced in this
version of Adobe Acrobat and in earlier versions.

Please review the chapter. This chapter summarizes various security changes that may
affect the way the JavaScript interpreter responds to your code.

IMPORTANT: Certain properties and methods that may be discoverable via JavaScript's
introspection facilities are not documented here. These undocumented
properties and methods should not be used. They are entirely unsupported
and subject to change without notice at any time.

Audience

This document is intended for users familiar with core JavaScript 1.5. The intended
audience would include, but is not limited to, document authors who want to create
interactive PDF documents, form designers intent on designing intelligent documents, and
Acrobat plug-in developers.

A knowledge of the Acrobat user interface (UI) is essential; familiarity with the PDF file
format is helpful.

Some of the features of Acrobat include ADBC, multimedia, SOAP, XML and various security
protocols. Using Acrobat JavaScript to control any of these features requires a detailed
knowledge of the corresponding technology.

Preface
Resources

28 Acrobat JavaScript Scripting Reference

Resources

The following resources provide further information about the Acrobat JavaScript.

Online Help

The Web offers a great many resources to help you with JavaScript in general as well as
JavaScript for PDF. For example:

● http://partners.adobe.com/asn/acrobat/—A listing of Acrobat resources for developers.
This listing includes the following:
– http://www.adobe.com/support/forums/main.html—Adobe Systems, Inc. provides

dedicated online support forums for all Adobe products, including Acrobat and
Adobe Reader.

– http://www.adobe.com/support/products/acrobat.html—In addition to the forums,
Adobe maintains a searchable support database with answers to commonly asked
questions.

References

Core JavaScript 1.5 Documentation

Complete documentation for JavaScript 1.5, the version used by Acrobat 7.0, is available on
the web at http://partners.adobe.com/NSjscript/.

XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999. XPath is
a language for addressing parts of an XML document, designed to be used by both XSLT
and XPointer. http://www.w3.org/TR/xpath

Adobe Web Documentation

PDF Reference, Fifth Edition, Version 1.6. The PDF Reference provides a description of the PDF
file format and is intended primarily for application developers wishing to develop PDF
producer applications that create PDF files directly. http://partners.adobe.com/asn/

Acrobat JavaScript Scripting Guide. Gives an overview and tutorial of Acrobat JavaScript.
http://partners.adobe.com/asn/acrobat/docs.jsp

Acrobat and PDF Library API Overview. Gives an overview of the objects and methods
provided by the plug-in API of the Acrobat viewer. This document is available with the
Adobe Acrobat Plug-ins SDK CD-ROM or on the Adobe Web site
http://partners.adobe.com/asn/.

http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/forums/main.html
http://www.adobe.com/support/products/acrobat.html
http://partners.adobe.com/asn/acrobat/docs.jsp
http://forum.planetpdf.com/
http://www.planetpdf.com
http://www.planetpdf.com
http://www.planetpdf.com/mainpage.asp?webpageid=898
http://partners.adobe.com/asn/
http://partners.adobe.com/NSjscript/
http://partners.adobe.com/asn/acrobat/index.jsp
http://www.w3.org/TR/xpath
http://partners.adobe.com/asn/

Acrobat JavaScript Scripting Reference 29

Preface
Document Conventions

Acrobat and PDF Library API Reference. Describes in detail the objects and methods provided
by the Acrobat viewer’s plug-in API. This document is available with the Adobe Acrobat
Plug-ins SDK CD-ROM or on the Adobe Web site http://partners.adobe.com/asn/.

Adobe Dialog Manager Programmer’s Guide and Reference. This document describes the
Adobe Dialog Manager (ADM). ADM is a collection of APIs for displaying and controlling
dialogs in a platform-independent way. http://partners.adobe.com/asn/

Forms System Implementation Notes. This document discusses the concepts of submitting
form data as URL encoded, Forms Data Format (FDF) or XML Forms Data Format (XFDF).
http://partners.adobe.com/asn/

Programming Acrobat JavaScript using Visual Basic. This document gives you the
information you need to get started using the extended functionality of JavaScript from a
Visual Basic programming environment. http://partners.adobe.com/asn/

XFA-Picture Clause 2.0 Specification. Describes the specific language for describing patterns
utilized for formatting or parsing data. http://partners.adobe.com/asn/

XFA-Picture Clause Version 2.2 – CCJK Addendum. It extends numeric, date and time picture
symbols to allow the parsing and formatting of the various Chinese, Chinese (Taiwan),
Japanese, and Korean numeric, date and time values. http://partners.adobe.com/asn/

XML Form Data Format Specification. This document is the XFDF specification.
http://partners.adobe.com/asn/

Developing for Adobe Reader® provides an introduction to those portions of the Adobe
Acrobat Software Development Kit (SDK) that pertain to your development efforts for
Adobe Reader.

Document Conventions

This document uses font conventions common to all Acrobat reference documents, and
also uses a quick bar for many methods and properties to summarize their availability and
usage restrictions.

Font Conventions Used in This Book

The Acrobat documentation uses text styles according to the following conventions.

Font Used for Examples

monospaced Paths and filenames C:\templates\mytmpl.fm

Code examples set off
from plain text

These are variable declarations:
AVMenu commandMenu,helpMenu;

http://partners.adobe.com/asn/
http://partners.adobe.com/asn/
http://partners.adobe.com/asn/
http://partners.adobe.com/asn/
http://partners.adobe.com/asn/
http://partners.adobe.com/asn/
http://partners.adobe.com/asn/

Preface
Document Conventions

30 Acrobat JavaScript Scripting Reference

monospaced bold Code items within plain
text

The GetExtensionID method ...

Parameter names and
literal values in
reference documents

The enumeration terminates if proc
returns false.

monospaced italic Pseudocode ACCB1 void ACCB2 ExeProc(void)
{ do something }

Placeholders in code
examples

AFSimple_Calculate(cFunction,
cFields)

blue Live links to Web pages The Acrobat Solutions Network URL is:
http://partners/adobe.com/asn/

Live links to sections
within this document

See Using the SDK.

Live links to other
Acrobat SDK documents

See the Acrobat and PDF Library API
Overview.

Live links to code items
within this document

Test whether an ASAtom exists.

bold PostScript language and
PDF operators,
keywords, dictionary
key names

The setpagedevice operator

User interface names The File menu

italic Document titles that are
not live links

Acrobat Core API Overview

New terms User space specifies coordinates for...

PostScript variables filename deletefile

Font Used for Examples

Acrobat JavaScript Scripting Reference 31

Preface
Document Conventions

Quick Bars

At the beginning of most property and method descriptions, a small table or quick bar
provides a summary of the item’s availability and usage recommendations.

This sample illustrates a quick bar, with descriptive column headings that are not normally
shown.

N O T E : Beginning with Acrobat 7.0, each icon within a quick bar has a link to the description
of its meaning.

The following tables show the symbols that can appear in each column and their meanings

V
ersio

n
 o

r
D

ep
recated

Save an
d

P
referen

ces

Secu
rity

 R
ead

er

A
p

p
roval

A
cro

b
at Pro

6.0 � � � � �

Column 1: Version or Deprecated

#.# A number indicates the version of the software in which a property or
method became available. If the number is specified, then the property or
method is available only in versions of the Acrobat software greater than or
equal to that number.
For Adobe Acrobat 7.0, there are some compatibility issues with older
versions. Before accessing this property or method, the script should check
that the forms version is greater than or equal to that number to ensure
backward compatibility. For example:
if (typeof app.formsVersion != "undefined" && app.formsVersion >= 7.0)
{
 // Perform version specific operations.
}

If the first column is blank, no compatibility checking is necessary.

H I S T O R I C A L N O T E : Acrobat JavaScript dates back to Adobe Exchange 3.01,
JavaScript functionality was added to this version via the “Acrobat
Forms Author Plug-in 3.5 Update”.

� As the Acrobat JavaScript extensions have evolved, some properties and
methods have been superseded by other more flexible or appropriate
properties and methods. The use of these older methods are discouraged
and marked by � in the version column.

Preface
Document Conventions

32 Acrobat JavaScript Scripting Reference

Column 2: Save and Preferences

� Using this property or method dirties (modifies) the PDF document. If the
document is subsequently saved, the effects of this method are saved as
well.

� The preferences symbol indicates that even though this property does not
change the document, it can permanently change a user’s application
preferences.

Column 3: Security

� This property or method may only be available during certain events for
security reasons (for example, batch processing, application start, or
execution within the console). See the Event Object for details of the various
Acrobat events.
Beginning with Acrobat 7.0, to execute a security restricted method (�)
through a menu event, one of the following must be true:
1. Under Edit > Preferences > General > JavaScript, the item labeled

“Enable menu items JavaScript execution privileges” must be checked.
2. The method must be executed through a trusted function. For details and

examples, see app.trustedFunction().
Please review the paragraph Privileged versus Non-privileged Context on
how these restricted methods can be executed in a non-privileged context.

N O T E : (Version 6.0 or later) If the document has been Certified by an author
who is trusted for embedded JavaScript, methods marked with a � in
the third column of its quick bar will execute without restriction,
provided any other limitiations, as set out in the quick bar fields, are
met.

Column 4: Availability in Adobe Reader

If the column is blank, the property or method is allowed in any version of
the Adobe Reader.

� The property or method is not allowed in any version of the Adobe Reader.

� The property or method is allowed only in version 5.1 or later, of the Adobe
Reader, not in versions 5.05 or below.

�

�
�
�

The property or method can be accessed only in the Adobe Reader 5.1 or
later depending on additional usage rights.
● � Requires Advanced Forms Features rights.
● � Requires the right to manipulate Comments.
● � Requires document Save rights.
● � Requires file attachment rights.

Acrobat JavaScript Scripting Reference 33

Preface
Document Conventions

Column 5: Availability in Adobe Acrobat Approval

If the column is blank, the property or method is allowed in Acrobat
Approval.

� The property or method is not allowed in Acrobat Approval.

Column 6: Availability in Adobe Acrobat

If the column is blank, the property or method is allowed in Acrobat
Standard and Acrobat Professional.

� The property or method is available only in Acrobat Professional.

Preface
Document Conventions

34 Acrobat JavaScript Scripting Reference

Acrobat JavaScript Scripting Reference 35

Acrobat JavaScript Scripting
Reference

Many of the JavaScript methods provided by Acrobat accept either a list of arguments as is
customary in JavaScript, or alternatively, a single object argument with properties that
contain the arguments. For example, these two calls are equivalent:

 app.alert("Acrobat Multimedia", 3);

 app.alert({ cMsg: "Acrobat Multimedia", nIcon: 3});

It is important to note that the JavaScript methods defined in support of multimedia do not
accept either argument format interchangeably. Use the exact argument format described
for each method, whether it is a list of arguments or a single object argument containing
various properties.

Parameter Help

For Acrobat Professional users, if you give an Acrobat JavaScript method an argument of
acrohelp and execute that method in the JavaScript Debugger console (or any internal
JavaScript editor), the method will return a list of its own arguments; for example, enter the
following code in the console window:

app.response(acrohelp)

While the cursor is still on the line just entered, press either Ctrl-Enter or the Enter key on
the numeric pad. The output to the console is seen to be

HelpError: Help.
app.response:1:Console undefined:Exec
====> [cQuestion: string]
====> [cTitle: string]
====> [cDefault: string]
====> [bPassword: boolean]
====> [cLabel: string]

Parameters listed in square brackets indicate optional parameters.

N O T E : The parameter help just described is not implemented for every Acrobat JavaScript
method, for example, for those methods defined in the App JavaScript folder.

ADBC Object

The Acrobat Database Connectivity (ADBC) plug-in allows JavaScripts inside of PDF
documents to access databases through a consistent object model. The object model is
based on general principles used in the object models for the ODBC and JDBC APIs. Like

5.0 �

Acrobat JavaScript Scripting Reference
ADBC Properties

36 Acrobat JavaScript Scripting Reference

ODBC and JDBC, ADBC is a means of communicating with a database though SQL
(Structured Query Language).

ADBC is a Windows-only feature and requires ODBC (Open Database Connectivity from
Microsoft Corporation) to be installed on the client machine.

N O T E : (Security �): It is important to note that ADBC provides no security for any of the
databases it is programmed to access. It is the responsibility of the database
administrator to keep all data secure.

The ADBC object, described here, is a global object whose methods allow a JavaScript to
create database connection contexts or connections. Related objects used in database
access are described separately:

ADBC Properties

SQL Types

The ADBC object has the following constant properties representing various SQL Types:

Object Brief Description

ADBC Object An object through which a list of accessible databases can be
obtained and a connection can be made to one of them.

Connection Object An object through which a list of tables in the connected
database can be obtained.

Statement Object An object through which SQL statements can be executed
and rows retrieved based on the query.

5.0 �

Constant property name value version

SQLT_BIGINT 0

SQLT_BINARY 1

SQLT_BIT 2

SQLT_CHAR 3

SQLT_DATE 4

SQLT_DECIMAL 5

SQLT_DOUBLE 6

Acrobat JavaScript Scripting Reference 37

Acrobat JavaScript Scripting Reference
ADBC Properties

The type properties of the Column Generic Object and ColumnInfo Generic Object use
these properties.

JavaScript Types

The ADBC object has the following constant properties representing various JavaScript
data types.

SQLT_FLOAT 7

SQLT_INTEGER 8

SQLT_LONGVARBINARY 9

SQLT_LONGVARCHAR 10

SQLT_NUMERIC 11

SQLT_REAL 12

SQLT_SMALLINT 13

SQLT_TIME 14

SQLT_TIMESTAMP 15

SQLT_TINYINT 16

SQLT_VARBINARY 17

SQLT_VARCHAR 18

SQLT_NCHAR 19 6.0

SQLT_NVARCHAR 20 6.0

SQLT_NTEXT 21 6.0

5.0 �

Constant Property Name value

Numeric 0

String 1

Binary 2

Boolean 3

Constant property name value version

Acrobat JavaScript Scripting Reference
ADBC Methods

38 Acrobat JavaScript Scripting Reference

The methods statement.getColumn and statement.getColumnArray use these
types.

ADBC Methods

getDataSourceList

Obtains information about the databases accessible from a given system.

Parameters

None

Returns

An array containing a DataSourceInfo Generic Object for each accessible database on the
system. The method never fails but may return a zero-length array.

Example

See newConnection for an example.

newConnection

Creates a Connection Object associated with the specified database. Optionally, you can
supply a user ID and a password.

N O T E S : (Security�, version 6.0) It is possible to connect to a database using a connection
string with no DSN, but this is only permitted, beginning with Acrobat 6.0, during a
console, batch or menu event. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Time 4

Date 5

TimeStamp 6

5.0 �

5.0 � �

Constant Property Name value

Acrobat JavaScript Scripting Reference 39

Acrobat JavaScript Scripting Reference
ADBC Methods

Parameters

Returns

A Connection Object, or null on failure.

Example
/* First, get the array of DataSourceInfo Objects available on the
system */
var aList = ADBC.getDataSourceList();
console.show(); console.clear();

try {
/* now display them, while searching for the one named

 "q32000data". */
var DB = "", msg = "";
if (aList != null) {

for (var i=0; i < aList.length; i++) {
console.println("Name: "+aList[i].name);
console.println("Description: "+aList[i].description);
// and choose one of interest
if (aList[i].name=="q32000data")

DB = aList[i].name;
}

}

// did we find the database?
if (DB != "") {

// yes, establish a connection.
console.println("The requested database has been found!");
var Connection = ADBC.newConnection(DB);
if (Connection == null) throw "Not Connected!";
} else

// no, display message to console.
throw "Could not find the requested database.";

} catch (e) {
console.println(e);

}

// alternatively, we could simple connect directly.
var Connection = ADBC.newConnection("q32000data");

cDSN The data source name (DSN) of the database.

cUID (optional) User ID.

cPWD (optional) Password.

Acrobat JavaScript Scripting Reference
Alerter Object

40 Acrobat JavaScript Scripting Reference

Alerter Object

Acrobat’s multimedia plug-in displays error alerts under various conditions such as a
missing media file. JavaScript code can customize these alerts, either for an entire
document or for an individual media player.

In an alert situation, code in media.js calls an internal function app.media.alert()
with parameters containing information about the alert. The app.media.alert()
methods handles the alert by looking for alerter objects and calling their dispatch()
methods, in this order:

args.alerter
doc.media.alerter
doc.media.stockAlerter

To handle alerts for a specific player, provide an alerter object in args.alerter when
you call app.media.createPlayer() or app.media.openPlayer().

To handle alerts for an entire document, set doc.media.alerter to an alerter object.

All alerts can be suppressed for a player or document by setting args.alerter or
doc.media.alerter to null.

doc.media.stockAlerter provides the default alerts that are used if a custom alerter
is not specified. This property is initialized automatically by app.media.alert().
Normally, doc.media.stockAlerter would not be reference in developer code.

The app.media.alert() method is implemented in JavaScript code in media.js and
is only called from elsewhere in media.js. This function is not designed to be called from
PDF applications, but it can be instructive to review its source code to see how the custom
alert processing works.

Alerter Object Methods

dispatch

A custom alerter object has a single method, dispatch(), which app.media.alert
calls to handle an alert situation.

Parameters

Returns

Boolean, true to stop further alert processing, false to continue processing.

7.0

alert An alert object, see the The alert object below.

Acrobat JavaScript Scripting Reference 41

Acrobat JavaScript Scripting Reference
Alerter Object Methods

The alert object

Example

Open a media player and suppress all alerts for this player.

app.media.openPlayer({ alerter: null });

// A more elaborate way to do the same thing
app.media.openPlayer(
{

alerter:
{

dispatch() { return true; }
}

});

Example

For all players in this document, log any alerts to a text field and allow the normal alert box
to be displayed.

function logAlerts(doc)
{

count = 0;
doc.alerter =
{

dispatch(alert)
{

doc.getField("AlertLog").value += "Alert #"
+ ++count + ": " + alert.type + "\n";

}
}

Properties type Description

type String All alert types

doc Doc Object All alert types

fromUser Boolean All alert types

error Object Available for the "Exception" type alert. The error
object has a messge property:

error: { message: String }

errorText String Available for the "PlayerError" type alert.

fileName String Available for the "FileNotFound" type alert.

selection MediaSelection
Object

Available for the "SelectFailed" type alert.

Acrobat JavaScript Scripting Reference
AlternatePresentation Object

42 Acrobat JavaScript Scripting Reference

}
logAlerts(this);

// Another way to keep the counter
function logAlerts(doc)
{

doc.alerter =
{

count = 0,
dispatch(alert)
{

doc.getField("AlertLog").value += "Alert #"
+ ++this.count + ": " + alert.type + "\n";

}
}

}
logAlerts(this);

Example

Handle the PlayerError alert here, with defaults for other alerts.

this.media.alerter =
{

dispatch(alert)
{

switch(alert.type)
{

case "PlayerError":
app.alert("Player error: " + alert.errorText);
return true;

}
}

}

AlternatePresentation Object

This object provides an interface to the document's particular alternate presentation. Use
doc.alternatePresentations to acquire an alternatePresentation object.

See the PDF Reference, Section 9.4, for additional details on alternate presentations.

Acrobat JavaScript Scripting Reference 43

Acrobat JavaScript Scripting Reference
AlternatePresentation Properties

AlternatePresentation Properties

active

This property is true if presentation is currently active and false otherwise. When a
presentation is active it controls how the document that owns it is displayed on the screen.

Type: Boolean Access: R.

Example

See start for an example.

type

The type of the alternate presentation. Currently, the only supported type is "SlideShow".

Type: String Access: R.

AlternatePresentation Methods

start

Switches document view into the alternate presentation mode and makes this
AlternatePresentation object active. An exception is thrown if this method is
called if any (this or another) alternate presentation is already active.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
AlternatePresentation Methods

44 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Assume there is a named presentation, “MySlideShow”, within the document.

// oMySlideShow is an AlternatePresentation object
oMySlideShow = this.alternatePresentations.MySlideShow;
if (!oMySlideShow.active) oMySlideShow.start();

Note this.alternatePresentations, used to access the specified presentation by
property name.

stop

Stops the presentation and switches document into the normal (PDF) presentation. An
exception is thrown if this method is called when this presentation is not active.

Parameters

None

Returns

Nothing

Example

Assume oMySlideShow is an AlternatePresentations object. See start for a
related example.

// stop the show if already active
if (oMySlideShow.active) oMySlideShow.stop();

cOnStop (optional) Expression to be evaluated by Acrobat when
presentation completes for any reason (as a result of a call to
stop, an explicit user action, or presentation logic itself).

cCommand (optional) Command or script to pass to the alternate
presentation. This command is presentation-specific (not an
Acrobat JavaScript expression).

6.0

Acrobat JavaScript Scripting Reference 45

Acrobat JavaScript Scripting Reference
Annot Object

Annot Object

The functionality of the Acrobat Annotation Plug-in is exposed to JavaScript methods
through the annot object. An annot object represents a particular Acrobat annotation;
that is, an annotation created using the Acrobat annotation tool, or by using
doc.addAnnot. See also doc.getAnnot and doc.getAnnots.

The user interface in Acrobat refers to annotations as comments.

Annotation Types

Annotations are of different types, as reflected in the type property. The each type is listed
in the table below, along with all documented properties returned by the getProps
method.

Annotation Type Properties

Text author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, noteIcon, opacity,
page, point, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum, state,
stateModel, strokeColor, style, subject,
toggleNoView, type, width

FreeText alignment, author, borderEffectIntensity,
borderEffectStyle, callout, contents, creationDate,
dash, delay, fillColor, hidden, inReplyTo, intent,
lineEnding, lock, modDate, name, noView, opacity, page,
print, readOnly, rect, refType, richContents,
richDefaults, rotate, seqNum, strokeColor, style,
subject, textFont, textSize, toggleNoView, type,
width

Line arrowBegin, arrowEnd, author,
borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, doCaption,
fillColor, hidden, inReplyTo, intent, leaderExtend,
leaderLength, lock, modDate, name, noView, opacity,
page, points, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
width

Acrobat JavaScript Scripting Reference
Annot Object

46 Acrobat JavaScript Scripting Reference

Square author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, fillColor,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
width

Circle author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, fillColor,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
width

Polygon author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, fillColor,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
vertices, width

PolyLine arrowBegin, arrowEnd, author,
borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, fillColor,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
vertices, width

Highlight author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, opacity, page,
popupOpen, popupRect, print, quads, readOnly, rect,
refType, richContents, rotate, seqNum, strokeColor,
style, subject, toggleNoView, type, width

Underline author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, opacity, page,
popupOpen, popupRect, print, quads, readOnly, rect,
refType, richContents, rotate, seqNum, strokeColor,
style, subject, toggleNoView, type, width

Annotation Type Properties

Acrobat JavaScript Scripting Reference 47

Acrobat JavaScript Scripting Reference
Annot Object

Squiggly author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, opacity, page,
popupOpen, popupRect, print, quads, readOnly, rect,
refType, richContents, rotate, seqNum, strokeColor,
style, subject, toggleNoView, type, width

StrikeOut author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, opacity, page,
popupOpen, popupRect, print, quads, readOnly, rect,
refType, richContents, rotate, seqNum, strokeColor,
style, subject, toggleNoView, type, width

Stamp AP, author, borderEffectIntensity,
borderEffectStyle, contents, creationDate, delay,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, rotate, seqNum, strokeColor, style,
subject, toggleNoView, type

Caret author, borderEffectIntensity, borderEffectStyle,
caretSymbol, contents, creationDate, delay, hidden,
inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
width

Ink author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, dash, delay, gestures,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, popupOpen, popupRect, print, readOnly,
rect, refType, richContents, rotate, seqNum,
strokeColor, style, subject, toggleNoView, type,
width

FileAttachment attachIcon, author, borderEffectIntensity,
borderEffectStyle, contents, creationDate, delay,
hidden, inReplyTo, intent, lock, modDate, name, noView,
opacity, page, point, print, readOnly, rect, refType,
richContents, rotate, seqNum, strokeColor, style,
subject, toggleNoView, type, width

Annotation Type Properties

Acrobat JavaScript Scripting Reference
Annot Properties

48 Acrobat JavaScript Scripting Reference

Annotation Access from JavaScript

Before an annotation can be accessed, it must be “bound” to a JavaScript variable through
a method in the Doc Object:

var a = this.getAnnot(0, "Important");

This example allows the script to now manipulate the annotation named “Important” on
page 1 (0-based page numbering system) via the variable a. For example, the following
code first stores the type of annotation in the variable thetype, then changes the author
to "John Q. Public".

var thetype = a.type; // read property
a.author = "John Q. Public"; // write property

Another way of accessing the annot object is through the doc.getAnnots() method.

N O T E : In Adobe Reader 5.1 or later, you can get the value of any annot property except
contents. The ability to set these properties depends on Comments document
rights, as indicated by the � icon.

Annot Properties

N O T E : Some property values are stored in the PDF document as names (see section 3.2.4
on name objects in the PDF Reference), while others are stored as strings (see
section 3.2.3 on string objects in the PDF Reference). For a property that is stored as
a name, there is a 127 character limit on the length of the string.

Examples of properties that have a 127 character limit include AP, beginArrow,
endArrow, attachIcon, noteIcon and soundIcon. The PDF Reference
documents all Annotation properties as well as how they are stored.

Sound author, borderEffectIntensity, borderEffectStyle,
contents, creationDate, delay, hidden, inReplyTo,
intent, lock, modDate, name, noView, opacity, page,
point, print, readOnly, rect, refType, richContents,
rotate, seqNum, soundIcon, strokeColor, style,
subject, toggleNoView, type, width

Annotation Type Properties

Acrobat JavaScript Scripting Reference 49

Acrobat JavaScript Scripting Reference
Annot Properties

alignment

Controls the alignment of the text for a FreeText annotation.

Type: Number Access: R/W Annots: FreeText.

AP

The named appearance of the stamp to be used in displaying a stamp annotation. The
names of the standard stamp annotations are given below:

Approved
AsIs
Confidential
Departmental
Draft
Experimental
Expired
Final
ForComment
ForPublicRelease
NotApproved
NotForPublicRelease
Sold
TopSecret

Type: String Access: R/W Annots: Stamp.

Example
var annot = this.addAnnot({

page: 0,
type: "Stamp",
author: "A. C. Robat",
name: "myStamp",
rect: [400, 400, 550, 500],
contents: "Try it again, this time with order and method!",
AP: "NotApproved"

5.0 � � �

Alignment Value

Left aligned 0

Centered 1

Right aligned 2

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

50 Acrobat JavaScript Scripting Reference

});

N O T E : The name of a particular stamp can be found by opening the PDF file in the Stamps
folder that contains the stamp in question. For a list of stamp names currently in use
in the document, see doc.icons.

arrowBegin

Determines the line cap style which specifies the shape to be used at the beginning of a
Line annot. Permissible values are listed below:

None (default)
OpenArrow
ClosedArrow
ROpenArrow // version 6.0
RClosedArrow // version 6.0
Butt // version 6.0
Diamond
Circle
Square
Slash // version 7.0

Type: String Access: R/W Annots: Line,PolyLine.

Example

See setProps.

arrowEnd

Determines the line cap style which specifies the shape to be used at the end of a Line
annot. Allowed values follows:

None (default)
OpenArrow
ClosedArrow
ROpenArrow // version 6.0
RClosedArrow // version 6.0
Butt // version 6.0
Diamond
Circle
Square
Slash // version 7.0

Type: String Access: R/W Annots: Line,PolyLine.

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 51

Acrobat JavaScript Scripting Reference
Annot Properties

Example

See setProps.

attachIcon

The name of an icon to be used in displaying the annotation. Recognized values are listed
below:

Paperclip
PushPin (default)
Graph
Tag

Type: String Access: R/W Annots: FileAttachment.

author

Gets or sets the author of the annotation.

Type: String Access: R/W Annots: all.

Example

See contents.

borderEffectIntensity

The intensity of the border effect, if any. This represents how cloudy a cloudy rectangle,
polygon or oval is.

Type: Number Access: R/W Annots: all.

borderEffectStyle

If non-empty, the name of a border effect style. Currently, the only supported border
effects are the empty string (nothing) or "C" for cloudy.

5.0 � � �

5.0 � � �

6.0 � � �

6.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

52 Acrobat JavaScript Scripting Reference

Type: String Access: R/W Annots: all.

callout

An array of four or six numbers specifying a callout line attached to the free text annotation.
See Table 8.21 in the PDF Reference for additinal details.

Type: Array Access: R/W Annots: FreeText.

caretSymbol

The symbol associated with a Caret annotation. Valid values are "" (nothing), "P" (paragraph
symbol) or "S" (space symbol).

Type: String Access: R/W Annots: Caret.

contents

Accesses the contents of any annotation having a popup. In the case of Sound and
FileAttachment annotations, specifies the text to be displayed as the description of the
sound or file attachment.

N O T E : (�) Getting and setting of this property in Adobe Reader 5.1 or later depends on
Comments document rights.

Type: String Access: R/W Annots: all.

Example
var annot = this.addAnnot({

page: 0,
type: "Text",
point: [400,500],
author: "A. C. Robat",
contents: "Call Smith to get help on this paragraph.",
noteIcon: "Help"

});

See also addAnnot.

7.0 � � �

6.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 53

Acrobat JavaScript Scripting Reference
Annot Properties

creationDate

The date and time when the annotation was created.

Type: Date Access: R Annots: all.

dash

A dash array defining a pattern of dashes and gaps to be used in drawing a dashed border.
For example, A value of [3, 2] specifies a border drawn with 3-point dashes alternating with
2-point gaps.

To set the dash array, the style property has to be set to "D".

Type: Array Access: R/W Annots: FreeText, Line, PolyLine,
Polygon, Circle, Square, Ink.

Example

Assume annot is an annot object, the code below changes the border to dashed.

annot.setProps({ style: "D", dash: [3,2] });

See also the example following annot.delay, below.

delay

When true, property changes to the annot are queued up and then executed when
delay is set back to false. (Similar to Field.delay.)

Type: Boolean Access: R/W Annots: all.

Example

Assume annot is an annot object, the code below changes the border to dashed.

annot.delay=true;
annot.style = "D";
annot.dash = [4,3];
annot.delay = false;

6.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

54 Acrobat JavaScript Scripting Reference

doc

Returns the Doc Object of the document in which the annotation resides.

Type: doc object Access: R Annots: all.

Example
var inch = 72;
var annot = this.addAnnot({

page: 0,
type: "Square",
rect: [1*inch, 3*inch, 2*inch, 3.5*inch]

});
/* displays, for example,, "file:///C|/Adobe/Annots/myDoc.pdf" */
console.println(annot.doc.URL);

doCaption

A boolean property, when true draws the rich contents in the line appearance itself. In the
UI, this property corresponds to “Show Text in LIne” on the property dialog.

Type: Boolean Access: R/W Annots: Line.

fillColor

Sets the background color for the Circle, Square, Line, Polygon, PolyLine and
FreeText annotations. Values are defined by using transparent, gray, RGB or CMYK
color. See Color Arrays for information on defining color arrays and how values are used
with this property.

Type: Color Access: R/W Annots: Circle, Square, Line, Polygon,
 PolyLine, FreeText.

Example
var annot = this.addAnnot(
{

type: "Circle",
page: 0,
rect: [200,200,400,300],
author: "A. C. Robat",

5.0 � � �

7.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 55

Acrobat JavaScript Scripting Reference
Annot Properties

name: "myCircle",
popupOpen: true,
popupRect: [200,100,400,200],
contents: "Hi World!",
strokeColor: color.red,
fillColor: ["RGB",1,1,.855]

});

gestures

An array of arrays, each representing a stroked path. Each array is a series of alternating x
and y coordinates in Default User Space, specifying points along the path. When drawn, the
points are connected by straight lines or curves in an implementation-dependent way. See
“Ink Annotations” in the PDF Reference for more details.

Type: Array Access: R/W Annots: Ink.

hidden

If true, the annotation is not shown and there is no user interaction, display or printing of
the annotation.

Type: Boolean Access: R/W Annots: all.

inReplyTo

If non-empty, the name value of the annot that this annot is in reply to.

Type: String Access: R/W Annots: all.

intent

Markup intent is a property by which a single markup annotation type may behave
differently in a viewing application depending on the intended end-user use of the
markup. For example, the Callout Tool is a FreeText annotation with intent set to
FreeTextCallout.

5.0 � � �

5.0 � � �

6.0 � � �

7.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

56 Acrobat JavaScript Scripting Reference

Though this property is defined for all annotations, currently, only FreeText, Polygon
and Line type annots have non-empty values for intent.

Type: String Access: R/W Annots: all.

The table below indicates the various tools available through the UI for creating annots
with special appearances. These tools are built on standard annots.

leaderExtend

Specifies the length of leader line extensions that extend from each endpoint of the line
perpendicular to the line itself. These lines extend from the line proper 180 degrees from
the leader lines themselves. The value should always be greater than or equal to zero.

The default is zero which implies no leader line extension.

Type: Number Access: R/W Annots: Line.

leaderLength

Specifies the length of leader lines that extend from each endpoint of the line perpendicular
to the line itself. The value may be negative to specify an alternate orientation of the leader
lines.

The default is 0 which implies no leader line.

Type: Number Access: R/W Annots: Line.

lineEnding

This property determines how the end of the callout line is stroked. Recognized values are

UI Annot Type intent

Callout Tool FreeText FreeTextCallout

Cloud Tool Polygon PolygonCloud

Arrow Tool Line LineArrow

Dimensioning Tool Line LineDimension

7.0 � � �

7.0 � � �

7.0 � � �

Acrobat JavaScript Scripting Reference 57

Acrobat JavaScript Scripting Reference
Annot Properties

None (default)
OpenArrow
ClosedArrow
ROpenArrow // version 6.0
RClosedArrow // version 6.0
Butt // version 6.0
Diamond
Circle
Square
Slash // version 7.0

This property is relevant only when the intent of the FreeText annot is
FreeTextCallout

Type: String Access: R/W Annots: FreeText.

lock

When true, the annot is “locked”, which is equivalent to readOnly except that the annot
is accessible through the UI (properties dialog).

Type: Boolean Access: R/W Annots: all.

modDate

Returns the last modification date for the annotation.

Type: Date Access: R Annots: all.

Example
// This example prints the modification date to the console
console.println(util.printd("mmmm dd, yyyy", annot.modDate));

name

The name of an annotation. This value can be used by doc.getAnnot to find and access
the properties and methods of the annotation.

Type: String Access: R/W Annots: all.

5.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

58 Acrobat JavaScript Scripting Reference

Example
// This code locates the annotation named "myNote"
// and appends a comment.
var gannot = this.getAnnot(0, "myNote");
gannot.contents += "\r\rDon’t forget to check with Smith";

noteIcon

The name of an icon to be used in displaying the annotation. Recognized values are given
below:

Check
Circle
Comment
Cross
Help
Insert
Key
NewParagraph
Note (default)
Paragraph
RightArrow
RightPointer
Star
UpArrow
UpLeftArrow

Type: String Access: R/W Annots: Text.

Example

See contents.

noView

If true, the annotation is hidden, but if the annotation has an appearance, that
appearance should be used for printing only.

Type: Boolean Access: R/W Annots: all.

Example

See toggleNoView.

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 59

Acrobat JavaScript Scripting Reference
Annot Properties

opacity

The constant opacity value to be used in painting the annotation. This value applies to all
visible elements of the annotation in its closed state (including its background and border),
but not to the popup window that appears when the annotation is opened. Permissible
values are 0.0 - 1.0. A value of 0.5 makes the annot semi-transparent.

Type: Number Access: R/W Annots: all.

page

The page on which the annotation resides.

Type: Integer Access: R/W Annots: all.

Example

The following code moves the Annot object, annot, from its current page to page 3 (0-
based page numbering system).

annot.page = 2;

point

An array of two numbers, [xul, yul] which specifies the upper left-hand corner in default,
user’s space, of an annotation’s Text, Sound, or FileAttachment icon.

Type: Array Access: R/W Annots: Text, Sound, FileAttachment.

Example
var annot = this.addAnnot({

page: 0,
type: "Text",
point: [400,500],
contents: "Call Smith to get help on this paragraph.",
popupRect: [400,400,550,500],
popupOpen: true,
noteIcon: "Help"

});

See also addAnnot and noteIcon.

5.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

60 Acrobat JavaScript Scripting Reference

points

An array of two points, [[x1, y1], [x2, y2]], specifying the starting and ending coordinates of
the line in default user space.

Type: Array Access: R/W Annots: Line.

Example
var annot = this.addAnnot({

type: "Line",
page: 0,
author: "A. C. Robat",
contents: "Look at this again!",
points: [[10,40],[200,200]],

});

See addAnnot, arrowBegin, arrowEnd and setProps .

popupOpen

If true the popup text note will appear open when the page is displayed.

Type: Boolean Access: R/W Annots: all except FreeText, Sound,
FileAttachment.

Example

See the print.

popupRect

An array of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-left y, upper-right
x and upper-right y coordinates—in default user space—of the rectangle of the popup
annotation associated with a parent annotation and defines the location of the popup
annotation on the page.

Type: Array Access: R/W Annots: all except FreeText, Sound,
FileAttachment.

Example

See the print.

5.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 61

Acrobat JavaScript Scripting Reference
Annot Properties

print

Indicates whether the annotation should be printed. When set to true, the annotation will
be printed.

Type: Boolean Access: R/W Annots: all.

quads

An array of 8 x n numbers specifying the coordinates of n quadrilaterals in default user
space. Each quadrilateral encompasses a word or group of contiguous words in the text
underlying the annotation. See Table 7.19, page 414 of the PDF Reference for more details.
The quads for a word can be obtained through calls to the getPageNthWordQuads.

Type: Array Access: R/W Annots: Highlight, StrikeOut,
Underline, Squiggly.

Example

See getPageNthWordQuads for an example.

rect

The rect array consists of four numbers [xll, yll, xur, yur] specifying the lower-left x, lower-
left y, upper-right x and upper-right y coordinates—in default user space—of the rectangle
defining the location of the annotation on the page. See also popupRect.

Type: Array Access: R/W Annots: all.

readOnly

When true, indicates that the annotation should display, but not interact with the user.

Type: Boolean Access: R/W Annots: all.

5.0 � � �

5.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

62 Acrobat JavaScript Scripting Reference

refType

The reference type of the annotation. The property is used to distinguish whether
inReplyTo is indicating a plain threaded discussion relationship or a "group" relationship.
Recognized values are "R" and "Group". See Table 8.17 of the PDF Reference for
additional details.

Type: String Access: R/W Annots: all.

richContents

This property gets the text contents and formatting of an annot. The rich text contents are
represented as an array of Span Objects containing the text contents and formatting of the
annot.

Type: Array of Access: R/W Annots: all except Sound,
Span Objects FileAttachment.

Example

Create a text annot, and give it some rich contents.

var annot = this.addAnnot({
page: 0,
type: "Text",
point: [72,500],
popupRect: [72, 500,6*72,500-2*72],
popupOpen: true,
noteIcon: "Help"

});

var spans = new Array();
spans[0] = new Object();
spans[0].text = "Attention:\r";
spans[0].textColor = color.blue;
spans[0].textSize = 18;

spans[1] = new Object();
spans[1].text = "Adobe Acrobat 6.0\r";
spans[1].textColor = color.red;
spans[1].textSize = 20;
spans[1].alignment = "center";

spans[2] = new Object();
spans[2].text = "will soon be here!";

7.0 � � �

6.0 � �

Acrobat JavaScript Scripting Reference 63

Acrobat JavaScript Scripting Reference
Annot Properties

spans[2].textColor = color.green;
spans[2].fontStyle = "italic";
spans[2].underline = true;
spans[2].alignment = "right";

// now give the rich field a rich value
annot.richContents = spans;

See also field.richValue, event.richValue (and richChange,
richChangeEx) for additional examples of using the Span Object object.

richDefaults

This property defines the default style attributes for a FreeText annot. See the
description of field.defaultStyle for additional details.

Type: Span Object Access: R/W Fields: FreeText.

rotate

The number of degrees (0, 90, 180, 270) the annotation is rotated counter-clockwise
relative to the page. The Icon based annotations do not rotate, this property is only
significant for FreeText annotations.

Type: Integer Access: R/W Annots: FreeText.

seqNum

Aread only sequence number for the annot on the page.

Type: Integer Access: R Annots: all.

6.0 � �

5.0 � � �

5.0 � �

Acrobat JavaScript Scripting Reference
Annot Properties

64 Acrobat JavaScript Scripting Reference

state

The state of the text annotation. The values of this property depend on the stateModel. For
a state model of Marked, values are Marked and Unmarked; for a Review state model, the
values are Accepted, Rejected, Cancelled, Completed and None.

Type: String Access: R/W Annots: Text.

stateModel

Beginning with Acrobat 6.0, annotations may have author-specific state associated with
them. The state is not specified in the annotation itself, but in a separate text annotation
that refers to the original annotation by means of its IRT (inReplyTo) entry. There are
two types of state models, "Marked" and "Review".

Type: String Access: R/W Annots: Text.

See also the annot method getStateInModel.

strokeColor

Sets the appearance color of the annotation. Values are defined by using transparent,
gray, RGB or CMYK color. In the case of a FreeText annotation, strokeColor sets the
border and text colors. Refer to the Color Arrays section for information on defining color
arrays and how values are used with this property.

Type: Color Access: R/W Annots: all.

Example
// Make a text note red
var annot = this.addAnnot({type: "Text"});
annot.strokeColor = color.red;

6.0 � � �

6.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 65

Acrobat JavaScript Scripting Reference
Annot Properties

style

This property gets and sets the border style. Recognized values are "S" (solid) and "D"
(dashed). The style property is defined for all annot types, but is only relevant for Line,
FreeText, Circle, Square, PolyLine, Polygon and Ink.

Type: String Access: R/W Annots: all.

See annot.dash for an example.

subject

Text representing a short description of the subject being addressed by the annotation.
The text appears in the title bar of the popup, if there is one, or the properties dialog.

Type: String Access: R/W Annots: all.

textFont

Determines the font that is used when laying out text in a FreeText annotation. Valid
fonts are defined as properties of the font object, as listed in field.textFont.

An arbitrary font can be used when laying out a FreeText annotation by setting the value
of textFont equal to a string that represents the PostScript name of the font.

Type: String Access: R/W Annots: FreeText.

Example

The following example illustrates the use of this property and the font object.

// Create FreeText annotation with Helvetica
var annot = this.addAnnot({

page: 0,
type: "FreeText",
textFont: font.Helv, // or, textFont: "Viva-Regular",
textSize: 10,
rect: [200, 300, 200+150, 300+3*12], // height for three lines
width: 1,
alignment: 1

});

5.0 � � �

6.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Properties

66 Acrobat JavaScript Scripting Reference

textSize

Determines the text size (in points) that is used in a FreeText annotation. Valid text sizes
range from 0 to 32767 inclusive. A text size of zero means that the largest point size that will
allow all the text data to still fit in the annotations’s rectangle should be used.

Valid text sizes include zero and the range from 4 to 144 inclusive.

Type: Number Access: R/W Annots: FreeText.

Example

See textFont.

toggleNoView

If toggleNoView is true, the noView flag is toggled when the mouse hovers over the
annot or the annot is selected. The flag reflects a new flag in the PDF language.

If an annot has both the noView and toggleNoView flags set, the annot will generally
be invisible; however, when the mouse is over it or it is selected, it will become visible.

Type: Boolean Access: R/W Annots: all.

type

Reflects the type of annotation. The type of the annotation can only be set within the
object-literal argument of the doc.addAnnot method. The valid values are:

Text
FreeText
Line
Square
Circle
Polygon
PolyLine
Highlight
Underline
Squiggly
StrikeOut
Stamp
Caret
Ink

5.0 � � �

6.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference 67

Acrobat JavaScript Scripting Reference
Annot Methods

FileAttachment
Sound

Type: String Access: R Annots: all.

soundIcon

The name of an icon to be used in displaying the annotation. A value of "Speaker" is
recognized.

Type: String Access: R/W Annots: Sound.

vertices

An array of coordinate arrays representing the alternating horizontal and vertical
coordinates, respectively, of each vertex, in default user space of a polygon or polyline
annotation. See Table 8.25 of the PDF Reference for details.

Type: Array of arrays Access: R/W Annots: Polygon, PolyLine.

width

The border width in points. If this value is 0, no border is drawn. The default value is 1.

Type: Number Access: R/W Annots: Square, Circle, Line, Ink,
 FreeText.

Annot Methods

destroy

Destroys the annot, removing it from the page. The object becomes invalid.

5.0 � � �

6.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Annot Methods

68 Acrobat JavaScript Scripting Reference

Parameters

None

Returns

Nothing

Example
// remove all "FreeText" annotations on page 0
var annots = this.getAnnots({ nPage:0 });
for (var i = 0; i < annots.length; i++)

if (annots[i].type == "FreeText") annots[i].destroy();

getProps

Get the collected properties of an annot. Can be used to copy an annotation.

Parameters

None

Returns

This method returns an object literal of the properties of the annotation. The object literal is
just like the one passed to addAnnot.

Example 1
var annot = this.addAnnot({

page: 0,
type: "Text",

 rect: [40, 40, 140, 140]
});

// Make a copy of the properties of annot
var copy_props = annot.getProps();

// Now create a new annot with the same properties on every page
var numpages = this.numPages;
for (var i=0; i < numpages; i++) {

var copy_annot = this.addAnnot(copy_props);
// but move it to page i
copy_annot.page=i;

}

Example 2

Display all properties and values of an annot.

var a = this.getAnnots(0); // get all annots on page 0
if (a != null) {

5.0 � � �

Acrobat JavaScript Scripting Reference 69

Acrobat JavaScript Scripting Reference
Annot Methods

var p = a[0].getProps(); // get the properties of first one
for (o in p) console.println(o + " : " + p[o]);

}

getStateInModel

Gets the current state of the annot in the context of a state model. See also
transitionToState.

Parameters

Returns

The result is an array of the identifiers for the current state of the annot.

● If the state model was defined to be exclusive then there will only be a single state (or no
states if the state has not been set).

● If the state model is non-exclusive then there may be multiple states. The array will have
no entries if the state has not been set and there is no default.

Exceptions

None

Example

Report on the status of all annots on all pages of this document.

annots = this.getAnnots()
for (var i= 0; i< annots.length; i++) {

states = annots[i].getStateInModel("Review");
if (states.length > 0) {

for(j = 0; j < states.length; j++)
{

var d = util.printd(2, states[j].modDate);
 var s = states[j].state;
 var a = states[j].author;

console.println(annots[i].type + ": " + a + " "
+ s + " " + d + "on page "
+ (annots[i].page+1));

 }

}
}

6.0 �

cStateModel The state model to determine the state of the annot.

Acrobat JavaScript Scripting Reference
Annot Methods

70 Acrobat JavaScript Scripting Reference

setProps

Sets many properties of the annotation simultaneously.

Parameters

Returns

The annot object

Example
var annot = this.addAnnot({type: "Line"})
annot.setProps({

page: 0,
points: [[10,40],[200,200]],
strokeColor: color.red,
author: "A. C. Robat",
contents: "Check with Jones on this point.",
popupOpen: true,
popupRect: [200, 100, 400, 200], // place rect at tip of the arrow
arrowBegin: "Diamond",
arrowEnd: "OpenArrow"

});

transitionToState

Makes the state of the Annot cState by performing a state transition. The state transition
is recorded in the audit trail of the Annot.

See also getStateInModel.

N O T E : For the states to work correctly in a multi-user environment, all users need to have
the same state model definitions; therefore, it is best to place state model
definitions in a folder-level JavaScript file which can be distributed to all users, or
installed on all systems.

5.0 � � �

objectLiteral A generic object, which specifies the properties of the
annot object annotation, such as type, rect, and page, to
be created. (This is the same as the parameter of
doc.addAnnot.)

6.0 �

Acrobat JavaScript Scripting Reference 71

Acrobat JavaScript Scripting Reference
Annot Methods

Parameters

Returns

Nothing

Exceptions

None

Example
try {

// Create a document
var myDoc = app.newDoc();
// Create an annot
var myAnnot = myDoc.addAnnot
({

page: 0,
type: "Text",
point: [300,400],
name: "myAnnot",

});

// Create the state model
var myStates = new Object();
myStates["initial"] = {cUIName: "Haven't reviewed it"};
myStates["approved"] = {cUIName: "I approve"};
myStates["rejected"] = {cUIName: "Forget it"};
myStates["resubmit"] = {cUIName: "Make some changes"};
Collab.addStateModel({

cName: "ReviewStates",
cUIName: "My Review",
oStates: myStates,
cDefault: "initial"

});
} catch(e) { console.println(e); }

// Change the states
myAnnot.transitionToState("ReviewStates", "resubmit");
myAnnot.transitionToState("ReviewStates", "approved");

cStateModel The state model in which to perform the state transition.
cStateModel must have been previously added by calling
addStateModel.

cState A valid state in the state model to transition to.

Acrobat JavaScript Scripting Reference
Annot3D Object

72 Acrobat JavaScript Scripting Reference

Annot3D Object

An Annot3D object represents a particular Acrobat 3D annotation; that is, an annotation
created using the Acrobat 3D Tool. The Annot3D object can be acquired from the Doc
object methods getAnnot3D and getAnnots3D.

Annot3D Properties

activated

A boolean that indicates whether the annot is displaying the 3D artwork (true), or just the
posterboard picture (false).

See context3D below.

Type: Boolean Access: R/W.

context3D

If Annot3D.activated is true, this property returns the context of the 3D Annot (a
SceneContext3d object) containing the 3D scene, and returns undefined if activated
is false.

Type: SceneContext3d object Access: R.

innerRect

The innerRect property returns an array of four numbers [xll, yll, xur, yur] specifying the
lower-left x, lower-left y, upper-right x and upper-right y coordinates, in the coordinate
system of the annotation (lower-left is [0, 0], top right is [width, height]), of the 3D annot’s
3DB box, where the 3D artwork will be rendered.

Type: Array Access: R.

7.0

7.0

7.0

Acrobat JavaScript Scripting Reference 73

Acrobat JavaScript Scripting Reference
App Object

name

The name of the annotation.

Type: String Access: R.

page

The page property is the 0-based page number of the page the annot occurs on.

Type: Integer Access: R.

rect

The rect property retuns an array of four numbers [xll, yll, xur, yur] specifying the lower-left x,
lower-left y, upper-right x and upper-right y coordinates, in default user space, of the
rectangle defining the location of the annotation on the page. (Array, RW)

Type: Array Access: R.

App Object

A static JavaScript object that defines a number of Acrobat specific functions plus a variety
of utility routines and convenience functions.

App Properties

activeDocs

Returns an array containing the Doc Object for each active document open in the viewer,
see note below. If no documents are active, activeDocs returns nothing, or has the same
behavior as d = new Array(0) in core JavaScript.

7.0

7.0

7.0

5.0 �

Acrobat JavaScript Scripting Reference
App Properties

74 Acrobat JavaScript Scripting Reference

Beginning with Acrobat 7.0, when the script d = app.activeDocs is executed in the
console, there is no toString() value that is output to the console. (In previous versions
of Acrobat, executing this script returned [object Global] to the console.)

N O T E S : (Security �): For version 5.0, this property returns an array containing the Doc
Object for each active document open in the viewer. In version 5.0.5, this property
was changed to return an array of Doc Objects of only those documents open in
the viewer that have the doc.disclosed property set to true. The “Acrobat
5.0.5 Accessibility and Forms Patch” changed this behavior—and this is the behavior
of activeDocs for Acrobat 6.0 or later— as follows: During a batch, console or
menu event, activeDocs ignores the disclosed property and returns an array
of Doc Objects of the active documents open in the viewer; during any other
event, activeDocs returns an array of Doc Objects of only those active
documents open in the viewer that have doc.disclosed set to true.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

The array returned by app.activeDocs will include any documents opened by
app.openDoc with the bHidden parameter set to true, subject to the security
restrictions described above.

Type: Array Access: R.

Example

This example searches among the open documents for the document with a title of
"myDoc", then it inserts a button in that document using addField. Whether the
documents need to be disclosed depends on the version of Acrobat executing this
code, and on the placement of the code (for example, console versus MouseUp action).

var d = app.activeDocs;
for (var i=0; i < d.length; i++)
if (d[i].info.Title == "myDoc") {

var f = d[i].addField("myButton", "button", 0 , [20, 100, 100, 20]);
f.setAction("MouseUp","app.beep(0)");
f.fillColor=color.gray;

}

calculate

If set to true, allows calculations to be performed. If set to false, prevents all calculations
in all documents from occurring. Its default value is true.

See doc.calculate which supersedes this property in later versions.

Type: Boolean Access: R/W.

�

Acrobat JavaScript Scripting Reference 75

Acrobat JavaScript Scripting Reference
App Properties

constants

Each instance of an App Object inherits the constants property, which is a wrapper
object for holding various constant values. The constants property returns an object
with a single property, align. app.constants.align is an object which has the
following properties. The values stored in this (align) object can be used to specify
alignment, such as when adding a watermark.

Type: Object Access: R.

Example

See doc.addWatermarkFromFile and doc.addWatermarkFromText for
examples.

focusRect

Turns the focus rectangle on and off. The focus rectangle is the faint dotted line around
buttons, check boxes, radio buttons, and signatures to indicate that the form field has the
keyboard focus. A value of true turns on the focus rectangle.

Type: Boolean Access: R/W.

Example
app.focusRect = false; // don’t want faint dotted lines around fields

7.0

app.constants.align Object

Property Description

left Designates left alignment

center Designates center alignment

right Designates right alignment

top Designates top alignment

bottom Designates bottom alignment

4.05 �

Acrobat JavaScript Scripting Reference
App Properties

76 Acrobat JavaScript Scripting Reference

formsVersion

The version number of the forms software running inside the viewer. Use this method to
determine whether objects, properties, or methods in newer versions of the software are
available if you wish to maintain backwards compatibility in your scripts.

Type: Number Access: R.

Example
if (typeof app.formsVersion != "undefined" && app.formsVersion >= 5.0)
{

// Perform version specific operations here.
// For example, toggle full screen mode
app.fs.cursor = cursor.visible;

 app.fs.defaultTransition = "";
app.fs.useTimer = false;

 app.fs.isFullScreen = !app.fs.isFullScreen;
}
else app.fullscreen = !app.fullscreen;

fromPDFConverters

Returns an array of file type conversion ID strings. A conversion ID string is passed to
doc.saveAs.

Type: Array Access: R.

Example

List all currently supported conversion ID strings for doc.saveAs.

for (var i = 0; i < app.fromPDFConverters.length; i++)
console.println(app.fromPDFConverters[i]);

fs

Returns the FullScreen Object, which can be used to access the fullscreen properties.

Type: object Access: R.

Example
// This code puts the viewer into fullscreen (presentation) mode.

4.0

6.0

5.0 �

Acrobat JavaScript Scripting Reference 77

Acrobat JavaScript Scripting Reference
App Properties

app.fs.isFullScreen = true;

See also fullScreenObject.isFullScreen.

fullscreen

Puts the Acrobat viewer in fullscreen mode vs. regular viewing mode.

See fullScreenObject.isFullScreen; this property supersedes this property in
later versions. See also fs, which returns a FullScreen Object which can be used to access
the fullscreen properties.

N O T E : A PDF document being viewed from within a web browser cannot be put into
fullscreen mode. Fullscreen mode can, however, be initiated from within the
browser, but will not occur unless there is a document open in the Acrobat viewer
application; in this case, the document open in the viewer will appear in fullscreen,
not the PDF document open in the web browser.

Type: Boolean Access: R/W.

Example
// on mouse up, set to fullscreen mode
app.fullscreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode when
app.fullscreen is set to true. If app.fullscreen was false then the default
viewing mode would be set. The default viewing mode is defined as the original mode the
Acrobat application was in before full screen mode was initiated.

language

Defines the language of the running Acrobat Viewer. It returns the following strings:

�

3.01

String Language

CHS Chinese Simplified

CHT Chinese Traditional

DAN Danish

DEU German

ENU English

ESP Spanish

Acrobat JavaScript Scripting Reference
App Properties

78 Acrobat JavaScript Scripting Reference

Type: String Access: R.

media

The global App.media Object defines an extensive number of properties and methods
useful for setting up and controlling multimedia player.

See the section on the App.media Object for a listing of the properties and methods of this
object, as well as numerous examples of use.

Type: Object Access: R/W.

monitors

The app.monitors property returns a Monitors Object, which is an array containing one
or more Monitor objects representing each of the display monitors connected to the user s
system. Each access to app.monitors returns a new, up to date copy of this array.

A Monitors object also has several methods that can be used to select a display monitor, or
JavaScript code can look through the array explicitly. See the Monitors Object for details.

Type: Monitors Object Access: R.

Example

Count the number of display monitors connected to the user’s system.

FRA French

ITA Italian

KOR Korean

JPN Japanese

NLD Dutch

NOR Norwegian

PTB Brazilian Portuguese

SUO Finnish

SVE Swedish

6.0

6.0

String Language

Acrobat JavaScript Scripting Reference 79

Acrobat JavaScript Scripting Reference
App Properties

var monitors = app.monitors;
console.println("There are " + monitors.length

+ " monitor(s) connected to this system.");

numPlugIns

Indicates the number of plug-ins that have been loaded by Acrobat. See plugIns which
supersedes this property in later versions.

Type: Number Access: R.

openInPlace

Determines whether cross-document links are opened in the same window or opened in a
new window.

Type: Boolean Access: R/W.

Example
app.openInPlace = true;

platform

Returns the platform that the script is currently executing on. Valid values are

WIN
MAC
UNIX

Type: String Access: R.

plugIns

Determines which plug-ins are currently installed in the viewer. Returns an array of
PlayerInfo Objects.

Type: Array Access: R.

�

4.0 �

4.0

5.0

Acrobat JavaScript Scripting Reference
App Properties

80 Acrobat JavaScript Scripting Reference

Example
// Get array of PlugIn Objects
var aPlugins = app.plugIns;
// Get number of plugins
var nPlugins = aPlugins.length;
// Enumerate names of all plugins
for (var i = 0; i < nPlugins; i++)

console.println("Plugin \#"+i+" is " + aPlugins[i].name);

printColorProfiles

Returns a list of available printer color spaces. Each of these values is suitable to use as the
value of the printParams.colorProfile.

Type: Array of Strings Access: R.

Example

Print out a listing of available printer color spaces.

var l = app.printColorProfiles.length
for (var i = 0; i < l; i++)
 console.println("(" + (i+1) + ") " + app.printColorProfiles[i]);

printerNames

Returns a list of available printers. Each of these values is suitable to use in
printParams.printerName. If no printers are installed on the system an empty array
is returned.

Type: Array of Strings Access: R.

Example

Print out a listing of available printer color spaces.

var l = app.printerNames.length
for (var i = 0; i < l; i++)
 console.println("(" + (i+1) + ") " + app.printerNames[i]);

runtimeHighlight

If true, the background color and hover color for form fields are shown.

6.0 �

6.0

6.0 �

Acrobat JavaScript Scripting Reference 81

Acrobat JavaScript Scripting Reference
App Properties

Type: Boolean Access: R/W.

Example

If runtime highlighting is off (false) do nothing, else, change the preferences.

if (!app.runtimeHighlight)
{

app.runtimeHighlight = true;
app.runtimeHighlightColor = color.red;

}

runtimeHighlightColor

Sets the color for runtime highlighting of form fields.

The value of runtimeHightlightColor is a color array, see the Color Object for
details.

Type: A color array Access: R/W.

Example

See the example following runtimeHighlight.

thermometer

Returns a Thermometer Object. The thermometer object is a combined status
window/progress bar that indicates to the user that a lengthy operation is in progress.

Type: object Access: R.

Example

See the Thermometer Object for an example.

toolbar

Allows a script to show or hide both the horizontal and vertical Acrobat tool bars. It does
not hide the tool bar in external windows (that is, in an Acrobat window within a Web
browser).

Type: Boolean Access: R/W.

6.0 �

6.0

3.01 �

Acrobat JavaScript Scripting Reference
App Properties

82 Acrobat JavaScript Scripting Reference

Example
// Opened the document, now remove the toolbar.
app.toolbar = false;

toolbarHorizontal

Allows a script to show or hide the Acrobat horizontal tool bar. It does not hide the tool bar
in external windows (that is, in an Acrobat window within a Web browser).

N O T E : Acrobat 5.0 drastically changed the notion of what a toolbar is and where it can live
within the frame of the application. This property has therefore been deprecated. If
accessed, it acts like toolbar.

Type: Boolean Access: R/W.

toolbarVertical

Allows a script to show or hide the Acrobat vertical tool bar. It does not hide the tool bar in
external windows (that is, in an Acrobat window within a Web browser).

N O T E : Acrobat 5.0 drastically changed the notion of what a toolbar is and where it can live
within the frame of the application. This property has therefore been deprecated. If
accessed, it acts like toolbar.

Type: Boolean Access: R/W.

viewerType

This property returns a string that indicates the viewer the application that is running. The
values are given in the table below.

� �

� �

3.01

Value Description

Reader Acrobat Reader 5.0 or earlier /
Adobe Reader 5.1 or later

Exchange Adobe Acrobat prior to 6.0 /
Acrobat Standard 6.0 or later

Exchange-Pro Acrobat Professional 6.0 or later

Acrobat JavaScript Scripting Reference 83

Acrobat JavaScript Scripting Reference
App Methods

Type: String Access: R.

viewerVariation

Indicates the packaging of the running Acrobat Viewer. Values are:

Reader
Fill-In
Business Tools
Full

Type: String Access: R.

viewerVersion

Indicates the version number of the current viewer.

Type: Number Access: R.

App Methods

addMenuItem

Adds a menu item to the application.

N O T E : (Security�): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

See also the addSubMenu, execMenuItem, hideMenuItem, and listMenuItems.

Parameters

5.0

4.0

5.0 �

cName The language independent name of the menu item. This language
independent name is used to access the menu item for other
methods (for example, hideMenuItem).

cUser (optional) The user string (language dependent name) to display as
the menu item name. If cUser is not specified then cName is used

Acrobat JavaScript Scripting Reference
App Methods

84 Acrobat JavaScript Scripting Reference

cParent The name of the parent menu item. Its submenu will have the new
menu item added to it. If cParent has no submenu then an
exception is thrown.
Menu item names can be discovered with listMenuItems.

nPos (optional) The position within the submenu to locate the new menu
item. The default behavior is to append to the end of the submenu.
Specifying nPos as 0 will add to the top of the submenu. Beginning
with Acrobat 6.0, the value of nPos can also be the language
independent name of a menu item.
(Version 6.0) If the value nPos is a string, this string is interpreted as
a named item in the menu (a language independent name of a
menu item). The named item determines the position at which the
new menu item is to be inserted. See bPrepend for additional
details.

N O T E : The nPos parameter is ignored in certain menus that are
alphabetized. The alphabetized menus are

● The first section of View > Navigational Tabs.

● The first section of View > Toolbars.

● The first section of the Advanced submenu.

N O T E : When nPos is a number, nPos is not obeyed in the Tools
menu. A menu item introduced into the Tools menu comes in
at the top of the menu. nPos will be obeyed when nPos is a
string referencing another user-defined menu item.

cExec An expression string to evaluate when the menu item is selected by
the user.

N O T E : Beginning with Acrobat 7.0, execution of JavaScript through a
menu event is no longer privileged. See the note “Introduced
in Acrobat 7.0” on page 647 for more details.

cEnable (optional) An expression string that determines whether or not to
enable the menu item. The default is that the menu item is always
enabled. This expression should set event.rc to false to disable
the menu item.

cMarked (optional) An expression string that determines whether or not the
menu item has a check mark next to it. Default is that the menu item
is not marked. This expression should set event.rc to false to
uncheck the menu item and true to check it.

Acrobat JavaScript Scripting Reference 85

Acrobat JavaScript Scripting Reference
App Methods

Returns

Nothing

Example 1
// This example adds a menu item to the top of the file submenu that
// puts up an alert dialog displaying the active document title.
// This menu is only enabled if a document is opened.
app.addMenuItem({ cName: "Hello", cParent: "File",

cExec: "app.alert(event.target.info.title, 3);",
cEnable: "event.rc = (event.target != null);",
nPos: 0

});

Example 2 (version 6.0)

Place a two menu items in the "File" menu, one before the "Close" item, and the other after
the "Close" item.

// insert after the "Close" item (the default behavior)
app.addMenuItem({ cName: "myItem1", cUser: "My Item 1", cParent:
 "File", cExec: "_myProc1()", nPos: "Close"});
// insert before the "Close" item, set bPrepend to true.
app.addMenuItem({ cName: "myItem2", cUser: "My Item 2", cParent:
 "File", cExec: "_myProc2()", nPos: "Close", bPrepend: true });

addSubMenu

Adds a menu item with a submenu to the application.

See also the addMenuItem, execMenuItem, hideMenuItem, and listMenuItems.

N O T E : (Security�): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

bPrepend (optional, version 6.0) Determines the position of the new menu item
relative to the position specified by nPos. The default value is
false. If bPrepend is true, the rules for insertion are as follows: If
nPos is a string, the new item is placed before the named item; if
nPos is a number, the new item is placed before the numbered item;
if the named item can’t be found or nPos is not between zero and
the number of items in the list, inclusive, then the new item is
inserted as the first item in the menu (rather than at the end of the
menu).
bPrepend is useful when the named item is the first item in a
group.

5.0 �

Acrobat JavaScript Scripting Reference
App Methods

86 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

See newDoc.

addToolButton

Adds a tool button to the “Add-on” toolbar of Acrobat.

N O T E S : (Version 7.0) A number of changes have been made with regard to the secure use of
this method. Execution of addToolButton in the console and app initialization is

cName The language independent name of the menu item. This language
independent name is used to access the menu item for
hideMenuItem, for example.

cUser (optional) The user string (language dependent name) to display as
the menu item name. If cUser is not specified then cName is used.

cParent The name of the parent menu item to receive the new submenu.
Menu item names can be discovered with listMenuItems.

nPos (optional) The position within the parent’s submenu to locate the new
submenu. Default is to append to the end of the parent’s submenu.
Specifying nPos as 0 will add to the top of the parent’s submenu.

N O T E : The nPos parameter is ignored in certain menus that are
alphabetized. The alphabetized menus are

● The first section of View > Navigational Tabs.

● The first section of View > Toolbars.

● The first section of the Advanced submenu.

N O T E : When nPos is a number, nPos is not obeyed in the Tools
menu. A menu item introduced into the Tools menu comes in
at the top of the menu. nPos will be obeyed when nPos is a
string referencing another user defined menu item.

6.0

Acrobat JavaScript Scripting Reference 87

Acrobat JavaScript Scripting Reference
App Methods

considered privileged execution and is trusted. The tool button will be added to the
“Add-on” toolbar, which is dockable.

If this method is called from nonprivileged script, the warning “JavaScript Window”
will appear on the add-on toolbar, which will not be dockable. (See Privileged versus
Non-privileged Context.)

If there is an active document, docA.pdf, for example, open in Acrobat when this
method is called to add a tool button, Acrobat will remove the tool button when
docA.pdf is either no longer active, or is closed; in the former case, the tool button
will be automatically added to the tool bar should docA.pdf become the active
document again.

The icon size is restricted to 20 by 20 pixels. If an icon of larger dimensions is used, an
exception is thrown.

See also removeToolButton.

Parameters

cName A unique language independent identifier for the tool button. The
language independent name is used to access the toolbutton for
other methods (for example, removeToolButton).

N O T E : The value of cName must be unique. To avoid a name conflict,
check listToolbarButtons, which lists all toolbar button
names currently installed.

oIcon A Icon Stream Generic Object.
(version 7.0) Beginning with version 7.0, the oIcon parameter is
optional if a cLabel is provided.

cExec The expression string to evaluate when the tool button is selected.

cEnable (optional) An expression string that determines whether or not to
enable the tool button. The default is that the tool button is always
enabled. This expression should set event.rc to false to disable
the toolbutton.

cMarked (optional) An expression string that determines whether or not the
tool button is marked. The default is that the tool button is not
marked. This expression should set event.rc to true to mark the
toolbutton.

cTooltext (optional) The text to display in the toolbutton help text when the
user mouses over the toolbutton. The default is to not have a tool tip.

N O T E : Avoid the use of extended characters in the cTooltext string
as the string may be truncated.

Acrobat JavaScript Scripting Reference
App Methods

88 Acrobat JavaScript Scripting Reference

Returns

An integer.

Exceptions

None

Example

In this example, a toolbutton is created from a icon graphic on the user’s hard drive. This
script is executed from the console.

// Create a document
var myDoc = app.newDoc();

// import icon (20x20 pixels) from the file specified
myDoc.importIcon("myIcon", "/C/myIcon.jpg", 0);

// convert the icon to a stream.
oIcon = util.iconStreamFromIcon(myDoc.getIcon("myIcon"));

// close the doc now that we have grabbed the icon stream
myDoc.closeDoc(true);

// add a tool button
app.addToolButton({
 cName: "myToolButton",
 oIcon: oIcon,
 cExec: "app.alert('Someone pressed me!')",
 cTooltext: "Push Me!",
 cEnable: true,
 nPos: 0
});

app.removeToolButton("myToolButton")

See also util.iconStreamFromIcon, and the example that follows.

alert

Displays an alert dialog on the screen.

nPos (optional) The Toolbutton number to place the added Toolbutton
before in the Toolbar. If nPos is -1 (the default) then the Toolbutton is
appended to the Toolbar.

cLabel (optional, version 7.0) A text label to be displayed on the button to the
right of the icon. The default is to not have a label.

3.01

Acrobat JavaScript Scripting Reference 89

Acrobat JavaScript Scripting Reference
App Methods

Parameters

Returns

nButton, the type of the button that was pressed by the user:

1: OK

2: Cancel

3: No

4: Yes

cMsg A string containing the message to be displayed.

nIcon (optional) An icon type. Values are associated with icons as follows:
0: Error (default)
1: Warning
2: Question
3: Status

N O T E : The Macintosh OS does not distinguish between warnings and
questions, so it only has three different types of icons.

nType (optional) A button group type. Values are associated with button
groups as follows:

0: OK (default)
1: OK, Cancel
2: Yes, No
3: Yes, No, Cancel

cTitle (optional, version 6.0) A title of the dialog. If not specified the title
“Adobe Acrobat” is used.

oDoc (optional, version 6.0) The Doc Object that the alert should be
associated with.

oCheckbox (optional, version 6.0) If this parameter is passed, a checkbox is
created in the lower left region of the alert box. oCheckbox is a
generic JS object having three properties. The first two property
values are passed to the alert() method, the third property returns
a boolean.
● cMsg (optional): A string to display with the checkbox. If not

specified, the default string is "Do not show this message again".
● bInitialValue (optional): If true, the initial state of the

checkbox is checked. Default is false.
● bAfterValue : When the alert method exits, contains the state

of the checkbox when the dialog closed. If true, the checkbox
was checked when the alert box is closed.

Acrobat JavaScript Scripting Reference
App Methods

90 Acrobat JavaScript Scripting Reference

Example 1

A simple alert box notifying the user.

app.alert({
cMsg: "Error! Try again!",
cTitle: "Acme Testing Service"

});

Example 2

Close the document with the user’s permission

// A MouseUp action
var nButton = app.alert({

cMsg: "Do you want to close this document?",
cTitle: "A message from A. C. Robat",
nIcon: 2, nType: 2

});
if (nButton == 4) this.closeDoc();

Example 3 (Version 6.0)

One doc creates an alert box in another doc. Suppose there are two documents, DocA and
DocB. One document is open in a browser and other in the viewer.

// The following is a declaration at the document level in DocA
var myAlertBoxes = new Object;
myAlertBoxes.oMyCheckbox = {

cMsg: "Care to see this message again?",
bAfterValue: false

}

The following is a MouseUp action in DocA. The variable theOtherDoc is the Doc object of
DocB. The alert box ask the user if the user wants to see this alert box again. If the user clicks
on the check box provided, the alert does not appear again.

if (!myAlertBoxes.oMyCheckbox.bAfterValue)
{

app.alert({
cMsg: "This is a message from the DocA?",

 cTitle: "A message from A. C. Robat",
oDoc:theOtherDoc,
oCheckbox: myAlertBoxes.oMyCheckbox

});
}

beep

Causes the system to play a sound.

N O T E : On Apple Macintosh and UNIX systems the beep type is ignored.

3.01

Acrobat JavaScript Scripting Reference 91

Acrobat JavaScript Scripting Reference
App Methods

Parameters

Returns

Nothing

beginPriv

If allowed, raises the execution privilege of the current stack frame such that methods
marked “secure” will execute without security exceptions. This method will only succeed if
there is a frame on the stack representing the execution of a trusted function and any and
all frames (including the frame making the call) between the currently executing frame and
that frame represent the execution of trust propagator functions.

Use app.endPriv to revoke privilege. The method app.trustedFunction can be
used to create a trusted function, and app.trustPropagatorFunction to create a
trust propagator function. The term “stack frame” is discussed following the description of
app.trustedFunction.

Parameters

None

Returns

Returns undefined on success, exception on failure.

Example

For examples of usage, see trustedFunction and trustPropagatorFunction.

browseForDoc

This method presents a file system browser and returns an object containing information
concerning the user’s response.

N O T E : (Security�): This method can only be executed during batch or console events. See
the Event Object for a discussion of Acrobat JavaScript events.

nType (optional) The sound type. Values are associated with sounds as follows:
0: Error
1: Warning
2: Question
3: Status
4: Default (default value)

7.0

7.0 �

Acrobat JavaScript Scripting Reference
App Methods

92 Acrobat JavaScript Scripting Reference

Parameters

Returns

On success, returns an object which has three properties:

If the user cancels, the return value is undefined. On error, throws an exception.

Example 1

Browse for a document and report back the results to console.

var oRetn = app.browseForDoc({
cFilenameInit: "myComDoc.pdf",

 cFSInit: "CHTTP",
});
if (typeof oRetn != "undefined")

for (var o in oRetn)
console.println("oRetn." + o + "=" + oRetn[o]);

else console.println("User cancelled!");

If the user selects a file on a WebDAV server, a possible output of this code is given below:

oRetn.cFS=CHTTP
oRetn.cPath=http://www.myCom.com/WebDAV/myComDoc.pdf
oRetn.cURL=http://www.myCom.com/WebDAV/myComDoc.pdf

Should the user select a file in the default file system, a typical output of this code is given
below:

oRetn.cFS=DOS

bSave (optional) A boolean that, if true, specifies that the file system
browser should be presented as it would for a save operation. The
default is false.

cFilenameInit (optional) A string that specifies the default file name for the file
system browser to be populated with.

cFSInit (optional) A string that specifies the file system that the file system
browser will be operating on initially. Two values are supported: ""
(the empty string) representing the default file system and "CHTTP".
The default is the default file system. This parameter is only relevant
if the web server supports WebDAV.

Property Description

cFS A string containing the resulting file system name for the chosen
file.

cPath A string containing the resulting path for the chosen file.

cURL A string containing the resulting URL for the chosen file

Acrobat JavaScript Scripting Reference 93

Acrobat JavaScript Scripting Reference
App Methods

oRetn.cPath=/C/temp/myComDoc.pdf
oRetn.cURL=file:///C|/temp/myComDoc.pdf

The script can go on to open the selected file using app.openDoc.

var myURL = (oRetn.cFS=="CHTTP") ? encodeURI(oRetn.cPath) : oRetn.cPath;
var oDoc = app.openDoc({cPath: myURL, cFS: oRetn.cFS});

N O T E : app.openDoc requires cPath to be an escaped string when retrieving a file from
a WebDAV server. See app.openDoc for a brief description and example.

Example 2

Browse and save a document.

var oRetn = app.browseForDoc({
bSave: true,
cFilenameInit: "myComDoc.pdf",

 cFSInit: "CHTTP",
});
if (typeof oRetn != "undefined") this.saveAs({

cFS: oRetn.cFS, cPath: oRetn.cPath, bPromptToOverwrite: false});

clearInterval

Cancels a previously registered interval, oInterval, initially set by setInterval.

See also setTimeOut and clearTimeOut..

Parameters

Returns

Nothing

Example

See setTimeOut.

clearTimeOut

Cancels a previously registered time-out interval, oTime. Such an interval is initially set by
setTimeOut.

See also setInterval and clearInterval.

5.0

oInterval The registered interval to cancel.

5.0

Acrobat JavaScript Scripting Reference
App Methods

94 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

See setTimeOut.

endPriv

Revokes any privilege bestowed upon the current stack frame by app.beginPriv. Will
not revoke privilege bestowed by the current event.

Related methods are app.trustedFunction, app.trustPropagatorFunction
and app.beginPriv.

Parameters

None

Returns

Returns undefined on success, exception on failure.

Example

For examples of usage, see trustedFunction and trustPropagatorFunction.

execDialog

This method presents a modal dialog to the user. Model dialogs require the user to dismiss
the dialog before the host application can be directly used again.

The dialog description is provided by the monitor parameter, a generic object literal as
described below. This object literal dialog descriptor consists of a set of handler functions
which are called to handle various events for the dialog and a set of properties which
describe the contents of the dialog.

Dialog items are identified by an ItemID, which is a unique 4 character string. An ItemID
for an element is only necessary if it will be necessary to refer to that element elsewhere in
the dialog description (e.g. to set/get a value for the element, to add a handler for the
element, to set a tab order including the element).

oTime The previously registered time-out interval to cancel.

7.0

7.0

Acrobat JavaScript Scripting Reference 95

Acrobat JavaScript Scripting Reference
App Methods

N O T E : To distinguish a dialog from an Acrobat dialog from JavaScript, dialogs that are
added at the document level will have a title of "JavaScript Dialog" and will display
the text "Warning: JavaScript Dialog" at the bottom.

Adobe Dialog Manager Programmer’s Guide and Reference explains in detail the modal
dialog and its properties. See the section Adobe Web Documentation for a link to this
document.

Parameters

Returns

A string, which is the ItemID of the element that caused the dialog to be dismissed. The
return value is "ok" or "cancel" if the dismissed is dismissed by the ok or cancel button.

N O T E : The app.execDialog() creates a modal dialog, and, as a consequence, the
JavaScript debugger does not work while the dialog is active. Debugging is
disabled.

Dialog Handlers

The dialog handlers allow the caller to be notified when specific events occur for the dialog.
Each handler is optional and is passed a Dialog Object that can be used to query or set
values in the dialog. The supported Dialog handlers are listed in the table that follows.

monitor An object literal that is the dialog descriptor.

inheritDialog (optional) This is a Dialog Object which should be reused when
displaying this dialog. This is useful for displaying a series of dialogs
(such as a "Wizard") to prevent the previous dialog from
disappearing before the new dialog is displayed. The default is to
not reuse a dialog.

parentDoc (optional) A Doc Object to use as the parent for this dialog. The
default is to parent the dialog to the Acrobat application.

Dialog Handlers

Handler Description

initialize This method is called when the dialog is being initialized.

validate This method is called when a field is modified to
determine if the value is acceptable (by returning true)
or unacceptable (by returning false).

commit This method is called when the OK button of the dialog is
hit.

destroy This method is called when the dialog is being destroyed.

Acrobat JavaScript Scripting Reference
App Methods

96 Acrobat JavaScript Scripting Reference

Description Property

The dialog description consists of a set of nested properties. The dialog is described in the
description property, with sub-elements as an array of child object literals that form a
tree.

The dialog properties which are set at the root level of the description property are
listed in the table that follows.

ItemID This method will be called when the Dialog element
ItemID is modified. In the case of a text box, this is
when the text box loses focus. For other controls, it is
when the selection changes.
If ItemID is not a JavaScript identifier, then the name
needs to be enclosed in double quotes when the method
is defined, e.g.,

 "bt:1": function () { }
The double quotes are optional in the case ItemID is a
JavaScript identifier, e.g.,

 "butn": function () { }
 butn: function () { }
are both correct.

description Properties

Property Type Description

name String The title bar of the Dialog which should be
localized.

first_tab String An ItemID for the dialog item which should
be first in the tab order. This dialog item will
also be active when the dialog is created. This
property is required for setting up a tabbing
order. See the next_tab property defined
below.

width Numeric Specifies the width of the Dialog in pixels. If
no width is specified, the combined width of
the contents is used.

height Numeric Specifies the height of the Dialog in pixels. If
no height is specified, the combined height
of the contents is used.

Dialog Handlers

Handler Description

Acrobat JavaScript Scripting Reference 97

Acrobat JavaScript Scripting Reference
App Methods

Dialog elements

The dialog elements are object literals with the following set of properites.

char_width Numeric Specifies the width of the Dialog in
characters. If no width is specified, the
combined width of the contents is used.

char_height Numeric Specifies the height of the Dialog in
characters. If no height is specified, the
combined height of the contents is used.

align_children String Sets the alignment for all descendents. Must
be one of the following values:
● "align_left": Left Aligned
● "align_center": Center Aligned
● "align_right": Right Aligned
● "align_top": Top Aligned
● "align_fill": Align to fill the parents width,

may widen objects.
● "align_distribute": Distribute the contents

over the parents width.
● "align_row": Distribute the contents over

the parents width with a consistent
baseline.

● "align_offscreen": Align items one on top
of another.

elements Array An array of object literals which describe the
dialog elements contained within this dialog
(see Dialog elements)

Dialog elements Properties

Property Type Description

name String The displayed name of the dialog element
which should be localized.

N O T E : The name property is ignored for the
edit_text type.

item_id String An ItemID for this dialog, a unique 4
character string.

description Properties

Property Type Description

Acrobat JavaScript Scripting Reference
App Methods

98 Acrobat JavaScript Scripting Reference

type String The type of this dialog element. It must be
one of the following:
● "button" - A push button.
● "check_box" - A check box.
● "radio" - A radio button.
● "list_box" - A list box.
● "heir_list_box" - A heirarchical list box.
● "static_text" - A static text box.
● "edit_text" - An editable text box.
● "popup" - A popup control.
● "ok" - An OK button.
● "ok_cancel" - An OK and Cancel Button.
● "ok_cancel_other" - An OK, Cancel and

Other button.
● "view" - A container for a set controls.
● "cluster" - A frame for a set of controls.
● "gap" - A place holder.

next_tab String An ItemID for the next dialog item in the
tab order.

N O T E : Tabbing does not stop at any dialog
item that is not the target of the
next_tab (or first_tab) property.
Tabbing should form a circular linked
list.

width Numeric Specifies the width of the element in pixels. If
no width is specified, the combined width of
the contents is used.

height Numeric Specifies the height of the element in pixels. If
no height is specified, the combined height
of the contents is used.

char_width Numeric Specifies the width of the element in
characters. If no width is specified, the
combined width of the contents is used.

char_height Numeric Specifies the height of the element in
characters. If no height is specified, the
combined height of the contents is used.

Dialog elements Properties

Property Type Description

Acrobat JavaScript Scripting Reference 99

Acrobat JavaScript Scripting Reference
App Methods

font String The font to use for this element. Must be one
of the following:
● "default" - Default Font
● "dialog" - Dialog Font
● "palette" - Palette (small) Font

bold Boolean Specify if the font is bold.

italic Boolean Specify if the font is italic.

alignment String Sets the alignment for this element. Must be
one of the following values:
● "align_left": Left Aligned
● "align_center": Center Aligned
● "align_right": Right Aligned
● "align_top": Top Aligned
● "align_fill": Align to fill the parents width,

may widen objects.
● "align_distribute": Distribute the contents

over the parents width.
● "align_row": Distribute the contents over

the parents width with a consistent
baseline.

● "align_offscreen": Align items one on top
of another.

align_children String Sets the alignment for all descendents. Must
be one of the following values:
● "align_left": Left Aligned
● "align_center": Center Aligned
● "align_right": Right Aligned
● "align_top": Top Aligned
● "align_fill": Align to fill the parents width,

may widen objects.
● "align_distribute": Distribute the contents

over the parents width.
● "align_row": Distribute the contents over

the parents width with a consistent
baseline.

● "align_offscreen": Align items one on top
of another.

Dialog elements Properties

Property Type Description

Acrobat JavaScript Scripting Reference
App Methods

100 Acrobat JavaScript Scripting Reference

Additional Attributes of some Dialog elements

Some of the element types have additional attributes, as listed below.

Example 1

The following dialog descriptor can be a document level or folder level JavaScript.

var dialog1 = {

elements Array An array of object literals which describe the
Dialog elements contained within this dialog
element.

Dialog elements Properties

element type Property Type Description

static_text multiline Boolean If true, this static text element is
multiline.

edit_text multiline Boolean If true, this static text element is
multiline.

readonly Boolean If true, this text element is
readonly.

N O T E : This property is ignored
when password is set to
true.

password Boolean If true, this text element is a
password field.

PopupEdit Boolean If true, this is a popup edit text
element.

SpinEdit Boolean If true, this is a spin edit text
element.

radio group_id String The group name to which this radio
button belongs.

ok, ok_cancel,
ok_cancel_other

ok_name String The name for the OK button

cancel_name String The name for the cancel button

other_name String The name for the other button

Dialog elements Properties

Property Type Description

Acrobat JavaScript Scripting Reference 101

Acrobat JavaScript Scripting Reference
App Methods

 initialize: function (dialog) {
 // create a static text containing the current date.

 var todayDate = dialog.store()["date"];
 todayDate = "Date: " + util.printd("mmmm dd, yyyy", new Date());
 dialog.load({ "date": todayDate });
 },
 commit:function (dialog) { // called when OK pressed
 var results = dialog.store();

 // now do something with the data collected, for example,
 console.println("Your name is " + results["fnam"]

+ " " + results["lnam"]);
 },
 description:
 {
 name: "Personal Data", // dialog title
 align_children: "align_left",
 width: 350,
 height: 200,
 elements:
 [
 {
 type: "cluster",
 name: "Your Name",
 align_children: "align_left",
 elements:
 [
 {
 type: "view",
 align_children: "align_row",
 elements:
 [
 {
 type: "static_text",
 name: "First Name: "
 },
 {
 item_id: "fnam",
 type: "edit_text",
 alignment: "align_fill",
 width: 300,
 height: 20
 }
]
 },
 {
 type: "view",
 align_children: "align_row",
 elements:
 [
 {

Acrobat JavaScript Scripting Reference
App Methods

102 Acrobat JavaScript Scripting Reference

 type: "static_text",
 name: "Last Name: "
 },
 {
 item_id: "lnam",
 type: "edit_text",
 alignment: "align_fill",
 width: 300,
 height: 20
 }
]
 },
 {
 type: "static_text",
 name: "Date: ",
 char_width: 25,
 item_id: "date"
 },
]
 },
 {
 alignment: "align_right",
 type: "ok_cancel",
 ok_name: "Ok",
 cancel_name: "Cancel"
 }
]
 }
};

Now, the following line can be executed from a mouse up action of a button, a menu
action, and so on.

app.execDialog(dialog1);

Example 2

The following example uses a check box and a radio button field. This code might be a
document level JavaScript.

var dialog2 =
{
 initialize: function(dialog) {
 // set a default value for radio button field
 dialog.load({"rd01": true });
 this.hasPet = false;
 // disable radio button field
 dialog.enable({
 "rd01" : this.hasPet,
 "rd02" : this.hasPet,
 "rd03" : this.hasPet
 });
 },

Acrobat JavaScript Scripting Reference 103

Acrobat JavaScript Scripting Reference
App Methods

 commit: function(dialog) {
 // when user presses "Ok", this handler will execute first
 console.println("commit");
 var results = dialog.store();
 // do something with the data, for example,
 var hasPet = (this.hasPet) ? "have" : "don't have";
 console.println("You " + hasPet + " a pet.");
 if (this.hasPet)
 console.println("You have " + this.getNumPets(results)

+ " pet(s).");
 },
 getNumPets: function (results) {
 for (var i=1; i<=3; i++) {
 if (results["rd0"+i]) {
 switch (i) {
 case 1:
 var nPets = "one";
 break;
 case 2:
 var nPets = "two";
 break;
 case 3:
 var nPets = "three or more";
 }
 }
 };
 return nPets;
 },
 ok: function(dialog) {
 // the handler for the Ok button will be handed after commit
 console.println("Ok!");
 },
 ckbx: function (dialog) {
 // process the checkbox, if user has pet, turn on radios
 this.hasPet = !this.hasPet;
 dialog.enable({
 "rd01" : this.hasPet,
 "rd02" : this.hasPet,
 "rd03" : this.hasPet
 });
 },
 cancel: function(dialog) { // handle handle the cancel button
 console.println("Cancel!");
 },
 other: function(dialog){ // handle the other button
 app.alert("Thanks for pressing me!");
 dialog.end("other"); // end the dialog, return "other"!
 },
 // The Dialog Description
 description:
 {

Acrobat JavaScript Scripting Reference
App Methods

104 Acrobat JavaScript Scripting Reference

 name: "More Personal Information",
 elements:
 [
 {
 type: "view",
 align_children: "align_left",
 elements:
 [
 {
 type: "static_text",
 name: "Personal Information",
 bold: true,
 font: "dialog",
 char_width: 30,
 height: 20
 },
 {
 type: "check_box",
 item_id: "ckbx",
 name: "Pet Owner"
 },
 {
 type: "view",
 align_children: "align_row",
 elements:
 [
 {
 type: "static_text",
 name: "Number of pets: "
 },
 {
 type: "radio",
 item_id: "rd01",
 group_id: "rado",
 name: "One"

 },
 {
 type: "radio",
 item_id: "rd02",
 group_id: "rado",
 name: "Two",
 },
 {
 type: "radio",
 item_id: "rd03",
 group_id: "rado",
 name: "Three or more",
 }
]
 }

Acrobat JavaScript Scripting Reference 105

Acrobat JavaScript Scripting Reference
App Methods

]
 },
 {
 type: "gap", //add a small vertical gap between
 height: 10 //..radio fields and buttons
 },
 {
 type: "ok_cancel_other",
 ok_name: "Ok",
 cancel_name: "Cancel",
 other_name: "Press Me"
 }
]
 }
};

Now, the following line can be executed from a mouse up action of a button, a menu
action, and so on.

var retn = app.execDialog(dialog2);

The value of retn will be "ok" if the ok button was pressed, "cancel" if the cancel button
was pressed, and "other" if the other button was pressed, the one labeled "Press Me".

Example 3

This example uses a list box.

var dialog3 = {
 // This dialog gets called when the dialog is created
 initialize: function(dialog) {
 this.loadDefaults(dialog);
 },
 // This dialog gets called when the OK button is hit.
 commit: function(dialog) {
 // See the Dialog Object for a description of how dialog.load
 // and dialog.store work.
 var elements = dialog.store()["subl"];
 // do something with the data.
 },
 // Callback for when the button "butn" is hit.
 butn: function(dialog) {
 var elements = dialog.store()["subl"]
 for(var i in elements) {
 if (elements[i] > 0) {
 app.alert("You chose \"" + i

+ "\", which has a value of " + elements[i]);
 }
 }
 },
 loadDefaults: function (dialog) {
 dialog.load({
 subl:

Acrobat JavaScript Scripting Reference
App Methods

106 Acrobat JavaScript Scripting Reference

 {
 "Acrobat Professional": +1,
 "Acrobat Standard": -2,
 "Adobe Reader": -3
 }
 })
 },
 // The Dialog Description
 description:
 {
 name: "Adobe Acrobat Products", // Title of dialog
 elements: // Child Element Array
 [
 {
 type: "view",
 align_children: "align_left",
 elements: // Child Element Array
 [
 {
 type: "cluster",
 name: "Select",
 elements: // Child Element Array
 [
 {
 type: "static_text",
 name: "Select Acrobat you use",
 font: "default"
 },
 {
 type: "list_box",
 item_id: "subl",
 width: 200,
 height: 60
 },
 {
 type: "button",
 item_id: "butn",
 name: "Press Me"
 }
]
 },
 {
 type: "ok_cancel"
 }
]
 }
]
 }
}

Acrobat JavaScript Scripting Reference 107

Acrobat JavaScript Scripting Reference
App Methods

We then execute

app.execDialog(dialog3);

In the above example, if the line type: "list_box" is replaced by type: "popup"
and the height specification is removed, the example above will run with a popup control
rather than a list box.

Example 4

In this example, the hier_list_box is illustrated. After the dialog is opened, a
hierarchial list is presented. After a selection is made, and the user clicks on the Select
buttons, the PDF jumps to destination chosen by the user. The doc object is passed to the
dialog by making it a property of the dialog.

var dialog4 = {
 initialize: function(dialog) {
 dialog.load({
 subl:
 {
 "Chapter 1":
 {
 "Section 1":
 {
 "SubSection 1": -1,
 "SubSection 2": -2,
 },
 "Section 2":
 {
 "SubSection 1": -3,
 "SubSection 2": -4,
 }
 },
 "Chapter 3": -5,
 "Chapter 4": -6
 }
 })
 },
 subl: function(dialog) {
 console.println("Selection Box Hit");
 },
 getHierChoice: function (e)
 {
 if (typeof e == "object") {
 for (var i in e) {
 if (typeof e[i] == "object") {
 var retn = this.getHierChoice(e[i]);
 if (retn) {
 retn.label = i + ", " + retn.label;
 return retn;
 }

 // if e[i] > 0, then we’ve found the selected item
 } else if (e[i] > 0) return { label:i, value: e[i] };

Acrobat JavaScript Scripting Reference
App Methods

108 Acrobat JavaScript Scripting Reference

 }
 } else {
 if (e[i] > 0) return e[i];
 }
 },
 butn: function (dialog)
 {
 var element = dialog.store()["subl"]
 var retn = this.getHierChoice(element);
 if (retn) {

// write to the console the full name of the item selected
 console.println("The selection you've chosen is \""

+ retn.label + "\", its value is " + retn.value);
 dialog.end("ok");

 // this.doc is the doc object of this document
 this.doc.gotoNamedDest("dest"+retn.value);
 }
 else app.alert("Please make a selection, or cancel");
 },
 cncl: function (dialog) { dialog.end("cancel") },
 // Dialog Description
 description:
 {
 name: "My Novel",
 elements:
 [
 {
 type: "view",
 align_children: "align_left",
 elements:
 [
 {
 type: "cluster",
 name: "Book Headings",
 elements:
 [
 {
 type: "static_text",
 name: "Make a selection",
 },
 {
 type: "hier_list_box",
 item_id: "subl",
 char_width: 20,
 height: 200
 }
]
 },
 {
 type: "view",
 align_children: "align_row",

Acrobat JavaScript Scripting Reference 109

Acrobat JavaScript Scripting Reference
App Methods

 elements:
 [
 {
 type: "button",
 item_id: "cncl",
 name: "Cancel"
 },
 {
 item_id: "butn",
 type: "button",
 name: "Select"
 }
]
 }
]
 }
]
 }
};

This function attaches the doc object to the dialog, then passes the dialog to the
app.execDialog() method. The dialog4 object and this function can be at the
document level.

function dotheDialog(dialog,doc)
{
 dialog.doc = doc;
 var retn = app.execDialog(dialog)
}

Finally, we can execute the script below from a mouse up action, for example.

dotheDialog(dialog4, this);

Example 5

See Example 2 following app.trustPropagatorFunction(). This example
illustrates how to executed privileged code from a non-privileged context.

execMenuItem

Executes the specified menu item.

See also addMenuItem, addSubMenu, hideMenuItem. Use listMenuItems to list the
names of all menu items to the console.

Beginning with version 5.0, app.execMenuItem("SaveAs") can be called, subject to
the restrictions described below. This saves the current file to the user’s hard drive; a
“SaveAs” dialog opens to ask the user to select a folder and file name. Executing the
“SaveAs” menu item saves the current file as a linearized file, provided “Save As creates Fast

4.0

Acrobat JavaScript Scripting Reference
App Methods

110 Acrobat JavaScript Scripting Reference

View Adobe PDF files” is checked in the General catagory of the Edit > Preferences > General
dialog.

N O T E : (Security�, version 7.0) In previous versions of Acrobat,
app.execMenuItem("SaveAs");

could only be executed during batch, console or menu events. Version 7.0 removes
this restriction, app.execMenuItem("SaveAs") can be executed during a
mouse up event, for example.

N O T E S : If the user preferences are set to “Save As creates Fast View Adobe PDF files”, do not
expect a form object to survive a "SaveAs"; Field Objects are no longer valid, and an
exception may be thrown when trying to access a field object immediately after a
"SaveAs". See examples that follow.

For security reasons, scripts are not allowed to execute the Quit menu item.
Beginning with Acrobat 6.0, scripts are not allowed to execute the Paste menu item.

Parameters

Returns

Nothing

Example 1

This example executes the File > Open menu item. It will display a dialog to the user asking
for the file to be opened.

app.execMenuItem("Open");

Example 2 (Acrobat 5.0)
var f = this.getField("myField");
// Assume preferences set to save linearized
app.execMenuItem("SaveAs");
// exception thrown, field not updated
f.value = 3;

Example 3 (Acrobat 5.0)
var f = this.getField("myField");
// Assume preferences set to save linearized
app.execMenuItem("SaveAs");
// get the field again after the linear save
var f = getField("myField");
// field updated to a value of 3

cMenuItem The menu item to execute.
Menu item names can be discovered with listMenuItems.

oDoc (optional, version 7.0) oDoc is the document object of a document
that is not hidden (see doc.hidden). If this parameter is present,
execMenuItem executes the menu item in the document’s context.

Acrobat JavaScript Scripting Reference 111

Acrobat JavaScript Scripting Reference
App Methods

f.value = 3;

getNthPlugInName

Obtains the name of the nth plug-in that has been loaded by the viewer. See also
numPlugIns.

See plugIns which supersedes this property in later versions.

Parameters

Returns

cName, the plug-in name that corresponds to nIndex.

getPath

This method returns the path to folders created during installation. A distinction is made
between application folders and user folders. The method will throw a GeneralError
exception (see Error Objects) if the path does not exist.

N O T E : (Security�, version 7.0) This method can only be executed during batch or console
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Parameters

�

nIndex The nth plug-in loaded by the viewer.

6.0 �

cCategory (optional) Use this parameter to indicate the category of folder
sought. The two values of cCategory are
app
user

The default is app.

cFolder (optional) A platform independent string that indicates the folder. The
values of cFolder are
root, eBooks, preferences, sequences, documents
javascript, stamps, dictionaries, plugIns, spPlugIns
help, temp, messages, resource, update

The default is root.

Acrobat JavaScript Scripting Reference
App Methods

112 Acrobat JavaScript Scripting Reference

Returns

The path to the folder determined by the parameters. An exception is thrown if the folder
does not exist.

Example 1

Find the path to the user’s Sequences folder

try {
var userBatch = app.getPath("user","sequences");

} catch(e) {
var userBatch = "User has not defined any custom batch sequences";

}
console.println(userBatch);

Example 2

Create and save a document to My Documents on a windows platform.

var myDoc = app.newDoc();
var myPath = app.getPath("user", "documents") + "/myDoc.pdf"
myDoc.saveAs(myPath);
myDoc.closeDoc();

goBack

Go to the previous view on the view stack. This is equivalent to pressing the go back button
on the Acrobat tool bar.

Parameters

None

Returns

Nothing

Example

Create a go back button. This code could be part of a batch sequence, for example, to place
navigational buttons on the selected PDF documents.

var aRect = this.getPageBox();
var width = aRect[2] - aRect[0];
// rectangle is 12 points high and 18 points widh, centered at bottom
rect = [width/2-8, 10, width/2+8, 22];
f = this.addField("goBack", "button", 0, rect);
f.textFont="Wingdings";
f.textSize=0;
f.buttonSetCaption("\u00E7"); // left pointing arrow
f.setAction("MouseUp", "app.goBack()"); // add an action

3.01

Acrobat JavaScript Scripting Reference 113

Acrobat JavaScript Scripting Reference
App Methods

goForward

Go to the next view on the view stack. This is equivalent to pressing the go forward button
on the Acrobat tool bar.

Parameters

None

Returns

Nothing

Example

See the example following app.goBack.

hideMenuItem

Removes a specified menu item.

See also addMenuItem, addSubMenu, execMenuItem, and listMenuItems.

N O T E : (Security�): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

Parameters

Returns

Nothing

hideToolbarButton

Removes a specified toolbar button.

N O T E : (Security�): This method can only be executed during application initialization or
console events. See the Event Object for a discussion of Acrobat JavaScript events.

3.01

4.0 �

cName The menu item name to remove.
Menu item names can be discovered with listMenuItems.

4.0 �

Acrobat JavaScript Scripting Reference
App Methods

114 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

A file named, myConfig.js, containing the following script is placed in one of the Folder
Level JavaScripts folders.

app.hideToolbarButton("Hand");

When the Acrobat viewer is started, the "Hand" icon does not appear.

launchURL

The launchURL method launches in a browser window the URL passed to it by the cURL
parameter.

Parameters

Returns

The value undefined is returned on success. An exception is thrown on failure.

Example 1
app.launchURL("http://www.adobe.com/", true);

Example 2

Add a online help item to the menu system. This code should be placed in a folder level
JavaScript file, or executed from the JavaScript Debugger console.

app.addMenuItem({
cName: "myHelp", cUser: "Online myHelp",
cParent: "Help",
cExec: "app.launchURL('www.myhelp.com/myhelp.html');",
nPos: 0

});

cName The name of the toolbar button to remove.
Toolbar item names can be discovered with listToolbarButtons.

7.0

cURL cURL is a string that specifies the URL to launch.

bNewFrame (optional) If true, this method launches the URL in a new window of the
browser application. The default is false.

Acrobat JavaScript Scripting Reference 115

Acrobat JavaScript Scripting Reference
App Methods

Related methods are doc.getURL() and app.openDoc()

listMenuItems

Prior to Acrobat 6.0, this method returned a list of menu item names to the console. This
method has changed significantly.

Beginning with version 6.0, returns an array of treeItem objects, which describes a
menu hierarchy.

See also addMenuItem, addSubMenu, execMenuItem, and hideMenuItem.

Parameters

None

Returns

Array of TreeItem Generic Objects.

TreeItem Generic Object

This generic JS Object represents a menu or toolbar item hierarchy. An array of these
objects is returned by app.listMenuItems and app.listToolbarButtons
(starting in Acrobat 6.0). It contains the following properties:

Example 1

List all menu item names to the console.

var menuItems = app.listMenuItems()
for(var i in menuItems)

console.println(menuItems[i] + "\n")

Example 2

List all menu items to console, fancy format.

function FancyMenuList(m, nLevel)
{

var s = "";
for (var i = 0; i < nLevel; i++) s += " ";
console.println(s + "+-" + m.cName);
if (m.oChildren != null)

for (var i = 0; i < m.oChildren.length; i++)
FancyMenuList(m.oChildren[i], nLevel + 1);

}

5.0

cName The name of a menu item or toolbar button.

oChildren (optional) An array of treeItem objects containing the submenus
or flyout buttons.

Acrobat JavaScript Scripting Reference
App Methods

116 Acrobat JavaScript Scripting Reference

var m = app.listMenuItems();
for (var i=0; i < m.length; i++) FancyMenuList(m[i], 0);

listToolbarButtons

Prior to Acrobat 6.0, this method returned a list of toolbar button names to the console. This
method has changed significantly.

Beginning with version 6.0, returns an array of treeItem objects which describes a
toolbar hierarchy (with flyout toolbars).

Parameters

None

Returns

Array of TreeItem Generic Objects.

Example

List all toolbar names to the console.

var toolbarItems = app.listToolbarButtons()
for(var i in toolbarItems)

console.println(toolbarItems[i] + "\n")

See also the hideToolbarButton.

mailGetAddrs

Pops up an address book dialog to let one choose e-mail recipients. The dialog will be
optionally pre-populated with the semi-colon separated lists of addressees in the cTo,
cCc, and cBcc strings. The bCc and bBcc booleans control whether the dialog should
allow the user to choose CC and BCC recipients.

See also app.mailMsg, doc.mailDoc, doc.mailForm, fdf.mail and
report.mail.

N O T E S : The mailGetAddrs is a windows-only feature.

(Security�, version 7.0) This method can only be executed during batch or console
events. See also Privileged versus Non-privileged Context. The Event Object contains
a discussion of Acrobat JavaScript events.

Parameters

5.0

6.0 � �

cTo (optional) A semicolon separated list of “To” addressees to use.

Acrobat JavaScript Scripting Reference 117

Acrobat JavaScript Scripting Reference
App Methods

Returns

On failure (the user cancelled), returns undefined. On success, returns an array of three
strings for To, CC, BCC.

Example
var attempts = 2;
while (attempts > 0)
{

var recipients = app.mailGetAddrs
({

cCaption: "Select Recipients, Please",
bBcc: false

})
if (typeof recipients == "undefined") {

if (--attempts == 1)
app.alert("You did not choose any recipients,"

+ " try again");
} else break;

}
if (attempts == 0)

app.alert("Cancelling the mail message");
else {

JavaScript statements to send mail
}

mailMsg

Sends out an e-mail message with or without user interaction.

See also doc.mailDoc, doc.mailForm, fdf.mail and report.mail.

N O T E : On Windows: The client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

cCc (optional) A semicolon separated list of CC addressees to use.

cBcc (optional) A semicolon separated list of BCC addressees to use.

cCaption (optional) A string to appear on the caption bar of the address dialog.

bCc (optional) A boolean to indicate whether the user can choose CC
recipients.

bBcc (optional) A boolean to indicate whether the user can choose BCC
recipients. This boolean should only be used when bCc is true;
otherwise, the method fails (and returns undefined).

4.0 �

Acrobat JavaScript Scripting Reference
App Methods

118 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

This will pop up the compose new message window

app.mailMsg(true);

This will send out the mail to fun1@fun.com and fun2@fun.com.

app.mailMsg(false, "fun1@fun.com; fun2@fun.com", "", "",
"This is the subject", "This is the body of the mail.");

It is possible to compose a message containing form data in it.

var cMyMsg = "Below are the current budget figures:\n\n";
cMyMsg += "Date Compiled: " + this.getField("date").value + "\n";
cMyMsg += "Current Estimate: " + this.getField("budget").value + "\n";
app.mailMsg({

bUI: true,
cTo: "myBoss@greatCo.com",
cSubject: "The latest budget figures",
cMsg: cMyMsg

});

newDoc

Creates a new document in the Acrobat Viewer and returns the doc object. The optional
parameters specify the media box dimensions of the document in points.

bUI Indicates whether user interaction is required. If true , the remaining
parameters are used to seed the compose-new-message window that
is displayed to the user. If false, the cTo parameter is required and
others are optional.

cTo A semicolon-separated list of addressees.

cCc (optional) A semicolon-separated list of CC addressees.

cBcc (optional) A semicolon-separated list of BCC addressees.

cSubject (optional) Subject line text. The length limit is 64k bytes.

cMsg (optional) Mail message text. The length limit is 64k bytes.

5.0 � �

Acrobat JavaScript Scripting Reference 119

Acrobat JavaScript Scripting Reference
App Methods

N O T E S : (Security�): This method can only be executed during batch, console or menu
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Returns the Doc Object of the newly created document

Example

Add a "New" item to the Acrobat File menu. Within "New", there are three menu items:
"Letter", "A4" and "Custom". This script should go in a Folder Level JavaScripts .js file.

app.addSubMenu({ cName: "New", cParent: "File", nPos: 0 })
app.addMenuItem({ cName: "Letter", cParent: "New", cExec:
 "app.newDoc();"});
app.addMenuItem({ cName: "A4", cParent: "New", cExec:
 "app.newDoc(420,595)"});
app.addMenuItem({ cName: "Custom...", cParent: "New", cExec:
 "var nWidth = app.response({ cQuestion:'Enter Width in Points',\
 cTitle: 'Custom Page Size'});"
 +"if (nWidth == null) nWidth = 612;"
 +"var nHeight = app.response({ cQuestion:'Enter Height in Points',\
 cTitle: 'Custom Page Size'});"
 +"if (nHeight == null) nHeight = 792;"
 +"app.newDoc({ nWidth: nWidth, nHeight: nHeight })"});

The script above will work for versions of Acrobat prior to 7.0, for version 7.0, it will work
correctly if the user has checked Enable menu items JavaScript execution privileges
item under the menu Edit > Preferences > General > JavaScript.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no longer
privileged (unless the preferences item Enable menu items JavaScript execution
privileges is checked, as noted above), so app.newDoc() needs to be executed through
a trustedFunction. See the technical note JavaScript Execution through the Menu.

The same example can be worked as follows:

trustedNewDoc = app.trustedFunction(function (nWidth, nHeight)
{
 app.beginPriv();
 switch(arguments.length) {
 case 2:

nWidth (optional) The width (in points) for the new document. The default
value is 612.

nHeight (optional) The height (in points) for the new document.The default
value is 792.

Acrobat JavaScript Scripting Reference
App Methods

120 Acrobat JavaScript Scripting Reference

 app.newDoc(nWidth, nHeight);
 break;
 case 1:
 app.newDoc(nWidth);
 break;
 default:
 app.newDoc();
 }
 app.endPriv();
})
app.addSubMenu({ cName: "New", cParent: "File", nPos: 0 })
app.addMenuItem({ cName: "Letter", cParent: "New", cExec:

"trustedNewDoc();"});
app.addMenuItem({ cName: "A4", cParent: "New", cExec:

"trustedNewDoc(420,595)"});
app.addMenuItem({ cName: "Custom...", cParent: "New", cExec:

"var nWidth = app.response({ cQuestion:'Enter Width in Points',\
cTitle: 'Custom Page Size'});"

+"if (nWidth == null) nWidth = 612;"
+"var nHeight = app.response({ cQuestion:'Enter Height in Points',\

cTitle: 'Custom Page Size'});"
+"if (nHeight == null) nHeight = 792;"
+"trustedNewDoc(nWidth, nHeight) "});

The code is a little incomplete. In the case of the "Custom" menu item, additional lines can
be inserted to prevent the user from entering the empty string, or a value too small or too
large. See the “General Implementation Limits" in the PDF Reference for the current
limitations.

Example

Create a blank document and acquire the doc object, then insert a watermark.

var myNewDoc = app.newDoc();
myNewDoc.addWatermarkFromText("Confidential",0,font.Helv,24,color.red);

This example uses the doc.addWatermarkFromText method.

newFDF

Create a new FDF Object that contains no data.

N O T E : (Security �) : This method is available only during batch, console, application
initialization and menu events. Not available in the Adobe Reader.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

None

6.0 � �

Acrobat JavaScript Scripting Reference 121

Acrobat JavaScript Scripting Reference
App Methods

Returns

A new FDF Object.

Example

Create a FDF with an embedded PDF file.

var fdf = app.newFDF();
fdf.addEmbeddedFile("/c/myPDFs/myFile.pdf", 1);
fdf.save("/c/myFDFs/myFile.fdf");

This example continues following the description of app.openFDF.

openDoc

Opens a specified PDF document and returns the doc object. The returned doc object can
be used by the script to call methods, or to get or set properties in the newly opened
document.

N O T E : When a batch sequence is running, a modal dialog is open, which prevents user
interference while processing; consequently, this method cannot be executed
through a batch sequence.

N O T E : An exception is thrown and an invalid Doc Object is returned when an html
document is opened using this method. Enclose app.openDoc is a try/catch
construct to catch the exception. See Example 2 below.

Parameters

5.0

cPath A device-independent path to the document to be opened. The path
can relative to oDoc, if passed. The target document must be
accessible in the default file system.

N O T E : When cFS is set to "CHTTP", the cPath string should be
escaped, perhaps using the core JavaScript global function
encodeURI(). See Example 5 below.

oDoc (optional) A Doc Object to use as a base to resolve a relative cPath.
Must be accessible in the default file system.

cFS (optional, version 7.0) A string that specifies the source file system
name. Two values are supported: "" (the empty string) representing
the default file system and "CHTTP". The default is the default file
system. This parameter is only relevant if the web server supports
WebDAV.

bHidden (optional, version 7.0) A boolean, which if true, opens the PDF file
with its window hidden. The default is false.

Acrobat JavaScript Scripting Reference
App Methods

122 Acrobat JavaScript Scripting Reference

Returns

The Doc Object, or null

N O T E : For version 5.0, this method returns a Doc Object. In version 5.0.5, the method
returns the Doc Object, or null if the target document does not have the
doc.disclosed property set to true. The “Acrobat 5.0.5 Accessibility and Forms
Patch” changed this behavior—this is the behavior of openDoc in Acrobat 6.0 or
later—as follows: During a batch, console or menu event, openDoc ignores the
disclosed property and returns the Doc Object of the file specified by cPath;
during any other event, openDoc returns the Doc Object, if disclosed is
true, and null, otherwise.

Example 1

This example opens another document, inserts a prompting message into a text field, sets
the focus in the field, then closes the current document.

var otherDoc = app.openDoc("/c/temp/myDoc.pdf");
otherDoc.getField("name").value="Enter your name here: "
otherDoc.getField("name").setFocus();
this.closeDoc();

Same example as above, but a relative path is given.

var otherDoc = app.openDoc("myDoc.pdf", this);
otherDoc.getField("name").value="Enter your name here: "
otherDoc.getField("name").setFocus();
this.closeDoc();

This example uses doc.closeDoc and field.setFocus.

Example 2

Open an html document on hard drive and convert to PDF.

try {
app.openDoc("/c/myWeb/myHomePage.html");

} catch (e) {};

Example 3 (Acrobat 7.0)

Open a hidden PDF document, extract information from it, and close it.

oDoc = app.openDoc({
 cPath:"/C/myDocs/myInfo.pdf",
 bHidden: true

bUseConv (optional, version 7.0) This parameter is used when cPath references
a non-PDF file. The bUseConv is a boolean, which if true, the
method will try to convert the non-PDF file to a PDF document. The
default for this parameter is false.

N O T E : (Security �, version 7.0) bUseConv can only be set to true
during console and batch events. See also Privileged versus
Non-privileged Context.

Acrobat JavaScript Scripting Reference 123

Acrobat JavaScript Scripting Reference
App Methods

});
var v = oDoc.getField("myTextField").value;
this.getField("yourTextField").value = v;
oDoc.closeDoc();

Example 4 (Acrobat 7.0)

Open a non-PDF file by converting it to a PDF document. The following script can be
executed successfully from the console.

app.openDoc({
cPath: "/c/temp/myPic.jpg",
bUseConv: true

})

Example 5 (Acrobat 7.0)

Open a file from a WebDAV server. The app.openDoc() method requires the path to the
file to be escaped.

var myURL = encodeURI("http://www.myCom.com/My Folder/Com Doc.pdf");
app.openDoc({cPath: myURL, cFS: "CHTTP" });

See also app.browseForDoc().

openFDF

This method creates a new FDF Object by opening the specified file. The FDF object has
methods and properties that can be used on the data that this file contains.

N O T E S : (Security �): This method is available only during batch, console, application
initialization and menu events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Not available in the Adobe Reader.

Parameters

Returns

The FDF Object for the FDF file that is opened.

Example

Create a FDF with an embedded PDF file.

var fdf = app.newFDF();
fdf.addEmbeddedFile("/c/myPDFs/myFile.pdf", 1);

6.0 � �

cDIPath The device-independent path to the file to be opened.

Acrobat JavaScript Scripting Reference
App Methods

124 Acrobat JavaScript Scripting Reference

fdf.save("/c/myFDFs/myFile.fdf"); // save and close this FDF

// now open the fdf and embed another PDF doc.
var fdf = app.openFDF("/c/myFDFs/myFile.fdf");
fdf.addEmbeddedFile("/c/myPDFs/myOtherFile.pdf", 1);
fdf.save("/c/myFDFs/myFile.fdf"); // save and close this FDF

See fdf.signatureSign for another example of usage.

popUpMenu

Creates a pop-up menu at the current mouse position, containing the specified items.

See also the preferred method popUpMenuEx.

Parameters

Returns

Returns the name of the menu item that was selected, or null if no item was selected.

Example
var cChoice = app.popUpMenu("Introduction", "-", "Chapter 1",

["Chapter 2", "Chapter 2 Start", "Chapter 2 Middle",
["Chapter 2 End", "The End"]]);

app.alert("You chose the \"" + cChoice + "\" menu item");

popUpMenuEx

Creates a pop-up menu at the current mouse position, containing the specified items.

Each of the one or more parameters is a MenuItem Generic Object that describes a menu
item to be included in the pop up menu.

The popUpMenuEx method is preferred over the use of popUpMenu.

5.0

cItem (optional) If the argument is a string, then it is listed in the menu as a
menu item. The menu item name "-" is reserved to draw a separator
line in the menu.

Array (optional) If the argument is an array then it appears as a submenu
where the first element in the array is the parent menu item. This array
can contain further submenus if desired.

6.0

Acrobat JavaScript Scripting Reference 125

Acrobat JavaScript Scripting Reference
App Methods

Parameters

Returns

The cReturn value of the menu item that was selected, or its cName, if cReturn was not
specified for that item. The method returns null if no selection was made.

MenuItem Generic Object

This generic JS object represents a menu item passed to app.popUpMenuEx. It has the
following properties:

Example 1

The following example illustrates all the features of the popUpMenuEx() method.

var cChoice = app.popUpMenuEx
(
 {cName: "Item 1", bMarked:true, bEnabled:false},
 {cName: "-"},
 {cName: "Item 2", oSubMenu:

[{cName: "Item 2, Submenu 1"},
{
 cName: "Item 2, Submenu 2",
 oSubMenu: {cName:"Item 2, Submenu 2, Subsubmenu 1",

 cReturn: "0"}
}

]
},

 {cName: "Item 3"},
 {cName: "Item 4", bMarked:true, cReturn: "1"}
)
app.alert("You chose the \"" + cChoice + "\" menu item");

One or more MenuItem Generic Objects.

cName The name of the menu item. This is the string to appear on the menu
item to be created. The value of "-" is reserved to draw a separator line
in the menu.

bMarked (optional) Whether the item is to be marked with a check. The default
is false (not marked).

bEnabled (optional) Whether the item is to appear enabled or grayed out. The
default is true (enabled).

cReturn (optional) A string to be returned when the menu item is selected.
The default is the value of cName.

oSubMenu (optional) A MenuItem Generic Object representing a submenu item,
or an array of submenu items, each represented by a MenuItem
Generic Object.

Acrobat JavaScript Scripting Reference
App Methods

126 Acrobat JavaScript Scripting Reference

Example 2

The app.popupMenuEx actually takes a list of MenuItem Generic Objects, as a
consequence of this, its parameters cannot be passed to it as a JavaScript variable. The
following example gives a workabout: Create an array of menu items and use the Function
object method apply from core JavaScript. This methods allows arguments to be passed
as an array.

// Declare pop-up menu properties as an array.
var aParams = [

{cName: "Adobe Web Page", cReturn: "www.adobe.com"},
{cName: "-"},
{cName: "The Adobe Acrobat family",
 cReturn: "http://www.adobe.com/products/acrobat/main.html"},
{cName: "Adobe Reader",
 cReturn: "http://www.adobe.com/products/acrobat/readstep2.html"}

];
// apply the function app.popUpMenuEx to the app object, with an array
// of parameters aParams
var cChoice = app.popUpMenuEx.apply(app, aParams);
if (cChoice != null) app.launchURL(cChoice);

removeToolButton

Removes a previously added button from the toolbar.

N O T E S : (Version 7.0) To remove a toolbutton added by the addToolButton method,
removeToolButton must be executed within the same context as when
addToolButton was executed.

If no document was open in Acrobat when the button was added, then there must
be no document open in Acrobat when the button is removed. See Example 2 below.

Similarly, if a certain document was the active document when a tool button was
added, then that same document must be active for the button to be removed using
removeToolButton.

In the case of a document that is active when the tool button is added, the button is
automatically removed when this document is closed. See also the notes following
the description of addToolButton.

Parameters

Returns

Nothing

6.0

cName The language independent identifier provided when addToolButton was
called.

Acrobat JavaScript Scripting Reference 127

Acrobat JavaScript Scripting Reference
App Methods

Exceptions

None

Example 1

See the example following addToolButton.

Example 2

This example illustrates the removal of a toolbutton with the same context as
addToolButton. Initially, there is no document open in the Acrobat. Execute the
following code from the console

app.addToolButton({cName: "button1", cExec:"app.alert('pressed');",
cTooltext:"Button1"});

Now open a PDF document in Acrobat, and execute the next line from the console

app.removeToolButton({cName:"button1"});

An exception is thrown, the removal of the button fails. Now close the PDF document and
executed the removeToolButton script again, the button is removed.

response

Displays a dialog box containing a question and an entry field for the user to reply to the
question.

Parameters

Returns

A string containing the user’s response. If the user presses the cancel button on the dialog,
the response is the null object.

3.01

cQuestion The question to be posed to the user.

cTitle (optional) The title to appear in the dialog’s window title.

cDefault (optional) A default value for the answer to the question. If not
specified, no default value is presented.

bPassword (optional) If true, indicates that the user’s response should show as
asterisks (*) or bullets (•) to mask the response, which might be
sensitive information. The default is false.

cLabel (optional, version 6.0) A short string to appear in front of and on the
same line as the edit text field.

Acrobat JavaScript Scripting Reference
App Methods

128 Acrobat JavaScript Scripting Reference

Example

This example asks for a response from the user, and reports back the response.

var cResponse = app.response({
cQuestion: "How are you today?",

cTitle: "Your Health Status",
cDefault: "Fine",
cLabel: "Response:"

});
if (cResponse == null)

app.alert("Thanks for trying anyway.");
else

app.alert("You responded, \""+cResponse+"\", to the health "
+ "question.",3);

setInterval

Registers a JavaScript expression to be evaluated, and executes the expression each time a
specified period elapses. Pass the returned interval object to clearInterval to
terminate the periodic evaluation. The return value must be held in a JavaScript variable,
otherwise the interval object will be garbage collected and the clock will stop.

See also clearInterval, setTimeOut and clearTimeOut.

N O T E : Opening and closing the document JavaScripts dialog causes the JavaScript
interpreter to re-read the document JavaScripts, and consequently, to re-initialize
any document level variables. Resetting document level variables in this way after
Javascript experessions have been registered to be evaluated by setInterval
or setTimeOut may cause JavaScript errors if those scripts use document level
variables.

Parameters

Returns

An interval object

Example

For example, to create a simple color animation on a field called "Color" that changes every
second:

function DoIt() {
var f = this.getField("Color");
var nColor = (timeout.count++ % 10 / 10);

5.0

cExpr The JavaScript expression to evaluate.

nMilliseconds The evaluation time period in milleseconds.

Acrobat JavaScript Scripting Reference 129

Acrobat JavaScript Scripting Reference
App Methods

// Various shades of red.
var aColor = new Array("RGB", nColor, 0, 0);
f.fillColor = aColor;

}
// save return value as a variable
timeout = app.setInterval("DoIt()", 1000);
// Add a property to our timeout object so that DoIt() can keep
// a count going.
timeout.count = 0;

See setTimeOut for an additional example.

setTimeOut

Registers a JavaScript expression to be evaluated, and executes the expression after a
specified period elapses. The expression is executed only once. Pass the returned timeout
object to clearTimeOut to cancel the timeout event. The return value must be held in a
JavaScript variable, otherwise the timeout object will be garbage collected and the clock
will stop.

See also clearTimeOut, setInterval and clearInterval.

N O T E : Opening and closing the document JavaScripts dialog causes the JavaScript
interpreter to re-read the document JavaScripts, and consequently, to re-initialize
any document level variables. Resetting document level variables in this way after
Javascript experessions have been registered to be evaluated by setInterval
or setTimeOut may cause JavaScript errors if those scripts use document level
variables.

Parameters

Returns

A timeout object

Example

This example creates a simple running marquee. Assume there is a text field named
"marquee". The default value of this field is "Adobe Acrobat version 7.0 will soon be here!".

// Document level JavaScript function
function runMarquee() {

var f = this.getField("marquee");
var cStr = f.value;
// get field value

5.0

cExpr The JavaScript expression to evaluate.

nMilliseconds The evaluation time period in milleseconds.

Acrobat JavaScript Scripting Reference
App Methods

130 Acrobat JavaScript Scripting Reference

var aStr = cStr.split(""); // convert to an array
aStr.push(aStr.shift()); // move first char to last
cStr = aStr.join(""); // back to string again
f.value = cStr; // put new value in field

}

// Insert a mouse up action into a "Go" button
run = app.setInterval("runMarquee()", 100);
// stop after a minute
stoprun=app.setTimeOut("app.clearInterval(run)",6000);

// Insert a mouse up action into a "Stop" button
try {

app.clearInterval(run);
app.clearTimeOut(stoprun);

} catch (e){}

Here, we protect the "Stop" button code with a try/catch. If the user presses the "Stop"
button without having first pressed the "Go", run and stoprun will be undefined, and the
"Stop" code will throw an exception. When the exception is thrown, the catch code is
executed. In the above example, code does nothing if the user presses "Stop" first.

trustedFunction

This method marks a function as “trusted”. Trusted functions are functions that are capable
of explicitly increasing the current privilege level for their stack frame. Typically, the stack
frame (the body of the function) contains security restricted methods that require a
privileged context in which to run. By increasing the privilege level, these restricted
methods can then be executed in non-privileged contexts.

For background information, read the paragraphs Privileged versus Non-privileged Context
and JavaScript Execution through the Menu on page 680.

Within the body of the function definition, an app.beginPriv/app.endPriv pair
needs to enclose any code that normally executes in a privilege context, as the examples
below illustrate.

Related methods are app.trustPropagatorFunction, app.beginPriv, and
app.endPriv.

(Security �): This method is available only during batch, console, and application
initialization.

7.0 �

Acrobat JavaScript Scripting Reference 131

Acrobat JavaScript Scripting Reference
App Methods

Parameters

Returns

On success, returns the same function object that was passed in. After successful execution,
the function object will be trusted. On error, throws NotAllowedError.

Method Syntax

This method can be called in two ways.

myTrustedFunction = app.trustedFunction(
function()
{

<function body>
}

);

or

function myOtherTrustedFunction()
{

<function body>
};
app.trustedFunction(myOtherTrustedFunction);

In addition to the examples that follow, be sure to review the examples following the
app.trustPropagatorFunction() method. Each of the examples need to be read
carefully, they contain many comments that clarify the notion of trusted function and
highlight some of the nuances of the topic.

Example 1

The app.newDoc()is a typical example of a security restricted method that needs a
privileged context in which to run. Place the following script in a .js in the User (or App)
JavaScript folder.

trustedNewDoc = app.trustedFunction(function (nWidth, nHeight)
{

// additional code may appear above
app.beginPriv(); // explicitly raise privilege
app.newDoc(nWidth, nHeight);
app.endPriv();
// additional code may appear below.

})

Now, after restarting Acrobat, execute the function trustedNewDoc() from anywhere,
for example, a mouse up action from a push button. For example, the following is a script
for a mouse up action of a button,

trustedNewDoc(200, 200);

oFunc A function object that specifies the function to mark as trusted.

Acrobat JavaScript Scripting Reference
App Methods

132 Acrobat JavaScript Scripting Reference

Clicking on the button will create a new document 200 points by 200 points. Security
restrictions doe not allow the execution of app.newDoc(200,200) from a mouse up
event, but through this trusted function, the creation of a new document is permitted.

This is not a very sophisticated example, this function requires two positive integers as
arguments, the app.newDoc() method has two optional arguments. The above example
can be modified so that it too has two optional arguments.

The trustedNewDoc() function can also be executed as a menu item.

app.addMenuItem({
cName: "myTrustedNewDoc",
cUser: "New Doc", cParent: "Tools",
cExec: "trustedNewDoc(200,200)", nPos: 0

});

Again, the trustedNewDoc() can be enhanced by having the user input the desired
dimensions for the new page, either through a series of app.response() dialogs, or a
full dialog, created by app.execDialog().

N O T E : If app.newDoc() is not enclosed in the app.beginPriv/app.endPriv pair,
executing trustedNewDoc() from a non-privileged context will fail, an exception
will be thrown. You need to explicitly raise the privilege level in the way illustrated.

Example 2

The app.trustedFunction() method can be used to execute any code that needs a
privileged context in which to execute. Consider, activeDocs, a property (not a
method) of the App Object. This property behaves differently in a variety of settings: if
executed from a non-privileged context, it returns an array of active documents that have
their disclosed property set to true; if executed during a console or batch event, it
returns an array of all active documents. To overcome this limitation, we can define a
trusted version of activeDocs in a .js file in the User (or App) JavaScript folder:

trustedActiveDocs = app.trustedFunction (
function()

 {
app.beginPriv(); // explicitly raise privilege

 var d = app.activeDocs;
 app.endPriv();
 return d;
 }
)

Now, from a mouse up action of a form button, for example, execute the following code:

var d = trustedActiveDocs();
console.println("There are d = " + d.length

+ " files open in the viewer.")
for (var i=0; i< d.length; i++)
 console.println((i+1) + ". " + d[i].documentFileName)

The console will report back the number and filename of all documents—disclosed or
not—open in the viewer.

Acrobat JavaScript Scripting Reference 133

Acrobat JavaScript Scripting Reference
App Methods

Example 3

According to the description of a trusted function, a trusted function is one that is capable
of explicitly increasing the current privilege level for its stack frame.” This example illustrates
what is meant by “its stack frame”.

In an attempt to make a trusted function more modular, the following code is used:

function mySaveAs(doc, path)
{

doc.saveAs(doc, path);
}
myFunc = app.trustedFunction(function (doc, path)
{

// privileged and/or non-privileged code here
app.beginPriv();
mySaveAs(doc, path);
app.endPriv();
// privileged and/or non-privileged code here

}

When myFunc()is executed in a non-privileged context, it will throw an exception. This is
because when the privileged code, doc.saveAs(doc, path) is executed it is not
within the stack frame (the function body) of the calling trusted function, it is within the
stack frame of mySaveAs(), not that of myFunc().

You can make mySaveAs() into a trusted function, in this case, myFunc() will succeed,
but in the process, you’ve exposed the privileged doc.saveAs() function to non-
privileged execution by anyone that knows this function are on your system.

You cannot simply enclose doc.saveAs(doc,path) in a beginPriv/endPriv pair,
for when myFunc() is run from a non-privileged context, an exception will be thrown by
the app.beginPriv() within the body of the mySaveAs() function. This is because
mySaveAs() is not trusted, and therefore is not authorized to request an increased
privilege level. Recall that a trusted function “is capable of explicitly increasing the current
privilege level “.

To summarize the observations above, there is a need, for a kind of function that, (1) can be
called by a trusted function, but, (2) is itself not trusted, and so cannot be directly called
from a non-privileged context. It is the trust propagator function that satisfies these criteria,
see app.trustPropagatorFunction.

trustPropagatorFunction

This method marks a function as a “trust propagator”; such a function can inherit trust if
called from a trusted function, but is not trusted.

A trust propagator function propagates trust, not privilege, so, as it is with the method
app.trustedFunction, an app.beginPriv/app.endPriv pair needs to enclose
any code, within the function body, that normally executes in a privilege context.

7.0 �

Acrobat JavaScript Scripting Reference
App Methods

134 Acrobat JavaScript Scripting Reference

Functions defined in App JavaScript folder.JS files are implicitly trustPropagator
functions; however, functions defined in the User JavaScript folder .JS files are not.

Trust propagator functions can play the role of utility functions; they can be called by a
trusted function and by another trust propagator function, but they cannot successfully be
called by a function that is not trusted in a non-privileged context.

See also app.beginPriv, app.endPriv and app.trustedFunction.

N O T E : (Security �): This method is available only during batch, console, and application
initialization.

Method Syntax

This method can be called in two ways.

myPropagatorFunction = app.trustPropagatorFunction(
function()
{

<function body>
}

);

or

function myOtherPropagatorFunction()
{

<function body>
};
app.trustPropagatorFunction(myOtherPropagatorFunction);

Parameters

Returns

On success, returns the same function object that was passed in. After successful execution,
the function object will be a trust propagator. On error, throws NotAllowedError.

Example 1

As a preparation for this example, review Example 3 on page 133, following the
app.trustedFunction() method.

Define a trust propagator function, mySaveAs, to save a file to a folder, and define a
trusted function, myTrustedSpecialTaskFunc, to perform various tasks involving
privileged and non-privileged code. The function mySaveAs() cannot be called directly
in a non-privileged context.

mySaveAs = app.trustPropagatorFunction(function(doc,path)
{
 app.beginPriv();
 doc.saveAs(path);

oFunc A function object that specifies the function to mark as a trust
propagator.

Acrobat JavaScript Scripting Reference 135

Acrobat JavaScript Scripting Reference
App Methods

 app.endPriv();
})
myTrustedSpecialTaskFunc = app.trustedFunction(function(doc,path)
{
 // privileged and/or non-privileged code above
 app.beginPriv();
 mySaveAs(doc,path);
 app.endPriv();
 // privileged and/or non-privileged code below
});

Now, executing the code

myTrustedSpecialTaskFunc(this, "/c/temp/mySavedDoc.pdf");

from a mouse-up button, for example, saves the current document to the specified path.

Example 2

In this example, we develop a simple dialog, using the app.execDialog() method, and
execute privileged code.

The dialog asks for your name, and asks you to browse for a document from your local hard
drive (or a network drive). When "Ok" button is clicked, the selected file will be loaded into
the viewer, and the name entered into the dialog will be placed in the author field of the
document properties. (The insertion of the name only occurs if the author field is empty.)
The dialog also displays the value of identity.email, which is privileged information.

Any code that is privileged is enclosed by a beginPriv/endPriv pair.

Note the use of the function ANTrustPropagateAll(), defined in the Annots.js
file. This function takes a single object as its argument, it turns every function in the object
into a trust propagator function, then returns that object. It is useful for creating dialogs
that use privileged code.

myDialog = app.trustedFunction(function()
{
 app.beginPriv();
 var dialog = ANTrustPropagateAll({
 initialize:function(dialog) {
 this.data = {}; // an object to hold dialog data
 app.beginPriv();
 dialog.load({ "emai": "Email: " + identity.email });
 app.endPriv();
 },
 commit:function (dialog) { // called when OK pressed
 var results = dialog.store();
 console.println("Your name is " + results["name"]);
 this.data.name = results["name"];
 },
 brws: function (dialog) {
 app.beginPriv();
 var oRetn = app.browseForDoc();
 if (typeof oRetn != "undefined")

Acrobat JavaScript Scripting Reference
App Methods

136 Acrobat JavaScript Scripting Reference

this.data.oRetn = oRetn;
 app.endPriv();
 },
 doDialog:function() {
 app.beginPriv();
 var retn = app.execDialog(this);
 app.endPriv();
 return retn;
 },
 description: {
 name: "Open File & Populate Info Field",
 align_children: "align_left",
 elements:
 [
 {
 type: "view",
 align_children: "align_left",
 elements:
 [
 {
 type: "view",
 align_children: "align_row",
 elements:
 [
 {
 type: "static_text",
 name: "Name: "
 },
 {
 item_id: "name",
 type: "edit_text",
 alignment: "align_fill",
 width: 300,
 height: 20
 },
]
 },
 {
 type: "static_text",
 item_id: "emai",
 name: "Email: ",
 char_width: 25
 },
 {

 type: "gap",
 height: 10

 },
 {
 type: "view",
 align_children: "align_row",
 elements:

Acrobat JavaScript Scripting Reference 137

Acrobat JavaScript Scripting Reference
App Methods

 [
 {
 type: "button",
 name: "Browse",
 item_id: "brws"
 },
 {
 type: "ok_cancel",
 ok_name: "Ok",
 cancel_name: "Cancel"
 }
]
 }
]
 }
]
 }
 });
 app.endPriv();
 try { // protect against user pressing the "Esc" key

 // After everything is set up, run the dialog using the doDialog
 // function, defined in the object dialog.

 var retn = dialog.doDialog();
 app.beginPriv();

 // if use clicked the ok button and there is oRetn data we load
 // the requested file using app.openDoc(), a restricted method.

 if ((retn == "ok") && dialog.data.oRetn) {
 var oDoc = app.openDoc({

 cPath: dialog.data.oRetn.cPath,
 cFS: dialog.data.oRetn.cFS

 });
 if (!oDoc.info.Author)

oDoc.info.Author = dialog.data.name;
 }
 app.endPriv();
 } catch(e) {}
})

This dialog can be activiated from button, or, more appropriatly, from a menu item or a
toolbar button. For example, place the following code in a User JavaScript file. This will add
an menu item to the Tools menu.

app.addMenuItem({ cName: "myDialog", cUser: "My Cool Dialog",
 cParent: "Tools", cExec: "myDialog()", nPos: 0 });

Acrobat JavaScript Scripting Reference
App.media Object

138 Acrobat JavaScript Scripting Reference

App.media Object

The global app.media object defines properties and functions useful in multimedia
JavaScript code.

Several of the properties of app.media are enumeration objects that list the values
allowed in various properties. Note that future versions of Acrobat may add more such
values, and JavaScript code should be prepared to encounter values other than the ones
listed here. Similarly, JavaScript code may be run on an older version of Acrobat than it was
designed for, in which case it will have to fall back to using the values available in that
version.

App.media Object Properties

align

The app.media.align property enumerates the values that may be found in the
MediaSettings.floating.align property. The alignment is positioned relative to
the window specified by the MediaSettings.floating.over property, see the
values for app.media.over.

These values are

Type: Object (enumeration) Access: R.

6.0

Value Description

app.media.align.topLeft position floating window at the top left corner

app.media.align.topCenter position floating window at the top center

app.media.align.topRight position floating window at the top right corner

app.media.align.centerLeft position floating window at the center left

app.media.align.center position floating window at the center

app.media.align.centerRight position floating window at the center right

app.media.align.bottomLeft position floating window at the bottom left corner

app.media.align.bottomCenter position floating window at the bottom center

app.media.align.bottomRight position floating window at the bottom right corner

Acrobat JavaScript Scripting Reference 139

Acrobat JavaScript Scripting Reference
App.media Object Properties

canResize

app.media.canResize property enumerates the values that may be found in the
MediaSettings.floating.canResize property, which specifies whether a floating
window may be resized by the user.

These values are

Type: Object (enumeration) Access: R.

closeReason

app.media.closeReason enumerates the values that may be found in the
event.reason property for a Close event. These values are:

app.media.closeReason.general
app.media.closeReason.error
app.media.closeReason.done
app.media.closeReason.stop
app.media.closeReason.play
app.media.closeReason.uiGeneral
app.media.closeReason.uiScreen
app.media.closeReason.uiEdit
app.media.closeReason.docClose
app.media.closeReason.docSave
app.media.closeReason.docChange

See the afterClose and onClose events.

Type: Object (enumeration) Access: R.

6.0

Value Description

app.media.canResize.no may not be resized

app.media.canResize.keepRatio may be resized only if aspect ration is preserved

app.media.canResize.yes may be resized without preserving aspect ratio

6.0

Acrobat JavaScript Scripting Reference
App.media Object Properties

140 Acrobat JavaScript Scripting Reference

defaultVisible

The app.media.defaultVisible property is defined as true, which is the default
value for MediaSettings.visible.

Type: Boolean Access: R.

ifOffScreen

The app.media.ifOffScreen property enumerates the values allowed in a
MediaSettings.floating.ifOffScreen property, which specifies what action
should be taken if the floating window is positioned totally or partially offscreen.

These values and their descriptions are given in the table below:

Type: Object (enumeration) Access: R.

layout

The app.media.layout property enumerates the values allowed in a
MediaSettings.layout property.

The table below contains the values and their descriptions:

6.0

6.0

Value Description

app.media.ifOffScreen.allow take no action

app.media.ifOffScreen.forceOnScreen move and/or resize the window so that it is on-
screen

app.media.ifOffScreen.cancel cancel playing the media clip

6.0

Value Description

app.media.layout.meet scale to fit all content, preserve aspect, no clipping,
background fill

app.media.layout.slice scale to fill window, preserve aspect, clip X or Y as needed

app.media.layout.fill scale X and Y separately to fill window

Acrobat JavaScript Scripting Reference 141

Acrobat JavaScript Scripting Reference
App.media Object Properties

Type: Object (enumeration) Access: R.

monitorType

The app.media.monitorType property enumerates the values allowed in a
MediaSettings.monitorType property.

The table below contains the values and their descriptions:

Type: Object (enumeration) Access: R.

openCode

The app.media.openCode enumerates the values that may be found in the code
property of the return value from MediaPlayer.open(). The values are:

app.media.openCode.success
app.media.openCode.failGeneral
app.media.openCode.failSecurityWindow

app.media.layout.scroll natural size with scrolling

app.media.layout.hidden natural size with clipping

app.media.layout.standard use player’s default settings

6.0

Value Description

app.media.monitorType.document The monitor containing the largest section of
the document window

app.media.monitorType.nonDocument The monitor containing the smallest section of
the document window

app.media.monitorType.primary Primary monitor

app.media.monitorType.bestColor Monitor with the greatest color depth

app.media.monitorType.largest Monitor with the greatest area (in pixels
squared)

app.media.monitorType.tallest Monitor with the greatest height (in pixels)

app.media.monitorType.widest Monitor with the greatest width (in pixels)

6.0

Value Description

Acrobat JavaScript Scripting Reference
App.media Object Properties

142 Acrobat JavaScript Scripting Reference

app.media.openCode.failPlayerMixed
app.media.openCode.failPlayerSecurityPrompt
app.media.openCode.failPlayerNotFound
app.media.openCode.failPlayerMimeType
app.media.openCode.failPlayerSecurity
app.media.openCode.failPlayerData

Type: Object (enumeration) Access: R.

over

The app.media.over property enumerates the values allowed in a
MediaSettings.floating.over property, the value of which is used to align a
floating window. See app.media.align.

Type: Object (enumeration) Access: R.

pageEventNames

The app.media.pageEventNames property enumerates the values that may be found
in the event.name property for a page-level action. Event names that represent direct
user actions are not included here. This enumeration is used to distinguish page-level
actions from user actions. The values are:

app.media.pageEventNames.Open
app.media.pageEventNames.Close
app.media.pageEventNames.InView
app.media.pageEventNames.OutView

Type: Object (enumeration) Access: R.

6.0

Value Description

app.media.over.pageWindow align floating window relative to the document
(page) window

app.media.over.appWindow align floating window relative to the application
window

app.media.over.desktop align floating window relative to the full virtual
desktop

app.media.over.monitor align floating window relative to the (selected)
monitor display screen

6.0

Acrobat JavaScript Scripting Reference 143

Acrobat JavaScript Scripting Reference
App.media Object Properties

Example

The app.media.pageEventNames can be used to distinguish between a page-level
action and a direct user action. The script below is folder-level or document level JavaScript
that can be called from anywhere in a document.

function myMMfunction () {
if (app.media.pageEventNames[event.name]) {

console.println("Page Event: " + event.name);
...

 } else {
console.println("User Generated Event: " + event.name);
...

 }
}

raiseCode

The app.media.raiseCode property enumerates values that may be found in the
error.raiseCode property when an exception is thrown. This property exists only when
error.name is "RaiseError". Other values may be encountered in addition to these.

app.media.raiseCode.fileNotFound
app.media.raiseCode.fileOpenFailed

Type: Object (enumeration) Access: R.

Example

See the definition of app.media.getRenditionSettings() in the media.js file
for examples of usage.

raiseSystem

The app.media.raiseSystem property enumerates values that may be found in the
error.raiseSystem property when an exception is thrown. This property exists only when
error.name is "RaiseError".

app.media.raiseSystem.fileError

Other values may be added to the above property.

Type: Object (enumeration) Access: R.

6.0

6.0

Acrobat JavaScript Scripting Reference
App.media Object Properties

144 Acrobat JavaScript Scripting Reference

Example

See the definition of app.media.getRenditionSettings() in the media.js file
for examples of usage.

renditionType

The app.media.renditionType property enumerates the values that may be found
in Rendition.type. The values and their descriptions are given below.

Type: Object (enumeration) Access: R.

status

The app.media.status property enumerates the values that may be found in the
event.media.code property for a Status event (see onStatus/afterStatus). Most
of these values have additional information that is found in the event.text property. The
values are:

Along with the event.media.status code, there is also the event.media.text, a
string that reflects the current status, as described above.

6.0

Value Description

app.media.renditionType.unknown a type not known by this version of Acrobat

app.media.renditionType.media a media rendition

app.media.renditionType.selector a rendition selector

6.0

Value Description

app.media.status.clear empty string - this status event, clears any
message

app.media.status.message general message

app.media.status.contacting hostname being contacted

app.media.status.buffering progress message or nothing

app.media.status.init name of the engine being initialize

app.media.status.seeking empty string

Acrobat JavaScript Scripting Reference 145

Acrobat JavaScript Scripting Reference
App.media Object Properties

Type: Object (enumeration) Access: R.

See afterStatus and onStatus.

trace

Set app.media.trace to true to print trace messages to the JavaScript console during
player creation and event dispatching.

N O T E : app.media.trace is for test purposes only. Do not use this property in a PDF file
that you publish. It will change in future versions of Acrobat.

Type: Boolean Access: R/W.

version

app.media.version is the version number of the multimedia API defined in
media.js, currently 6.0.

Type: Number Access: R.

windowType

The app.media.windowType property enumerates the values allowed in a
MediaSettings.windowType property. These values are given in the table below.

Type: Object (enumeration) Access: R.

6.0

6.0

6.0

Value Description

app.media.windowType.docked docked to PDF page

app.media.windowType.floating floating (popup) window

app.media.windowType.fullScreen full screen mode

Acrobat JavaScript Scripting Reference
App.media Object Methods

146 Acrobat JavaScript Scripting Reference

App.media Object Methods

addStockEvents

The app.media.addStockEvents() method adds stock event listeners to a
MediaPlayer (see MediaPlayer Object) and sets player.stockEvents as a reference to
these listeners for later removal.

If the optional annot is provided, then a reference to the annot is saved in
MediaPlayer.annot. Later, when the player is opened with MediaPlayer.open(),
stock event listeners will also be added to this annot, and annot.player will be set as a
reference to the player.

Parameters

Returns

Nothing

The stock event listeners provide standard Acrobat behavior such as focus handling.

If app.media.trace is true, then debug trace listeners are also included with the stock
event listeners.

Use the removeStockEvents() method to remove event listeners that were added via
addStockEvents().

The app.media.createPlayer() and app.media.openPlayer() methods call
addStockEvents() internally, so in most cases it is not necessary to call this method
yourself.

alertFileNotFound

The app.media.alertFileNotFound() method displays the standard file not found
alert, with an optional don’t show again checkbox.

Parameters

6.0

player A required MediaPlayer Object

annot (optional) A ScreenAnnot Object

6.0

oDoc oDoc is the document object the alert is associated with

cFilename cFilename is the name of the missing file

Acrobat JavaScript Scripting Reference 147

Acrobat JavaScript Scripting Reference
App.media Object Methods

Returns

If bCanSkipAlert is true, returns true if checkbox is checked, otherwise returns
false.

Example:
if (!doNotNotify)
{

var bRetn = app.media.alertFileNotFound(this, cFileClip, true);
var doNotNotify = bRetn;

}

alertSelectFailed

The app.media.alertSelectFailed() method displays the standard alert for a
rendition.select() failure.

Parameters

Returns

If bCanSkipAlert is true, returns true if checkbox is checked, otherwise returns
false.

N O T E : When rendition.select()fails to find a usable player, and the select()
parameter bWantRejects is set to true, the returned MediaSelection Object will
contain an array of MediaReject Object, which can be passed to this method as the
oRejects parameter. The alertSelectFailed() method will, in turn, ask the
user to go to the web to download an appropriate player.

bCanSkipAlert (optional) If bCanSkipAlert is true and the user checks the
checkbox, returns true, otherwise returns false. The default
is false.

6.0

oDoc oDoc is the document object the alert is associated with

oRejects (optional) If oRejects is provided, it should be an array of
MediaReject Objects as returned by PlayerInfoList.select().

bCanSkipAlert (optional) If bCanSkipAlert is true and the user checks
the checkbox, returns true, otherwise returns false. The
default is false.

bFromUser (optional) bFromUser affects the wording of the alert
message. It should be true if a direct user action triggered this
code, or false if some other action such as selecting a
bookmark triggered it. The default is false.

Acrobat JavaScript Scripting Reference
App.media Object Methods

148 Acrobat JavaScript Scripting Reference

Example:

Displays “Cannot play media clip”, with checkbox.

var bRetn = app.media.alertSelectFailed({
oDoc: this,
bCanSkipAlert: true

});

argsDWIM

The app.media.argsDWIM method is a “Do What I Mean” function that is used by
app.media.createPlayer(), app.media.openPlayer(), and
app.media.startPlayer(). It fills in default values for properties that are not
provided in the PlayerArgs Object, picking them out of the Event Object, so that these
functions may be used as rendition action event handlers with no arguments or in custom
JavaScript with explicit arguments. See app.media.createPlayer() for details of the
PlayerArgs Object.

Parameters

Returns

PlayerArgs Object

Example

See “Example 1” on page 152 for an example of usage.

canPlayOrAlert

The app.media.canPlayOrAlert method determines whether any media playback is
allowed and returns true if it is. If playback is not allowed, it alerts the user and returns
false.

6.0

args The args is a PlayerArgs Object. See createPlayer() for
details of the PlayerArgs object.

6.0

Acrobat JavaScript Scripting Reference 149

Acrobat JavaScript Scripting Reference
App.media Object Methods

Parameters

Returns

Returns true if media playback is allowed, otherwise, this method returns false.

N O T E : The createPlayer() method calls this function before attempting to create a
player. If you write your own code to substitute for createPlayer(), you can call
canPlayOrAlert() to alert the user in situations where playback is not allowed,
such as in multimedia authoring mode.

The only property in the args object that is used is doc, so you can use:

// There is a doc object in myDoc
if(app.media.canPlayOrAlert({ doc: myDoc })
/* OK to create player here */ ;

The above code displays “Cannot play media while in authoring mode”, or other alerts, as
appropriate.

computeFloatWinRect

The app.media.computeFloatWinRect() method calculates and returns the
rectangle in screen coordinates needed as specified by its parameters.

Parameters

Returns

The rectangle in screen coordinates

Example:
var floating =
{

over: app.media.over.monitor,

args The args is a PlayerArgs object. See createPlayer()for
details of the PlayerArgs object.

6.0

doc The document object for the document

floating The floating parameters from the MediaSettings.floating object

monitorType A number indicating which monitor to use. See the
app.media.monitorType property.

uiSize (optional) The user interface size given as an array of four
numbers [w,x,y,z] representing the size, as returned by
MediaPlayer.uiSize.

Acrobat JavaScript Scripting Reference
App.media Object Methods

150 Acrobat JavaScript Scripting Reference

align: app.media.align.center,
canResize: app.media.canResize.no,
hasClose: false,
hasTitle: true,
width: 400,
height: 400

}
var rect = app.media.computeFloatWinRect

(this, floating, app.media.monitorType.primary);

constrainRectToScreen

The app.media.constrainRectToScreen() method returns a rectangle of screen
coordinates, moved and resized if needed to place it entirely on some display monitor. If
anchorPt is provided, and rect must be shrunk to fit, it shrinks proportionally toward
anchorPt (which is an array of two numbers representing a point as [x,y]).

Parameters

Returns

Returns a rectangle in screen coordinates.

createPlayer

The app.media.createPlayer() creates a MediaPlayer Object without actually
opening the player, using values provided in the args parameter. To open the player, call
MediaPlayer.open(). You can combine these two steps into one by calling
app.media.openPlayer() instead of createPlayer().

If createPlayer() is called inside a rendition action (e.g. in custom JavaScript entered
from the Actions tab in the Multimedia Properties panel), default values are taken from the
action’s Event Object. The args parameter is not required in this case unless you want to
override the rendition action’s values. The createPlayer() calls argsDWIM() to
process the Event Object and args (see PlayerArgs Object) parameter.

Unless noStockEvents of the PlayerArgs Object is set to true, the MediaPlayer Object
is equipped with stock event listeners which provide the standard behavior required to

6.0

rect An array of four number representing screen coordinates of the
desired rectangle

anchorPt (optional) An array of two points [x,y] that is to be an anchor
point

6.0

Acrobat JavaScript Scripting Reference 151

Acrobat JavaScript Scripting Reference
App.media Object Methods

interact properly with Acrobat. Additional event listeners can be provided in the PlayerArgs
object or may be added afterward with MeidaPlayer.events.add().

If args.annot.player is an open MediaPlayer, createPlayer() closes that player,
which fires events.

Parameters

PlayerArgs Object

args (optional) The args parameter is a PlayerArgs object. The
parameter args is optional if createPlayer() is executed within
a Rendition action with an associated rendition; in this case, the
properties of args are populated by the defaults and by
options selected in the UI. Otherwise, an args parameter is
required, see documentation of the PlayerArgs object below for
required properties of the object.

Property Type Description

doc Object The doc object of the document. Required if
both annot and rendition are omitted, e.g. for
URL playback.

annot Object A ScreenAnnot Object. Required for docked
playback unless it is found in the Event Object or
MediaSettings.page is provided. The new player
is associated with the annot. If a player was
already associated with the annot, it is stopped
and closed.

rendition Object (optional) A Rendition Object (either a
MediaRendition or a RenditionList). Required
unless rendition found in the Event Object, or
URL is present.

URL String Either URL or rendition is required, with URL
taking precedence.

mimeType String (optional) Ignored unless URL is present. If URL is
present, either mimeType or
settings.players, as returned by
app.media.getPlayers(), is required

settings Object (optional) A MediaSettings Object. Overrides the
rendition settings.

Acrobat JavaScript Scripting Reference
App.media Object Methods

152 Acrobat JavaScript Scripting Reference

Returns

MediaPlayer Object

Example 1

The following code is taken from media.js, it is the definition of openPlayer(), which
uses createPlayer() in its definition.

app.media.openPlayer = function(args)
{

var player = null;
 try
 {

args = app.media.argsDWIM(args);

 player = app.media.createPlayer(args);
 if(player)
 {
 var result = player.open();
 if(result.code != app.media.openCode.success)
 {
 player = null;
 app.media.alert

("Open", args, { code: result.code });
 }
 else if(player.visible)
 player.setFocus(); // fires Focus event
 }
 }

events Object (optional) An EventListener Object. Optional if
stock events are used, added after stock events.

noStockEvents Boolean (optional) If true, do not use stock events. The
default is false.

fromUser Boolean (optional) It should be true if a direct user
action will trigger this code, or false,
otherwise. The default depends on Event Object.

showAltText Boolean (optional) If true, show alternate text (see
altText) if the media can’t be played. The default
is true.

showEmptyAltText Boolean (optional) If true and alternate text (see altText)
is empty, show the alternate text as an empty
box; if false, respond with an alert.
The default value is true if fromUser is
false, and false if fromUser is true.

Property Type Description

Acrobat JavaScript Scripting Reference 153

Acrobat JavaScript Scripting Reference
App.media Object Methods

 catch(e)
 {

player = null;
 app.media.alert('Exception', args, { error: e });
 }

 return player;
}

Example 2

See the examples at the end of the description of openPlayer() for examples of
PlayerArgs usage.

getAltTextData

The app.media.getAltTextData() method returns a MediaData object (this is
the same as the MediaSettigs.data object) which represents alternate text data for
the given text. This MediaData object can be used to create a player to display the
alternate text.

Parameters

Returns

MediaData object

See MediaSettings.data.

Example

See the embedded example following getAltTextSettings().

getAltTextSettings

The app.media.getAltTextSettings() takes a PlayerArgs Object containing at
least settings, showAltText, and showEmptyAltText properties, along with a
selection object as returned by rendition.select(), and finds the first available
alternate text rendition if there is one. It then creates and returns a new MediaSettings
Object suitable for playback of the alternate text. Otherwise it returns null.

6.0

cAltText A string that is to be used as alternate text data

6.0

Acrobat JavaScript Scripting Reference
App.media Object Methods

154 Acrobat JavaScript Scripting Reference

Parameters

Returns

MediaSettings Object or null

Example

This example plays back the alternate text of the rendition. The code plays back the
alternate text in a screen annot, but can be modified for playback in a floating window.

var rendition = this.media.getRendition("myClip");
var settings = rendition.getPlaySettings();
var args = {
 settings: settings,
 showAltText: true,
 showEmptyAltText: true
};
var selection = rendition.select();
settings = app.media.getAltTextSettings(args, selection);

// You can also play custom alternate text by uncommenting the next line
// settings.data = app.media.getAltTextData("A. C. Robat");

// Uncomment the code below to obtain a floating window to playback
// the alternate text
/*
settings.windowType = app.media.windowType.floating
settings.floating = {

canResize: app.media.canResize.keepRatio,
hasClose: true,
width: 400,
height: 100

} */

// now define an args parameter for use with openPlayer, which will
// play the alternate text.
args = {
 rendition: rendition,
 annot: this.media.getAnnot({nPage: 0, cAnnotTitle:"myScreen"}),
 settings: settings
};
app.media.openPlayer(args);

args A PlayerArgs Object, see PlayerArgs Object for more
information on this object.

selection A MediaSelection Object

Acrobat JavaScript Scripting Reference 155

Acrobat JavaScript Scripting Reference
App.media Object Methods

getAnnotStockEvents

The app.media.getAnnotStockEvents() method returns an Event Object
containing the stock event listeners required in a screen annot for normal playback in
Acrobat. The stock event listeners provide standard Acrobat behavior such as focus
handling.

If app.media.trace is true, then debug trace listeners are also included with the
stock event listeners.

Parameters

Returns

Event Object

getAnnotTraceEvents

The app.media.getAnnotTraceEvents() method returns an Events Object
containing event listeners that provide a debugging trace as events are dispatched.

Parameters

None

Returns

Events Object

getPlayers

The app.media.getPlayers() method returns a PlayerInfoList Object, which is an
array of PlayerInfo Objects representing the available media players.

The PlayerInfoList may be filtered using its select() method, and it may be used in the
settings.players property when creating a media player with createPlayer().

See PlayerInfoList Object and PlayerInfo Object for more details.

6.0

settings A number corresponding to the windowType, see
app.media.windowType.

6.0

6.0

Acrobat JavaScript Scripting Reference
App.media Object Methods

156 Acrobat JavaScript Scripting Reference

Parameters

Returns

PlayerInfoList Object

Example 1

List MP3 players to the debug console.

var mp = app.media.getPlayers("audio/mp3")
for (var i = 0; i < mp.length; i++) {
 console.println("\nmp[" + i + "] Properties");
 for (var p in mp[i]) console.println(p + ": " + mp[i][p]);
}

Example 2

Choose any player that can play Flash media by matching the MIME type. The code
assumes the code below is executed as a Rendition action with associated rendition (so no
arguments for createPlayer() are required).

var player = app.media.createPlayer();
player.settings.players

= app.media.getPlayers("application/x-shockwave-flash");
player.open();

getPlayerStockEvents

The app.media.getPlayerStockEvents() returns a Events Object containing the
stock event listeners required in a media player for normal playback in Acrobat. The stock
event listeners provide standard Acrobat behavior such as focus handling.

Use MediaPlayer.events.add() to add these stock events to a media player.

The app.media.createPlayer() and app.media.openPlayer() methods
automatically call getPlayerStockEvents() internally, so it is not necessary to call
this method yourself unless you’re writing code that sets up all event listeners explicitly.

If app.media.trace is true, then debug trace listeners are also included with the stock
event listeners.

cMimeType (optional) An optional MIME type such as "audio/wav". If
cMimeType is omitted, the list includes all available players. If
cMimeType is specified, the list includes only players that can
handle that MIME type.

6.0

Acrobat JavaScript Scripting Reference 157

Acrobat JavaScript Scripting Reference
App.media Object Methods

Parameters

Returns

Events Object

getPlayerTraceEvents

The app.media.getPlayerTraceEvents() method returns an Events Object
containing event listeners that provide a debugging trace as events are dispatched.

Parameters

None

Returns

Events Object

getRenditionSettings

The app.media.getRenditionSettings() method calls Rendition.select()
to get a MediaSelection Object, then MediaSelection.rendition.getPlaySettings() to get a
MediaSettings Object for playback. If either of these fails, it calls the
getAltTextSettings() method to get a MediaSettings Object for alternate text
playback. Finally, it returns the resulting MediaSettings Object, or null if
getAltTextSettings() returned null (i.e. alt text was not specified or not allowed).

Parameters

Returns

MediaSettings Object or null

Example

See Example 3 following the openPlayer() method.

settings A MediaSettings Object

6.0

6.0

args A PlayerArgs Object, see PlayerArgs Object for more
information on this object.

Acrobat JavaScript Scripting Reference
App.media Object Methods

158 Acrobat JavaScript Scripting Reference

getURLData

The app.media.getURLData() returns a MediaData object which represents data
to be retrieved for a URL and optional MIME type. This MediaData object can be used
to create a player which will access data from that URL. See MediaSettings.data for
more information on the MediaData object.

Parameters

Returns

MediaData object

Example

The following example retrieves a media clip from the Internet and plays it in a floating
window.

var myURLClip = "http://www.mywebsite.com/myClip.mpg";
var args = {

URL: myURLClip,
 mimeType: "video/x-mpg",
 doc: this,
 settings: {

players: app.media.getPlayers("video/x-mpg"),
windowType: app.media.windowType.floating,
data: app.media.getURLData(myURLClip,"video/x-mpg"),

 floating: { height: 400, width: 600 }
}

}
app.media.openPlayer(args);

getURLSettings

The app.media.getURLSettings() method takes a PlayerArgs Object which
contains a settings property and returns a MediaSettings Object suitable for playback of
a URL. The settings property must contain a URL property and may contain a mimeType
property. It may also contain additional settings which are copied into the resulting
settings object.

6.0

cURL The URL form which media data is to be retrieved.

cMimeType (optional) The MIME type of the data.

6.0

Acrobat JavaScript Scripting Reference 159

Acrobat JavaScript Scripting Reference
App.media Object Methods

Parameters

Returns

MediaSettings Object

Example 1

Same example as above. Basically, getURLSettings() calls getURLData() and
inserts the return MediaData object into the data property into the setting, which it
then returns.

var myURLClip = "http://www.mywebsite.com/myClip.mpg";
args = {

URL: myURLClip,
 mimeType: "video/x-mpg",
 doc: this,
 settings:
 {

players: app.media.getPlayers("video/x-mpg"),
 windowType: app.media.windowType.floating,

floating: { height: 400, width: 600 }
 }
};
settings = app.media.getURLSettings(args)
args.settings = settings;
app.media.openPlayer(args);

Example 2

The example below is a custom Keystroke action of a combo box. The combox is a simple
playlist of streamed audio/video web sites. The export value of each element in the list has
the form "URL,mimeType", for example

http://www.mySite.com/streaming/radio.asx,video/x-ms-asx

The script below first splits the export value into an array of length 2, the first element is the
URL, the second is the mimeType. Any video will be shown in the screen annot "myScreen";
otherwise, only audio is heard.

if (!event.willCommit)
{
 var aURLMime = event.changeEx.split(",")
 console.println("aURLMime[0] = " + aURLMime[0]);
 console.println("aURLMime[1] = " + aURLMime[1]);
 var args = {
 annot:this.media.getAnnot({ nPage:0,cAnnotTitle: "myScreen" }),
 URL: aURLMime[0],
 mimeType: aURLMime[1],
 doc: this,

args A PlayerArgs Object, see PlayerArgs Object for more
information on this object.

Acrobat JavaScript Scripting Reference
App.media Object Methods

160 Acrobat JavaScript Scripting Reference

 settings: {
 players: app.media.getPlayers(aURLMime[1]),
 windowType: app.media.windowType.docked
 }
 };
 settings = app.media.getURLSettings(args);
 args.settings = settings;
 var player = app.media.openPlayer(args);
}

getWindowBorderSize

The app.media.getWindowBorderSize() method returns an array of four numbers
representing the size in pixels of the left, top, right, and bottom borders that would be used
for a floating window with the properties specified in the parameters.

The hasTitle and hasClose parameters are booleans, and canResize may be any of
the values in app.media.canResize.

These parameters have the same names as properties of a MediaSettings.floating
object, so you can simply pass in a floating object as a single parameter:

var size = doc.media.getWindowBorderSize(settings.floating);

Parameters

Returns

An array of numbers of length 4

openPlayer

The app.media.openPlayer() calls app.media.createPlayer() to create a
MediaPlayer Object, and then calls MediaPlayer.open() to open the actual player.

This function fires several events which may include Ready (see onReady and
afterReady), Play (see onPlay and afterPlay) and Focus (see onFocus and
afterFocus). See also the EventListener Object object for a general description of these
events.

The method alerts the user and returns null on failure. Does not throw exceptions.

6.0

hasTitle (optional) The default is true

hasClose (optional) The default is true

canResize (optional) The default is app.media.canResize.no

6.0

Acrobat JavaScript Scripting Reference 161

Acrobat JavaScript Scripting Reference
App.media Object Methods

Parameters

Returns

A MediaPlayer Object or null on failure

Example 1

The following is a minimal example. This is a Custom JavaScript from the Actions tab in the
Multimedia Properties panel of a Screen Annot. To override the parameters specified by the
UI of the Screen Annot, the args parameter is passed.

app.media.openPlayer();

Override settings.repeat: if repeat is set to 1, change it to 2; if not 1, set to 1.

var nRepeat =
(event.action.rendition.getPlaySettings().repeat == 1) ? 2 : 1;

var args = { settings: { repeat: nRepeat } };
app.media.openPlayer(args);

See the Event Object for an explanation of event.action.rendition. The above
example also uses Rendition.getPlaySettings() to access the settings associated
with the rendition to be played (the one associated with the Screen Annot).

Example 2

The following script is executed from a mouse up action of a form button. It plays a docked
media clip in a ScreenAnnot.

app.media.openPlayer({
rendition: this.media.getRendition("myClip"),
annot: this.media.getAnnot({nPage:0,cAnnotTitle:"myScreen"}),
settings: { windowType: app.media.windowType.docked }

});

Example 3

This is a Custom JavaScript from the Actions tab in the Multimedia Properties of a Screen
Annot. The user click on the annot, and a randomly chosen movie clip is played.

// these are placed at the top level of the document JavaScripts
var myRenditions = new Array();
myRenditions[0] = "myClip1";
myRenditions[1] = "myClip2";
myRenditions[2] = "myClip3";

// this code is a Custom JavaScript of a ScreenAnnot. All renditions
// are docked and are played in the ScreenAnnot.
var l = myRenditions.length;
randomIndex = Math.floor(Math.random() * l) % l;

args (optional) The args is a PlayerArgs object. See PlayerArgs
Object.

Acrobat JavaScript Scripting Reference
App.media Object Methods

162 Acrobat JavaScript Scripting Reference

var rendition = this.media.getRendition(myRenditions[randomIndex]);
var settings = app.media.getRenditionSettings({ rendition: rendition });

var args = { rendition: rendition, settings: settings }
app.media.openPlayer(args);

removeStockEvents

The app.media.removeStockEvents() method removes any stock event listeners
from a MediaPlayer Object and from any associated ScreenAnnot Object, and deletes the
player.stockEvents, player.annot, annot.stockEvents, and
annot.player properties. This undoes the effect of a previous addStockEvents()
call.

Parameters

Returns

Nothing

startPlayer

The app.media.startPlayer() method checks whether an annot is provided in the
PlayerArgs Object and the annot already has a player open. If so, it calls player.play() on that
player to start or resume playback. If not, it calls app.media.openPlayer() to create
and open a new MediaPlayer Object. See openPlayer for more details.

N O T E : app.media.startPlayer() is the default Mouse Up action when you use the
Acrobat user interface to create a multimedia annot and rendition and don't specify
any custom JavaScript.

Parameters

Returns

A MediaPlayer Object or null on failure

6.0

player A MediaPlayer Object

6.0

args (optional) The args is a PlayerArgs object. See PlayerArgs
Object.

Acrobat JavaScript Scripting Reference 163

Acrobat JavaScript Scripting Reference
Bookmark Object

Example

Start a screen annot from a form button.

var args = {
rendition: this.media.getRendition("myClip"),
annot: this.media.getAnnot({ nPage: 0, cAnnotTitle: "myScreen" }),

};
app.media.startPlayer(args);

Bookmark Object

A Bookmark Object represents a node in the bookmark tree that appears in the bookmarks
navigational panel. Bookmarks are typically used as a “table of contents” allowing the user
to navigate quickly to topics of interest.

Bookmark Properties

children

Returns an array of Bookmark Objects that are the children of this bookmark in the
bookmark tree. If there are no children of this bookmark, this property has a value of null.

See also parent and bookmarkRoot.

Type: Array | null Access: R.

Example

Dump all bookmarks in the document.

function DumpBookmark(bkm, nLevel)
{

var s = "";
for (var i = 0; i < nLevel; i++) s += " ";
console.println(s + "+-" + bkm.name);
if (bkm.children != null)

 for (var i = 0; i < bkm.children.length; i++)
DumpBookmark(bkm.children[i], nLevel + 1);

}
console.clear(); console.show();
console.println("Dumping all bookmarks in the document.");
DumpBookmark(this.bookmarkRoot, 0);

5.0

Acrobat JavaScript Scripting Reference
Bookmark Properties

164 Acrobat JavaScript Scripting Reference

color

Specifies the color for a bookmark. Values are defined by using gray, RGB or CMYK color. See
Color Arrays for information on defining color arrays and how values are used with this
property. See also style.

N O T E : This property is read-only in Adobe Reader.

Type: Array Access: R/W.

Example

The following fun script will color the top level bookmark red, green and blue.

var bkm = this.bookmarkRoot.children[0];
bkm.color = color.black;
var C = new Array(1, 0, 0);
var run = app.setInterval(

'bkm.color = ["RGB",C[0],C[1],C[2]]; C.push(C.shift());', 1000);
var stoprun=app.setTimeOut(

"app.clearInterval(run); bkm.color=color.black",12000);

doc

The Doc Object that the bookmark resides in.

Type: object Access: R.

name

The text string for the bookmark that the user sees in the navigational panel.

N O T E : This property is read-only in Adobe Reader.

Type: String Access: R/W.

Example

The following code puts the top level bookmark in bold.

var bkm = this.bookmarkRoot.children[0];
console.println("Top level bookmark name: " + bkm.name);

The example that follows bookmark.children also uses the name property.

5.0 �

5.0

5.0 �

Acrobat JavaScript Scripting Reference 165

Acrobat JavaScript Scripting Reference
Bookmark Methods

open

Determines whether the bookmark shows its children in the navigation panel (open) or
whether the children sub-tree is collapsed (closed).

N O T E : This property is read-only in Adobe Reader.

Type: Boolean Access: R/W.

parent

Returns the parent bookmark of the bookmark or null if the bookmark is the root
bookmark. See also children and bookmarkRoot.

Type: object | null Access: R.

style

Specifies the style for the bookmark’s font: 0 indicates normal, 1 is italic, 2 is bold, and 3 is
bold-italic. See also color.

N O T E : This property is read-only in Adobe Reader.

Type: Integer Access: R/W.

Example

The following code puts the top level bookmark in bold.

var bkm = this.bookmarkRoot.children[0];
bkm.style = 2;

Bookmark Methods

createChild

Creates a new child bookmark at the specified location.

5.0 �

5.0

5.0 �

5.0 � �

Acrobat JavaScript Scripting Reference
Bookmark Methods

166 Acrobat JavaScript Scripting Reference

See also children, insertChild and remove .

Parameters

Returns

Nothing

Example

Create a bookmark at the top of the bookmark panel that takes youto the next page in the
document.

this.bookmarkRoot.createChild("Next Page", "this.pageNum++");

execute

Executes the action associated with this bookmark. This can have a variety of behaviors. See
the PDF Reference, Section 7.5.3, “Actions Types” for a list of common action types. See also
createChild.

Parameters

None

Returns

Nothing

Example

This example implements a simple search of the bookmarks, on success, the action
associated with the bookmark is executed.

// Document level or folder level JavaScript.
function searchBookmarks(bkm, nLevel, bkmName)
{

if (bkm.name == bkmName) return bkm;
 if (bkm.children != null) {

for (var i = 0; i < bkm.children.length; i++)

cName The name of the bookmark that the user will see in the navigation
panel.

cExpr (optional) An expression to be evaluated whenever the user clicks on
the bookmark. Default is no expression. This is equivalent to creating
a bookmark with a JavaScript action; see the PDF Reference,
“JavaScript Action” for details.

nIndex (optional) The 0-based index into the children array of the bookmark
at which to create the new child. Default is 0.

5.0

Acrobat JavaScript Scripting Reference 167

Acrobat JavaScript Scripting Reference
Bookmark Methods

 {
 var bkMark = searchBookmarks(

bkm.children[i], nLevel + 1, bkmName);
 if (bkMark != null) break;

 }
 return bkMark;
 }
 return null;
}
// Redefine this function for a more sophisticated compare.
function bmkCompare(name1, name2)
{

return (name1 == name2);
}

The following code initiates the search. This code could be executed as field level
JavaScript, or be executed as a Menu action.

var bkmName = app.response({
cQuestion: "Enter the name of the bookmark to find",
cTitle: "Bookmark Search and Execute"

});
if (bkmName != null) {

var bkm = searchBookmarks(this.bookmarkRoot, 0, bkmName);
if (bkm != null) bkm.execute();
else app.alert("Bookmark not found");

}

insertChild

Inserts the specified bookmark as a child of this bookmark. If the bookmark already exists in
the bookmark tree it is unlinked before inserting it back into the tree. In addition, the
insertion is checked for circularities and disallowed if one exists. This prevents users from
inserting a bookmark as a child or grandchild of itself. See also children ,
createChild, and remove.

Parameters

Returns

Nothing

5.0 � �

oBookmark A bookmark object to add as the child of this bookmark.

nIndex (optional) The 0-based index into the children array of the bookmark
at which to insert the new child. The default is 0.

Acrobat JavaScript Scripting Reference
Bookmark Methods

168 Acrobat JavaScript Scripting Reference

Example

Take the first child bookmark and move it to the end of the bookmarks.

var bm = bookmarkRoot.children[0];
bookmarkRoot.insertChild(bm, bookmarkRoot.children.length);

remove

Removes the bookmar and all its children from the bookmark tree. See also children,
createChild ,and insertChild.

Parameters

None

Returns

Nothing

Example

Remove all bookmarks from the document.

bookmarkRoot.remove();

setAction

Sets a JavaScript action for a bookmark.

See also doc.addScript, doc.setPageAction, and field.setAction.

N O T E : This method will overwrite any action already defined for this bookmark.

Parameters

Returns

Nothing

Example

Attach an action to the topmost bookmark.

var bm = bookmarkRoot.children[0]
bm.setAction("app.beep(0);");

5.0 � �

6.0

cScript Defines the JavaScript expression that is to be executed whenever the
user clicks on the bookmark.

Acrobat JavaScript Scripting Reference 169

Acrobat JavaScript Scripting Reference
Catalog Object

Catalog Object

A static object that accesses the functionality provided by the Acrobat Catalog plug-in. This
plug-in must be installed in order to interface with the catalog object.

N O T E : Catalog plug-in (and the catalog object) is available only in the Acrobat
Professional.

See also the Index Object , used to invoke various indexing operations provided by Catalog
plug-in, and the CatalogJob Generic Object.

Catalog Properties

isIdle

Returns true when Catalog is idle and not busy with an indexing job.

Type: Boolean Access: R.

jobs

Gets information about the Catalog jobs. Catalog maintains a list of its pending, in progress
and completed jobs for each Acrobat session. Returns an array of CatalogJob Generic
Objects.

Type: Array Access: R.

Catalog Methods

getIndex

Uses a specified path of a Catalog index to get an index object. The returned index
object can be used to perform various indexing operations such as building or deleting an
index.

6.0 � �

6.0 � �

6.0 � �

Acrobat JavaScript Scripting Reference
CatalogJob Generic Object

170 Acrobat JavaScript Scripting Reference

Parameters

Returns

The Index Object.

remove

Removes the specified CatalogJob object from Catalog's job list. Catalog maintains a list
of pending, in progress and completed jobs for each Acrobat session.

Parameters

Returns

Nothing

Example

Delete all jobs that are pending and need complete rebuild.

if (typeof catalog != undefined) {
for (var i=0; i<catalog.jobs.length; i++){

var job = catalog.jobs[i];
console.println("Index: ", job.path);

if (job.status == "Pending" && job.type == "Rebuild")
catalog.remove(job);

}
}

CatalogJob Generic Object

This generic JS object provides information about a job submitted to Catalog. It is returned
by index.build, and the catalog.jobs property, and passed to catalog.remove.

cDIPath The device-independent path of a Catalog index.

6.0 � �

oJob The CatalogJob Generic Object to remove, as returned by the jobs
property and various methods of the Index Object.

Acrobat JavaScript Scripting Reference 171

Acrobat JavaScript Scripting Reference
Certificate Object

It has the following properties:

Certificate Object

The Certificate Object provides read-only access to the properties of an X.509 public key
certificate.

Related objects and methods are:

Security Object: importFromFile and getSecurityPolicies
DirConnection Object: search

Field Object: signatureInfo

FDF Object: signatureValidate
RDN Generic Object

Usage Generic Object

N O T E : There are no security restrictions on this object.

Certificate Properties

binary

The raw bytes of the certificate, as a hex encoded string.

Property Type Access Description

path String R Device independent path of the index associated
with the job

type String R Type of indexing operation associated with the
job. Possible values are:
Build
Rebuild
Delete

status String R The status of the indexing operation. Possible
values are:
Pending
Processing
Completed
CompletedWithErrors

5.0

Acrobat JavaScript Scripting Reference
Certificate Properties

172 Acrobat JavaScript Scripting Reference

Type: String Access: R.

issuerDN

The distinguished name of the issuer of the certificate, returned as an RDN Generic Object.

Type: RDN object Access: R.

keyUsage

An array of strings indicating the value of the certificate key usage extension. Possible
values are

kDigitalSignature kDataEncipherment kCRLSign
kNonRepudiation kKeyAgreement kEncipherOnly
kKeyEncipherment kKeyCertSign kDecipherOnly

Type: Array of Strings Access: R.

MD5Hash

The MD5 digest of the certificate, represented as a hex-encoded string. This provides a
unique fingerprint for this certificate.

Type: String Access: R.

SHA1Hash

The SHA1 digest of the certificate, represented as a hex -encoded string. This provides a
unique fingerprint for this certificate.

5.0

6.0

5.0

5.0

Acrobat JavaScript Scripting Reference 173

Acrobat JavaScript Scripting Reference
Certificate Properties

Type: String Access: R.

serialNumber

A unique identifier for this certificate, used in conjunction with issuerDN.

Type: String Access: R.

subjectCN

The common name of the signer.

Type: String Access: R.

subjectDN

The distinguised name of the signer, returned as an RDN Generic Object.

Type: RDN object Access: R.

ubRights

The application rights that can be enabled by this certificate, returned as a generic Rights
Object.

Type: Rights Object Access: R.

Rights Object

A Rights object has the following properties:

5.0

5.0

5.0

7.0

Property Type Access Description

mode String R Possible values are listed in the UbiquityMode table
below.
Currently, this value is not used by Adobe’s PDF viewer.

Acrobat JavaScript Scripting Reference
Certificate Properties

174 Acrobat JavaScript Scripting Reference

UbiquityMode

These are values of the mode property of the Rights Object.

UbiquityRights

These are values of the rights property of the Rights Object.

rights Array of
Strings

R Array of strings indicating the application rights that can
be enabled by this certificate. Possible values of the string
elements of this array are listed in the UbiquityRights
table below.

String Description

Evaluation Rights enabled by this certificate for this document are valid as long as
this certificate is valid.

Production Rights enabled by this certificate for this document are valid for
eternity.

String Description

FormFillInAndSave The right to fill in forms, excluding signature fields, and to save
the modified file.

FormImportExport The right to import and export form data.

FormAddDelete The right to add or delete a form field.

SubmitStandalone The right to submit a document outside a browser.

SpawnTemplate The right to spawn page templates.

Signing The right to sign existing form fields in a document.

AnnotModify The right to create, delete and modify comments.

AnnotImportExport The right to import and export annotations.

BarcodePlaintext The right to encode the appearance of a form field as a plain text
barcode.

AnnotOnline Allow online commenting. Enables upload of any annotations in the
document to a server. Enables download of annotations from a
server. Does not enable the addition of these annotations into the
document.

FormOnline Enable forms-specific online mechanisms (e.g. SOAP or Active Data
Object).

Property Type Access Description

Acrobat JavaScript Scripting Reference 175

Acrobat JavaScript Scripting Reference
Certificate Properties

usage

The purposes for which this certificate may be used within the Acrobat environment
returned as a Usage Generic Object.

Type: Usage Object Access: R.

Usage Generic Object

This generic JS object represents a certificate usage value in the certificate.usage
property. It has the following properties.

Example

The following example shows how the usage property can be used. The result of this
script execution will be that the currently open document is encrypted for everyone in the
addressbook. Addressbook entries that contain sign-only certificates, CA certificates, no
certificates at all, or are otherwise unsuitable for encryption, will not be included in the final
recipient list.

var eng = security.getHandler("Adobe.AAB");
var dc = eng.directories[0].connect();
var recipients = dc.search();

var filteredRecipients = new Array();
for(i = 0; i < recipients.length; ++i) {

if(recipients[i].defaultEncryptCert &&
 recipients[i].defaultEncryptCert.usage.endUserEncryption) {
 filteredRecipients[filteredRecipients.length] = recipients[i];
 continue;
}
if(recipients[i].certificates) {
 for(j = 0; j < recipients[i].certificates.length; ++j)

if(recipients[i].certificates[j].usage.endUserEncryption) {

EFModify The right to create, delete, modify and import a named embedded
files. Does not apply to file attachment annotations..

6.0

Property Type Access Description

endUserSigning Boolean R true if the certificate is useable for
end-user signing.

endUserEncryption Boolean R true if the certificate is useable for
end-user encryption.

String Description

Acrobat JavaScript Scripting Reference
Collab Object

176 Acrobat JavaScript Scripting Reference

 filteredRecipients[filteredRecipients.length]
= recipients[i];

 continue;
}

}
}
this.encryptForRecipients({ [userEntities: filteredRecipients] });

Collab Object

This object represents the Collaboration functionality.

Collab Methods

addStateModel

Adds a new state model to Acrobat. A state model describes the valid states that an annot
using the model can have (see the Annot Object for details about getting and setting the
state of an annot). State models can be used to describe the workflow that a document
review goes through and can be used for review management.

See also removeStateModel, getStateInModel and transitionToState.

Parameters

6.0

cName A unique, language-independent identifier for the State Model.

cUIName The display name of the state model used in the User Interface and
should be localized.

oStates The states in the state model, described by a States Object Literal.

cDefault (optional) One of the states in the model to be used as a default
state if no other state is set. The default is for there to be no default
state.

bHidden (optional) Whether the state model should be hidden in the state
model user interface. The default is false (the State Model is
shown).

bHistory (optional) Whether an audit history is maintained for the state
model. Keeping an audit history requires more space in the file. The
default is true.

Acrobat JavaScript Scripting Reference 177

Acrobat JavaScript Scripting Reference
Collab Methods

Returns

Nothing

States Object Literal

This object literal represents a set of states in a state model, and is passed as the oStates
parameter. The elements in the object literal are the unique state identifiers and the values
are objects having the following properties:

Example

Add a new state model with a unique name of "ReviewStates":

Collab.addStateModel({
cName: "ReviewStates",
cUIName: "My Review",
oStates:
{

"initial": {cUIName: "Haven't reviewed it"},
"approved": {cUIName: "I approve"},
"rejected": {cUIName: "Forget it"},
"resubmit": {cUIName: "Make some changes"}

},
cDefault: "initial"

});

A state model can be removed with Collab.removeStateModel.

removeStateModel

Removes a state model that was previously added by calling addStateModel. Removing
a state model does not remove the state information associated with individual annots—
if the model is removed and added again, all of the state information for the annots will
still be available.

See also addStateModel, getStateInModel and transitionToState.

cUIName The UI (display name) for the state.

oIcon (optional) An Icon Stream Generic Object that will be displayed in
the UI for the state.

6.0

Acrobat JavaScript Scripting Reference
Color Object

178 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Continuing the example in addStateModel, we remove the state model "ReviewStates":

// Remove the state model
Collab.removeStateModel("ReviewStates");

Color Object

The color object is a convenience static object that defines the basic colors. These colors
are accessed in JavaScripts via the color object. Use this object whenever you want to set
a property or call a method that require a color array. The color object is defined in
AForm.js.

Color Arrays

A color is represented in JavaScript as an array containing 1, 2, 4, or 5 elements
corresponding to a Transparent, Gray, RGB, or CMYK color space, respectively. The first
element in the array is a string denoting the color space type. The subsequent elements are
numbers that range between zero and one inclusive. For example, the color red can be
represented as ["RGB", 1, 0, 0].

Invalid strings or insufficient elements in a color array cause the color to be interpreted as
the color black.

cName A unique, language-independent identifier for the State Model that
was used in addStateModel.

4.0

Color Space String

Number of
Additional
Elements Description

Transparent "T" 0 A transparent color space indicates a complete
absence of color and will allow those portions
of the document underlying the current field to
show through.

Acrobat JavaScript Scripting Reference 179

Acrobat JavaScript Scripting Reference
Color Properties

Color Properties

The color object defines the following colors:

Gray "G" 1 Colors in the gray color space are represented
by a single value—the intensity of achromatic
light. In this color space, 0 is black, 1 is white,
and intermediate values represent shades of
gray. For example, .5 represents medium gray.

RGB "RGB" 3 Colors in the RGB color space are represented
by three values: the intensity of the red, green,
and blue components in the output. RGB is
commonly used for video displays because
they are generally based on red, green, and
blue phosphors.

CMYK "CMYK" 4 Colors in the CMYK color space are represented
by four values, the amounts of the cyan,
magenta, yellow, and black components in the
output. This color space is commonly used for
color printers, where they are the colors of the
inks used in four-color printing. Only cyan,
magenta, and yellow are necessary, but black is
generally used in printing because black ink
produces a better black than a mixture of cyan,
magenta, and yellow inks, and because black
ink is less expensive than the other inks.

Color Object Keyword Equivalent JS Version

Transparent color.transparent ["T"]

Black color.black ["G", 0]

White color.white ["G", 1]

Red color.red ["RGB", 1,0,0]

Green color.green ["RGB", 0,1,0]

Blue color.blue ["RGB", 0, 0, 1]

Cyan color.cyan ["CMYK", 1,0,0,0]

Color Space String

Number of
Additional
Elements Description

Acrobat JavaScript Scripting Reference
Color Methods

180 Acrobat JavaScript Scripting Reference

Example

This example sets the text color of the field to red if the value of the field is negative, or to
black if the field value is nonnegative.

var f = event.target; /* field that the event occurs at */
f.target.textColor = event.value < 0 ? color.red : color.black;

Color Methods

convert

Converts the colorspace and color values specified by the color object to the specified
colorspace. Note that conversion to the gray colorspace is lossy in the same fashion that
displaying a color TV signal on a black and white TV is lossy. The conversion of RGB to CMYK
does not take into account any black generation or under color removal parameters.

Parameters

Returns

A color array.

Example

The return value of the code line below is the array ["CMYK", 0, 1, 1, 0].

color.convert(["RGB",1,0,0], "CMYK");

Magenta color.magenta ["CMYK", 0,1 0,0]

Yellow color.yellow ["CMYK", 0,0,1,0]

Dark Gray color.dkGray ["G", 0.25] 4.0

Gray color.gray ["G", 0.5] 4.0

Light Gray color.ltGray ["G", 0.75] 4.0

5.0

colorArray Array of color values. See Color Arrays.

cColorspace The colorspace to which to convert.

Color Object Keyword Equivalent JS Version

Acrobat JavaScript Scripting Reference 181

Acrobat JavaScript Scripting Reference
Column Generic Object

equal

Compares two Color Arrays to see if they are the same. The routine performs conversions, if
necessary, to determine if the two colors are indeed equal (for example, ["RGB",1,1,0]
is equal to ["CMYK",0,0,1,0]).

Parameters

Returns

true if the arrays represent the same color, false otherwise.

Example
var f = this.getField("foo");
if (color.equal(f.textColor, f.fillColor))

app.alert("Foreground and background color are the same!");

Column Generic Object

This generic JS object contains the data from every row in a column. A column object is
returned by statement.getColumn and statement.getColumnArray. See also
the ColumnInfo Generic Object.

It has the following properties.

5.0

colorArray1 The first color array for comparison.

colorArray2 The second color array for comparison.

Property Type Access Description

columnNum number R The number identifying the column.

name string R The name of the column.

type number R One of the SQL Types for the data in the column.

typeName string R The name of the type of data the column contains.

value various R/W The value of the data in the column, in the format in
which the data was originally retrieved.

Acrobat JavaScript Scripting Reference
ColumnInfo Generic Object

182 Acrobat JavaScript Scripting Reference

ColumnInfo Generic Object

This generic JS object contains basic information about a column of data, and is returned
by connection.getColumnList. See also Column Generic Object.

It has the following properties.

Connection Object

The Connection object encapsulates a session with a database. Connection objects
are returned by ADBC.newConnection. See also the ADBC Object, Statement Object,
Column Generic Object, ColumnInfo Generic Object, Row Generic Object, and TableInfo
Generic Object.

Property Type Access Description

name string R A string that represents the identifying name of
a column. This string could be used in a
statement.getColumn call to identify the
associated column.

description string R A string that contains database-dependent
information about the column.

type number R A numeric value identifying one of the ADBC
SQL Types that applies to the data contained in
the column associated with the ColumnInfo
object.

typeName string R A string identifying the type of the data
contained in the associated column. This is not
the SQL Types (see type above), but a
database-dependent string representing the
data type. This property may give useful
information about user-defined data types.

5.0 �

Acrobat JavaScript Scripting Reference 183

Acrobat JavaScript Scripting Reference
Connection Methods

Connection Methods

close

Closes an active connection and invalidates all the objects created from the connection.

Parameters

None

Returns

Nothing

newStatement

Creates a Statement Object through which database operations may be performed.

Parameters

None

Returns

A Statement object on success or null on failure.

Example
// get a connection object, see newConnection
var con = ADBC.newConnection("q32000data");
// now get a statement object
var statement = con.newStatement();
var msg = (statement == null) ?

"Failed to obtain newStatement!" : "newStatement Object obtained!";
console.println(msg);

getTableList

Gets information about the various tables in a database.

Parameters

None

6.0 �

5.0 �

5.0 �

Acrobat JavaScript Scripting Reference
Connection Methods

184 Acrobat JavaScript Scripting Reference

Returns

It returns an array of TableInfo Generic Objects. This method never fails but may return a
zero-length array.

Example

Assuming we have a Connection object (con) already in hand

(see newStatement and newConnection), get the list of tables

var tableInfo = con.getTableList();
console.println("A list of all tables in the database.");
for (var i = 0; i < tableInfo.length; i++) {

console.println("Table name: "+ tableInfo[i].name);
console.println("Description: "+ tableInfo[i].description);

}

getColumnList

Gets information about the various columns in the table

Parameters

Returns

Returns an array of ColumnInfo Generic Objects. This method never fails but may return a
zero-length array.

Example

Assuming we have a Connection object (con) already in hand (see newStatement and
newConnection), get list of all column names.

var con = ADBC.newConnection("q32000data");
var columnInfo = con.getColumnList("sales");
console.println("Column Information");
for (var i = 0; i < columnInfo.length; i++) {

console.println(columnInfo[i].name);
console.println("Description: "+ columnInfo[i].description);

}

5.0 �

cName The name of the table to get column information about.

Acrobat JavaScript Scripting Reference 185

Acrobat JavaScript Scripting Reference
Console Object

Console Object

The Console object is a static object to access the JavaScript console for displaying debug
messages and executing JavaScript. It does not function in the Adobe Reader previous to
Adobe Reader 7.0, or in Acrobat Approval.

N O T E : Beginning with version 7.0, the Adobe Reader now has a console window. There is a
preference under Edit > Preferences > General > JavaScript to “Show
console on errors and messages”. The primary function of the console window in
Reader is to report errors and messages. Though the console is not interactive, the
methods of the console object function as they do in Acrobat Standard and
Professional.

The debugging capability of the JavaScript Debugging window can be made
available for Adobe Reader on Windows and Macintosh platform. In order to debug
within Adobe Reader, the JavaScript file debugger.js needs to be installed, and
the windows registry needs to be edited appropriately. See the Acrobat JavaScript
Scripting Guide for the technical details.

See also the Dbg Object.

Console Methods

show

Shows the console window.

Parameters

None

Returns

Nothing

Example

Clear and show the console window:

console.clear();
console.show();

� �

3.01

Acrobat JavaScript Scripting Reference
Console Methods

186 Acrobat JavaScript Scripting Reference

hide

Closes the console window.

Parameters

None

Returns

Nothing

println

Prints a string value to the console window with an accompanying carriage return.

Parameters

Returns

Nothing

Example 1

This example prints the value of a field to the console window. The script could executed
during a mouse up event.

var f = this.getField("myText");
console.clear(); console.show();
console.println("Field value = " + f.value);

Example 2

The console can be used as a debugging tool; you can write values of variables to the
console, for example. The script below is taken from the document level.

var debugIsOn = true;
function myFunction (n, m)
{

if (debugIsOn)
{

console.println("Entering function: myFunction");
console.println(" Parameter 1: n = " + n);
console.println(" Parameter 2: m = " + m);

}
....
....

4.0

3.01

cMessage A string message to print.

Acrobat JavaScript Scripting Reference 187

Acrobat JavaScript Scripting Reference
Data Object

if (debugIsOn) console.println(" Return value: rtn = " + rtn);
return rtn;

}

Beginning with Acrobat 6.0, debugging can also be accomplished with the JavaScript
Debugger. See Dbg Object.

clear

Clears the console windows buffer of any output.

Parameters

None

Returns

Nothing

Data Object

The Data Object is the representation of an embedded file or data stream that is stored in
the document. Data objects are stored in the name tree in the document. See the section
on the Names Tree and Embedded File Streams in the PDF Reference for details.

Data objects can be inserted from the external file system, queried, and extracted. This is a
good way to associate and embed source files, metadata, and other associated data with a
document.

See the following Doc Object properties and methods:
createDataObject,dataObjects,exportDataObject,getDataObject,
importDataObject,removeDataObject,openDataObject,
getDataObjectContents, setDataObjectContents

N O T E : While the methods for data objects were implemented in Acrobat 5.0, the ability to
use these in an Adobe Reader additional usage rights only became available in
Adobe Reader 6.0.

Data Properties

creationDate

The creation date of the file that was embedded.

3.01

5.0

Acrobat JavaScript Scripting Reference
Data Properties

188 Acrobat JavaScript Scripting Reference

Type: Date Access:R.

modDate

The modification date of the file that was embedded.

Type: Date Access:R.

MIMEType

The MIME type associated with this data object.

Type: String Access:R.

name

The name associated with this data object.

Type: String Access:R.

Example
console.println("Dumping all data objects in the document.");
var d = this.dataObjects;
for (var i = 0; i < d.length; i++)

console.println("DataObject[" + i + "]=" + d[i].name);

path

The device-independent path to the file that was embedded.

Type: String Access:R.

size

The size, in bytes, of the uncompressed data object.

Type: Number Access:R.

Acrobat JavaScript Scripting Reference 189

Acrobat JavaScript Scripting Reference
DataSourceInfo Generic Object

DataSourceInfo Generic Object

This generic JS object contains basic information about a particular database. The
ADBC.getDataSourceList method returns an array of these objects. The object has
the following properties.

Dbg Object

The Dbg Object is used to optionally control the JavaScript Debugger from a command-
line console standpoint. The same functionality provided by the buttons in the JavaScript
Debugger dialog toolbar available from the dbg methods. In addition, breakpoints can be
created, deleted and inspected using the dbg object.

The dgb object and the JavaScript Debugger are only available in Acrobat Professional.

N O T E S : Should the viewer lock up during a debugging session, pressing the Esc-key may
resolve the problem.

Debugging is not possible with a model dialog open, this occurs, for example, when
debugging a batch sequence.

Debugging script with an running event initiated by either app.setInterval or
app.setTimeOut may cause a recurring alert boxes to appear. Use the Esc-key
after the model dialog is dismissed to resolve the problem.

(Version 7.0) While the Debugger is open, and a debugging session is under way, the
Acrobat application will be unavailable.

Property Type Access Description

name String R A string that represents the identifying name of a
database. This string could be passed to
newConnection to establish a connection to
the database that the DataSourceInfo object is
associated with.

description String R A string that contains database dependent
information about the database.

Acrobat JavaScript Scripting Reference
Dbg Properties

190 Acrobat JavaScript Scripting Reference

Dbg Properties

bps

Returns an array of Breakpoint Generic Objects, each element corresponding to a
breakpoint set in the debugger.

Type: Array Access:R.

Breakpoint Generic Object

This generic JS object contains basic information about a breakpoint, and is returned by the
Dbg.bps property. It contains the following properties and methods:

Example

List all currently active breakpoints.

var db = dbg.bps
for (var i = 0; i < db.length; i++)
{
 for (var o in db[i]) console.println(o + ": " + db[i][o]);
 console.println("------------------------------------");
}

See sb for another example of usage.

6.0 �

Property Type Access Description

fileName string R A string that identifies the script in the
debugger.

condition string R A JavaScript expression evaluated whenever
the debugger has to decide to stop or not at
a breakpoint. Used to create conditional
breakpoints. The default value for this
property is the string "true".

lineNum number R The line number in the script for which the
breakpoint is set.

Method Parameters Returns Description

toString none String A string describing the breakpoint.

Acrobat JavaScript Scripting Reference 191

Acrobat JavaScript Scripting Reference
Dbg Methods

Dbg Methods

c

The c (continue) method resumes execution of a program stopped in the debugger. The
JavaScript program may either stop again, depending on where the breakpoints are set, or
reach execution end.

Parameters

None

Returns

Nothing

cb

The cb (clear breakpoint) method clears a breakpoint in the debugger.

Parameters

Returns

Nothing

q

The q (quit) method quits debugging and executing the current JavaScript. It additionally
dismisses the debugger dialog.

Parameters

None

6.0 �

6.0 � �

fileName The name of the script from where the breakpoint is going to be
deleted.

lineNum The line number for the breakpoint that is going to be cleared in the
script.

6.0 �

Acrobat JavaScript Scripting Reference
Dbg Methods

192 Acrobat JavaScript Scripting Reference

Returns

Nothing

sb

The sb (set breakpoint) method sets a new breakpoint in the debugger.

Parameters

Returns

Nothing

Example 1

Some script is run and an exception is thrown due to some error. A breakpoint is
programmatically set using the information given in the error message.

SyntaxError: missing ; before statement 213:Document-Level: myDLJS
// now set a breakpoint using the console
dbg.sb({

fileName: "Document-Level: myDLJS",
lineNum: 213,
condition: "true"

});

Example 2

This example simulates the functionality of the “Store breakpoints in PDF file’ checkbox in
the Preferences > General > JavaScript dialog.

// save breakpoints in PDF file
this.addScript("myBreakpoints", "var myBPS = " + dbg.bps.toSource());

// now reset the breakpoints
for (var i = 0; i < myBPS.length; i++) dbg.sb(myBPS[i]);

6.0 � �

fileName The name of the script where the breakpoint is to be set.

lineNum The line number where the breakpoint is going to be created in the
script

condition (optional) a JavaScript expression evaluated every time the
debugger reaches a breakpoint . The decision to stop or not at a
breakpoint is based on the result of evaluating such expression. If the
expression evaluates to true, the debugger will stop at the
breakpoint. If the expression evaluates to false, the debugger
continues executing the script and will not stop at the breakpoint.
The default value for this parameter is the string "true".

Acrobat JavaScript Scripting Reference 193

Acrobat JavaScript Scripting Reference
Dbg Methods

Example 3

Set a conditional break. Consider the following code, which is a mouse up action.

for (var i=0; i<100; i++)
 myFunction(i); // defined at document level

// In the console, set a conditional break. Here, we break when the
// index of the loop is greater than 30.
dbg.sb({

fileName:"AcroForm:Button1:Annot1:MouseUp:Action1",
lineNum:2,
condition:"i > 30"

})

si

The si (step in) method advances the program pointer to the next instruction in the
JavaScript program, entering each function call that is encountered, and for which there is a
script defined. Native JavaScript calls cannot be stepped into.

Parameters

None

Returns

Nothing

sn

The sn (step instruction) method advances the program pointer to the next byte-code in
the JavaScript program. Each JavaScript instruction is made up of several byte-codes as
defined by the JavaScript interpreter.

Parameters

None

Returns

Nothing

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference
Dialog Object

194 Acrobat JavaScript Scripting Reference

so

The so (step out) method executes the program until it comes out of the current function.
It stops executing in the instruction immediately following the call to the function. If the
scope currently under debug is the top level scope, the program may continue executing
until it ends, or stop again when it reaches a breakpoint.

Parameters

None

Returns

Nothing

sv

The sv (step over) method advances the program pointer to the next instruction in the
JavaScript program. If a function call is encountered, the debugger will not step into the
instructions defined inside that function.

Parameters

None

Returns

Nothing

Dialog Object

An instance of this object is passed as a parameter to the initialize, validate,
commit, destroy and ItemID methods of the Dialog Descriptor object literal that is
passed to app.execDialog(), see Dialog Handlers. The Dialog object allows the
current state of the Dialog to be queried and set.

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference 195

Acrobat JavaScript Scripting Reference
Dialog Methods

Dialog Methods

enable

This method enables/disables various dialog elements using the object literal passed in. For
each dialog item to modify, there should be an entry in the object literal with the Dialog
ItemID as the label and a boolean as the value indicating if it is enabled or not.

Typically, enable() is called in the initialize() method (see see Dialog Handlers) of
the object literal passed to app.execDialog() to preset whether various dialog
elements are enabled or not.

Parameters

Returns

Nothing

Example

See the examples following app.execDialog().

end

This method terminates a currently executing dialog (as if the cancel button had been
pressed). This method takes an optional parameter of the ItemID, a string, of the dialog
element that will be reported as dismissing the dialog. This ItemID will be the return
value of the app.execDialog() call which created the dialog.

Parameters

Returns

Nothing

Example

See the examples following app.execDialog().

7.0

object literal

7.0

String (optional) The ItemID of the dialog element that will be reported as
dismissing the dialog.

Acrobat JavaScript Scripting Reference
Dialog Methods

196 Acrobat JavaScript Scripting Reference

load

This method sets the values of dialog elements using the object literal passed in. Dialog
items are identified by an ItemID which is a unique 4 character string. For each dialog
item to be modified, there should be an entry in the object literal with the ItemID as the
label and the dialog element setting as the contents. If the dialog element takes multiple
values (for example, a list_box or a popup) then the value should be an object literal
consisting of the displayed entry as the label and a numeric value as the contents. Similarly,
if the dialog element is hierarchical in nature (for example, a hier_list_box) then the
value should be a set of nested object literals. If the numeric value is greater than 0, then
the item is selected, otherwise it is not selected.

Typically, load() is called in the initialize() method (see see Dialog Handlers) of
the object literal passed to app.execDialog() to preset the value of various dialog
elements.

Parameters

Returns

Nothing

Example

See the examples following app.execDialog().

store

This method gets the values of dialog elements as an object literal returned. Dialog items
are identified by an ItemID which is a unique 4 character string. For each dialog element
in the dialog there will be an entry in the object literal with the ItemID as the label and the
dialog element setting as the contents. If the dialog element takes multiple values (for
example, a list_box or a popup) then the value should be an object literal consisting of
the displayed entry as the label and a numeric value as the contents. If the numeric value is
greater than 0, then the item was selected, otherwise it was not selected.

Typically, store() is called in the commit() method (see see Dialog Handlers) of the
object literal passed to app.execDialog() to extract the value of various dialog
elements.

Parameters

None

7.0

object literal

7.0

Acrobat JavaScript Scripting Reference 197

Acrobat JavaScript Scripting Reference
Directory Object

Returns

object literal

Directory Object

Directories are a repository of user information, including public-key certificates. Directory
Objects provide directory access and are obtained using the directories property or
the newDirectory method of the SecurityHandler Object.

Acrobat 6.0 provides several directories. The Adobe.AAB Security Handler has a single
directory named Adobe.AAB.AAB. This directory provides access to the local Acrobat
Address Book, also called the Trusted Identity Store. On Windows, the Adobe.PPKMS Security
Handler provides access, via Microsoft Active Directory Script Interface (ADSI) to as many
directories as have been created by the user. These directories are created sequentially with
names Adobe.PPKMS. ADSI.dir0, Adobe.PPKMS.ADSI.dir1, and so on.

N O T E : (Security �) This object can only be obtained from a SecurityHandler Object and is
thus governed by the security restrictions of the SecurityHandler Object. The
Directory Object is therefore available only for batch, console, application
initialization and menu execution, including in Acrobat Reader. See also Privileged
versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Directory Properties

info

The value of this property is a DirectoryInformation Generic Object, a generic object used
to set and get the properties for this Directory Object.

Type: Object Access: R/W.

Example
// Create and activate a new directory
var oDirInfo = { dirStdEntryID: "dir0",

dirStdEntryName: "Employee LDAP Directory",
dirStdEntryPrefDirHandlerID: "Adobe.PPKMS.ADSI",
dirStdEntryDirType: "LDAP",

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference
Directory Properties

198 Acrobat JavaScript Scripting Reference

server: "ldap0.acme.com",
port: 389 };

var sh = security.getHandler("Adobe.PPKMS");
var newDir = sh.newDirectory();
newDir.info = oDirInfo;

DirectoryInformation Generic Object

A directory information object is a generic object representing the properties for a
directory and has the following standard properties:

Standard Directory Information Object properties

Property Type Access Required Description

dirStdEntryID String R/W Yes A unique, language
independent name for the
directory. Must be
alphanumeric and can
include underscores,
periods and hyphens. For
new directory objects it is
suggested that the ID not
be provided, in which case
a new unique name will be
automatically generated.

dirStdEntryName String R/W Yes A user friendly name for the
directory.

dirStdEntryPrefDirHandlerID String R/W No The name of the directory
handler that is to be used
by this directory. Security
handlers can support
multiple directory handlers
for multiple directory types
(eg. local directories, LDAP
directories).

dirStdEntryDirType String R/W No The type of directory. An
example of this would be
LDAP, ADSI, WINNT.

Acrobat JavaScript Scripting Reference 199

Acrobat JavaScript Scripting Reference
Directory Properties

Directory information objects can include additional properties that are specific to a
particular directory handler. The Adobe.PPKMS.ADSI directory handler includes the
following additional properties:

Example 1

Create and activate a new directory.

var oDirInfo = { dirStdEntryID: "dir0",
dirStdEntryName: "Employee LDAP Directory",
dirStdEntryPrefDirHandlerID: "Adobe.PPKMS.ADSI",
dirStdEntryDirType: "LDAP",
server: "ldap0.acme.com",
port: 389

};
var sh = security.getHandler("Adobe.PPKMS");
var newDir = sh.newDirectory();
newDir.info = oDirInfo;

dirStdEntryVersion String R No The version of the data. The
default value is 0 if this is
not set by the directory. The
value for Acrobat 6.0
directories for the
Adobe.AAB and
Adobe.PPKMS.ADSI
directory handlers is
0x00010000.

Adobe.PPKMS.ADSI addtional directory information object properties

Property Type Access Description

server String R/W The server that hosts the data. For example,
addresses.employees.xyz.com.

port Number R/W The port number for the server. The standard
LDAP port number is 389.

searchBase String R/W Narrows down the search to a particular section
of the directory. An example of this would be
o=XYZ Systems,c=US.

maxNumEntries Number R/W The maximum number of entries that would be
retrieved in a single search.

timeout Number R/W The maximum time allowed for a search.

Standard Directory Information Object properties

Property Type Access Required Description

Acrobat JavaScript Scripting Reference
Directory Methods

200 Acrobat JavaScript Scripting Reference

Example 2

Get information for existing directory.

var sh = security.getHandler("Adobe.PPKMS");
var dir0 = sh.directories[0];
// Get directory info object just once for efficiency
var dir0Info = dir0.info;
console.println("Directory " + dir0Info.dirStdEntryName);
console.println("address " + dir0Info.server + ":" + dir0Info.port);

Directory Methods

connect

Returns a DirConnection Object that is a connection to the directory with the
specified name. There can be more then one active connection for a directory.

See also DirConnection Object and the SecurityHandler Object’s directories
property.

Parameters

Returns

A DirConnection Object, or null, if there is no directory with the specified name.

Example:

Enumerate available directories and connect.

var sh = security.getHandler("Adobe.PPKMS");
var dirList = sh.directories;
for (var i=0; i< dirList.length; i++)
 for (var o in dirList[i].info)

console.println(o + " = " + dirList[i].info[o]);
var dirConnection = dirList[0].connect();

6.0 �

oParams (optional) A generic object that can contain parameters that are
necessary in order to create the connection. Properties of this object
are dependent on the particular directory handler and can include
userid and password.

bUI (optional) A boolean value that defaults to false. It conveys to the
directory handler if it could bring its UI in case that is required for
establishing the connection.

Acrobat JavaScript Scripting Reference 201

Acrobat JavaScript Scripting Reference
DirConnection Object

DirConnection Object

The DirConnection object represents an open connection to a directory: a repository of
user information, including public-key certificates. Directory connections are opened using
the Directory Object’s connect method. A directory with a particular name can have more
then one connection open at a time. All DirConnection objects must support all
properties and methods listed here, unless otherwise specified.

N O T E S : (Security �) : This object can only be obtained from a Directory Object and is thus
governed by the security restrictions of the Directory Object. The
DirConnection Object is therefore available only for batch, console,
application init and menu exec, including in Acrobat Reader. See also Privileged
versus Non-privileged Context.

DirConnection Properties

canList

Indicates whether the directory connection is capable of listing all of its entries. Some
directories may contain too many entries for this operation to be practical.

Type: Boolean Access: R.

Example

The AAB directory allows listing of the local trusted identity list

var sh = security.getHandler("Adobe.AAB");
var dc = sh.directories[0].connect();
console.println("CanList = " + dc.canList);

canDoCustomSearch

Whether the directory connection supports search using directory-specific search
parameter attributes. As an example, directory-specific attributes for an LDAP directory
include: o (organization), c (country), cn (common name), givenname, sn (surname), uid, st,
postalcode, mail, and telephonenumber.

Type: Boolean Access: R.

6.0 �

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference
DirConnection Properties

202 Acrobat JavaScript Scripting Reference

canDoCustomUISearch

Whether the directory connection supports search using its own custom user interface to
collect the search parameters.

Type: Boolean Access: R.

canDoStandardSearch

Whether the directory connection supports search using standard search parameter
attributes. The standard attributes are

firstName
lastName
fullName
email
certificates

Some directory database implementations may not support these attributes, but directory
handlers are free to translate these attributes to names understood by the directory.

Type: Boolean Access: R.

groups

Returns an array of language dependent names for groups that are available through this
connection.

Type: Array Access: R.

name

Returns the language independent name of the directory that this object is connected to.
An example of this would be Adobe.PPKMS.ADSI.dir0. All DirConnection objects
must support this property.

Type: String Access: R.

6.0 �

6.0 �

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference 203

Acrobat JavaScript Scripting Reference
DirConnection Methods

uiName

Returns the language dependent string of the directory this object is connected to. This
string is suitable for user interfaces. An example of this would be XYZ’s Employees. All
DirConnection objects must support this property.

Type: String Access: R.

DirConnection Methods

search

Searches the directory and returns an array of UserEntity Generic Objects that match the
search parameters. A UserEntity Generic Object is a generic object that contains properties
for all attributes that were requested via the setOutputFields method. If the
setOutputFields method is not called prior to a search it would return a UserEntity
Generic Object containing no entries.

Parameters

6.0 �

6.0 �

oParams (optional) A generic object containing an array of key-value pairs
consisting of search attribute names and their corresponding strings.
If oParams is not provided and canList is true for this directory
then all entries in the directory will be returned. If oParams is not
provided and canList is false, an exception occurs.

cGroupName (optional) The name of a group (not to be confused with Group
Objects). If specified then the search will be restricted to this group.

bCustom (optional) If false (the default), oParams contains standard search
attributes. The canDoStandardSearch property must be true,
or an exception occurs. If true, then oParams contains directory-
specific search parameters. The canDoCustomSearch property
must be true, or an exception occurs.

bUI (optional) If true, the handler shows user interface to allow
collection of search parameters. The results of the search are returned
by this method. canDoCustomUISearch must also be true if bUI
is true, or an exception will occur. If bUI is specified then bCustom
must also be specified, though its value is ignored.

Acrobat JavaScript Scripting Reference
DirConnection Methods

204 Acrobat JavaScript Scripting Reference

Returns

An array of UserEntity Generic Objects.

Example 1

Directory search

var sh = security.getHandler("Adobe.PPKMS");
var dc= sh.directories[0].connect();
dc.setOutputFields({oFields:["certificates","email"]})
var retVal = dc.search({oParams:{lastName:"Smith"}});
if(retVal.length)
console.println(retVal[0].email);

Example 2

List all entries in local Acrobat Address Book. The script searches the directory and returns
an array of users, along with their certificate information.

var sh = security.getHandler("Adobe.AAB");
var dc = sh.directories[0].connect();
if(dc.canList) {

var x = dc.search();
 for(j=0; j<x.length; ++j) {

console.println("Entry[" + j + "] = " + x[j].fullName + ":");
 for(i in x[j]) console.println(" " + i + " = " + x[j][i]);

}

}

UserEntity Generic Object

A generic JS object that describes a user in a directory and the user’s associated certificates.
It contains standard properties that have a specific meaning for all directory handlers.
Directory handlers translate these entries to the ones that are specific to them when
required. An array of these objects is returned by dirConnection.search.

It has the following properties.

Property Type Access Description

firstName String R/W The first name for the user.

lastName String R/W The last name of the user.

fullName String R/W The full name of the user.

certificates Array of
Certificate
Objects

R/W An array of certificates that belong
to this user. To find a certificate that
is to be used for a particular use, the
caller should inspect the certificate’s
keyUsage property.

Acrobat JavaScript Scripting Reference 205

Acrobat JavaScript Scripting Reference
DirConnection Methods

setOutputFields

Defines the list of attributes that should be returned when executing the search method.

N O T E : This method is not supported by the Adobe.AAB directory handler. Custom options
are not supported by the Adobe.PPKMS.ADSI directory handler.

Parameters

Returns

An array of strings, containing the names of attributes from oFields that are not
supported by this directory. An empty array is returned if the oFields array is empty.

Example

In this example, dc.setOutputFields() returns the array of strings ["x", "y"].

var sh = security.getHandler("Adobe.PPKMS");
var dc = sh.directories[0].connect();
var w = dc.setOutputFields(["certificates", "email", "x", "y"]);

defaultEncryptCert Array of
Certificate
Objects

R/W The preferred certificate to use when
encrypting documents for this user
entity. Routines that process User
Entity Objects will look first to
this property when choosing an
encryption certificate: if this
property is not set then the first valid
match in the certificates property
will be used.

6.0 � �

oFields An array of strings containing the names of attributes that should be
returned from the directory when calling the search method. The
names in this array must either be names of standard attributes that
can be used for all directory handlers, or custom attributes that are
defined for a particular directory. The standard attributes are the
property names defined for the UserEntity Generic Object. Directory
handlers can, when desired, translate standard attribute names to
names that it understands.

bCustom (optional) A boolean indicating that the names in oFields are
standard output attribute names. If true then the names represent
directory-specific attributes that are defined for a particular directory
handler. The default is false.

Property Type Access Description

Acrobat JavaScript Scripting Reference
Doc Object

206 Acrobat JavaScript Scripting Reference

console.println(w);

See also the examples that follow the DirConnection.search method

Doc Object

The JavaScript doc object provides the interface between a PDF document open in the
viewer and the JavaScript interpreter. It provides methods and properties of the PDF
document.

Doc Access from JavaScript

You can access the doc object from JavaScript in a variety of ways.

● The most common way is through the this Object, which usually points to the doc
object of the underlying document.

● Some properties and methods return doc objects, activeDocs, openDoc, or
extractPages all return doc objects.

● JavaScript is executed as a result of some event. For each event, an Event Object is
created. A doc object can often be accessed through event.target:
– For mouse, focus, blur, calculate, validate, and format events,

event.target returns the Field Object that initiated the event . You can then
access the doc object through field.doc.

– For all other events, event.target points to the doc object.

Example 1: Access through this object

Use this to get the number of pages in this document:

var nPages = this.numPages;
// get the crop box for "this" document:
var aCrop = this.getPageBox();

Example 2: Access through return values

Return values from one document to open, modify, save and close another.

// path relative to "this" doc:
var myDoc = app.openDoc("myNovel.pdf", this);
myDoc.info.Title = "My Great Novel";
myDoc.saveAs(myDoc.path);
myDoc.closeDoc(true);

Example 3: Access through the event object.

For mouse, calculate, validate, format, focus, and blur events:

var myDoc = event.target.doc;

For all other events (for example, batch or console events):

var myDoc = event.target;

Acrobat JavaScript Scripting Reference 207

Acrobat JavaScript Scripting Reference
Doc Properties

Doc Properties

alternatePresentations

References the document's AlternatePresentation Object. If the functionality needed to
display alternate presentations is not available, this property is undefined..

The alternatePresentation object provides access to the document's alternate
presentations. The PDF language extension specifies that each document can potentially
have many named alternate presentations. Each alternate presentation with a known type
will have a corresponding doc.alternatePresentations property in the document.
This property should have the same name as its alternate presentation and should
reference its alternate presentation's AlternatePresentation Object. If there are no
recognized alternate presentations in the document, this object is empty (does not have
any properties).

Section 9.4, titled “Alternate Presentations”, of the PDF Reference provide details on this
topic.

N O T E : For compatibility with current implementation alternate presentation name must
be an ASCII string. The only alternate presentation type currently implemented is
"SlideShow".

See the AlternatePresentation Object for properties and methods that can be used to
control an alternate presentation.

Type: Object | undefined Access: R.

Example 1

Test whether the alternatePresentations object is present:

if(typeof this.alternatePresentations != "undefined")
{

// assume AlternatePresentations are present
// list the names of all alternate presentations in the doc
for (var ap in this.alternatePresentations) console.println(ap);

}

Example 2

Assume there is a named presentation “MySlideShow” within the document.

// oMySlideShow is an AlternatePresentation object
oMySlideShow = this.alternatePresentations["MySlideShow"];
oMySlideShow.start();

6.0

Acrobat JavaScript Scripting Reference
Doc Properties

208 Acrobat JavaScript Scripting Reference

author

The author of the document. See info, which supersedes this property in later versions.

N O T E : This property is read-only in Adobe Reader.

Type: String Access: R/W.

baseURL

The base URL for the document is used to resolve relative web links within the document.
See also URL.

Type: String Access: R/W.

Example

This example sets the base URL, creates a link to go to a page relative to the base URL.

console.println("Base URL was " + this.baseURL);
this.baseURL = "http://www.adobe.com/products/";
console.println("Base URL is " + this.baseURL);
// add a link to the first page
var link = this.addLink(0, [200,200, 400, 300])
// set action that goes to the Acrobat page on the Adobe web site.
link.setAction("this.getURL('acrobat',false)")

bookmarkRoot

The root bookmark for the bookmark tree. This bookmark is not displayed to the user; it is a
programmatic construct used to access the tree and the child bookmarks.

Type: object Access: R.

Example

See the Bookmark Object for an example of usage.

� � �

5.0 �

5.0

Acrobat JavaScript Scripting Reference 209

Acrobat JavaScript Scripting Reference
Doc Properties

calculate

If true, allows calculations to be performed for this document. If false, prevents all
calculations from happening for this document. Its default value is true. This property
supersedes the app.calculate, whose use is now discouraged.

Type: Boolean Access: R/W.

creationDate

The document’s creation date. See info, which supersedes this property in later versions.

Type: Date Access: R.

creator

The creator of the document (for example, "Adobe FrameMaker", "Adobe PageMaker", and
so on). See info, which supersedes this property in later versions.

Type: String Access: R.

dataObjects

An array containing all the named data objects in the document.

Related objects, properties and methods are the Data Object, doc.openDataObject,
doc.getDataObject, doc.createDataObject, doc.importDataObject,
doc.removeDataObject, doc.getDataObjectContents and
doc.setDataObjectContents.

Type: Array Access: R.

Example

List all embedded files in the document.

var d = this.dataObjects;
for (var i = 0; i < d.length; i++)

console.println("Data Object[" + i + "]=" + d[i].name);

4.0

�

�

5.0

Acrobat JavaScript Scripting Reference
Doc Properties

210 Acrobat JavaScript Scripting Reference

delay

This boolean property can delay the redrawing of any appearance changes to every field in
the document. It is generally used to buffer a series of changes to fields before requesting
that the fields regenerate their appearance. When true, forces all changes to be queued
until delay is reset to false. Once set to false, all the fields on the page are redrawn.

See also the field.delay property.

Type: Boolean Access: R/W.

dirty

This boolean property can be used to determine whether the document has been dirtied as
the result of a changes to the document, and therefore needs to be saved. It is useful to
reset the dirty flag in a document when performing changes that do not warrant saving,
for example, updating a status field in the document.

N O T E : If the document is temporary or newly created, setting doc.dirty to false has
no effect, that is, the user is still asked to save changes before closing the document.
See doc.requiresFullSave in this regard.

Type: Boolean Access: R/W.

Example 1

This example resets the form and sets the doc.dirty to false. After the reset, the user
can close the document without without having to dismiss a save dialog.

var f = this.getField("MsgField");
f.value = "You have made too many mistakes, I’m resetting the form. "

+ "Start over, this time follow the directions!";
this.resetForm();
this.dirty = false;

Example 2

In this example, a text field is filled that informs the user to complete the form. The script is
constructed so that the populating the field does not change the save state of the
document.

var f = this.getField("MsgField");
var b = this.dirty;
f.value = "Please fill in the fields below.";
this.dirty = b;

4.0

3.01 � �

Acrobat JavaScript Scripting Reference 211

Acrobat JavaScript Scripting Reference
Doc Properties

disclosed

A boolean property that determines whether the document should be accessible to
JavaScripts in other documents.

The two methods app.openDoc and app.activeDocs check the disclosed
 property of the document before returning its Doc Object.

N O T E : (Security �): The disclosed property can only be set during batch, console,
Page/Open and Doc/Open events. See the Event Object for a discussion of Acrobat
JavaScript events. See also Privileged versus Non-privileged Context.

Type: Boolean Access: R/W.

Example 1

A document can be disclosed to others by placing the code at the document level (or as a
page open action) at the top level:

this.disclosed = true;

Example 2

The following code can be used in a Execute JavaScript Batch Sequence to disclose all
selected documents.

this.addScript("Disclosed", "this.disclosed = true;");

docID

The value of this property is an array of two strings. The format of each string is hex
encoded binary. The first string is a permanent identifier based on the contents of the file at
the time it was originally created, and does not change when the file is incrementally
updated. The second string is a changing identifier based on the file’s contents at the time it
was last updated. These identifiers are defined by the optional ID entry in a PDF file’s trailer
dictionary. See Section 10.3 of PDF Reference for more details.

Type: Array Access: R.

See “Example 6 (Version 7.0)” on page 315 for an example of usage.

5.05 �

6.0

Acrobat JavaScript Scripting Reference
Doc Properties

212 Acrobat JavaScript Scripting Reference

documentFileName

The base filename with extension of the document referenced by the doc object. The
device-independent path is not returned. See also doc.path and doc.URL. The file size
of the document can be obtained from doc.filesize.

Type: String Access: R.

Example

Executing the script

console.println('"The filename of this document is '
+ this.documentFileName +'."');

on this document, the Acrobat JavaScript Scripting Reference, yields

"The filename of this document is AcroJS.pdf."

dynamicXFAForm

Returns true if the document is XFA, and it is dynamic . Returns false otherwise.

A dynamic XFA form is one in which some of the fields can grow or shrink in size to
accomodate the values they contain.

Type: Boolean Access: R.

Example

See the XFAObject Object for an example of usage.

external

Whether the current document is being viewed in the Acrobat application or in an external
window (such as a web browser).

Type: Boolean Access: R.

Example
if (this.external)
{

// viewing from a browser
}
else

6.0

7.0

4.0

Acrobat JavaScript Scripting Reference 213

Acrobat JavaScript Scripting Reference
Doc Properties

{
// viewing in the Acrobat application.

}

filesize

The file size of the document in bytes.

Type: Integer Access: R.

Example (Version 5.0)

Get a readout of difference is file sizes before and after saving a document.

// add the following code to the "Document Will Save" section
var filesizeBeforeSave = this.filesize
console.println("File size before saving is " + filesizeBeforeSave);

// add the following code to the "Document Did Save" section
var filesizeAfterSave = this.filesize
console.println("File size after saving is " + filesizeAfterSave);
var difference = filesizeAfterSave - filesizeBeforeSave;
console.println("The difference is " + difference);
if (difference < 0)
 console.println("Reduced filesize!");
else
 console.println("Increased filesize!");

hidden

This property is true if the document’s window is hidden. A document’s window may be
hidden by virtue of being operated on through batch, if it was explicitly opened hidden, or
if there is no AVDoc associated with it. See app.openDoc and doc.openDataObject
for methods that can be used to open a document with a hidden window.

Type: Boolean Access: R.

Example

Open a document and verify its hidden status.

oDoc = app.openDoc({
 cPath:"/C/myDocs/myHidden.pdf",
 bHidden: true
});
console.println("It is " + oDoc.hidden + " that this document hidden.");
oDoc.closeDoc();

3.01

7.0

Acrobat JavaScript Scripting Reference
Doc Properties

214 Acrobat JavaScript Scripting Reference

icons

The value of doc.icons is the array of named Icon Generic Objects that are present in the
document level named icons tree. If there are no named icons in the document, the
property has a value of null.

See also addIcon, getIcon, importIcon, removeIcon, the Field Object properties
buttonGetIcon, buttonImportIcon, buttonSetIcon , and the Icon Generic
Object.

Type: Array | null Access: R.

Example 1
if (this.icons == null)

console.println("No named icons in this doc");
else

console.println("There are " + this.icons.length
+ " named icons in this doc");

Example 2
// list all named icons
for (var i = 0; i < this.icons.length; i++) {

console.println("icon[" + i + "]=" + this.icons[i].name);
}

info

In Adobe Reader

For the Adobe Reader, doc.info returns an object with properties from the document
information dictionary in the PDF file. Standard entries are:

Title
Author
Subject
Keywords
Creator
Producer
CreationDate
ModDate
Trapped

See Table 10.2, “Entries in a document information dictionary,” in the PDF Reference, for
more details.

Writing to any property in this object in the Adobe Reader throws an exception.

5.0

5.0

Acrobat JavaScript Scripting Reference 215

Acrobat JavaScript Scripting Reference
Doc Properties

Type: object Access: R.

Example
// get title of document
var docTitle = this.info.Title;

In Acrobat

For Acrobat, properties of the info object are writeable, and setting a property in this
object will dirty the document. Additional document information fields can be added by
setting non-standard properties.

N O T E : Standard entries are case insensitive, that is, doc.info.Keywords is the same as
doc.info.keywords.

Type: object Access: R/W.

Example

The following script

this.info.Title = "JavaScript, The Definitive Guide";
this.info.ISBN = "1-56592-234-4";
this.info.PublishDate = new Date();
for (var i in this.info)

console.println(i + ": "+ this.info[i]);

could produce the following output:

CreationDate: Mon Jun 12 14:54:09 GMT-0500 (Central Daylight Time) 2000
Producer: Acrobat Distiller 4.05 for Windows
Title: JavaScript, The Definitive Guide
Creator: FrameMaker 5.5.6p145
ModDate: Wed Jun 21 17:07:22 GMT-0500 (Central Daylight Time) 2000
SavedBy: Adobe Acrobat 4.0 Jun 19 2000
PublishDate: Tue Aug 8 10:49:44 GMT-0500 (Central Daylight Time) 2000
ISBN: 1-56592-234-4

innerAppWindowRect

This property returns the rectangle, an array of screen coordinates, for the Acrobat inner
application window The application window is available as an outer rectangle as well. The
outer rectangle includes any title bar, resizing border, or the like, and the inner rectangle
does not include these items.

Type: Array of Numbers Access: R.

5.0 � �

6.0

Acrobat JavaScript Scripting Reference
Doc Properties

216 Acrobat JavaScript Scripting Reference

Example:
var coords = this.innerAppWindowRect;
console.println(coords.toSource())
// possible output: [115, 154, 1307, 990]

See also innerDocWindowRect, outerAppWindowRect and outerDocWindowRect.

innerDocWindowRect

This property returns the rectangle, an array of screen coordinates, for the Acrobat inner
document window. The document window is also available as an outer rectangle as well.
The outer rectangle includes any title bar, resizing border, or the like, and the inner
rectangle does not include these items.

These rectangles may differ quite a bit on different platforms. For example, on Windows,
the doc window is always inside the app window, while on the Macintosh they are the
same.

Type: Array of Numbers Access: R.

See also innerAppWindowRect, outerAppWindowRect, outerDocWindowRect and
pageWindowRect

keywords

The keywords that describe the document (for example, "forms", "taxes", "government").
See info, which supersedes this property in later versions.

N O T E : This property is read-only in the Adobe Reader.

Type: object Access: R/W.

layout

Changes the page layout of the current document. Valid values are:

SinglePage
OneColumn
TwoColumnLeft
TwoColumnRight

In Acrobat 6.0, there are two additional properties:

6.0

� � �

5.0

Acrobat JavaScript Scripting Reference 217

Acrobat JavaScript Scripting Reference
Doc Properties

TwoPageLeft
TwoPageRight

Type: String Access: R/W.

Example

Put the document into a continuous facing layout, the first page of the document appears
in the left column.

this.layout = "TwoColumnLeft";

media

Each document has its own doc.media object, which contains properties that are specific
to a particular document. doc.media also contains methods that apply to a document.
The section on the Doc.media Object contains the documentation of the properties and
methods of this object.

Type: DocMedia Object Access: R/W.

metadata

Allows you to access the XMP metadata embedded in a PDF document. Returns a string
containing the XML text stored as metadata in a particular PDF document. For information
on embedded XMP metadata, see section 9.6 of the PDF Reference. This property throws a
RaiseError if the user tries to set the property to a string that is not in the XMP
metadata format.

Type: String Access: R/W.

Exceptions

RaiseError is thrown if setting metadata to a string not in XMP format.

Example 1

Try to create metadata not in XMP format.

this.metadata = "this is my metadata";
RaiseError: The given metadata was not in the XMP format
Global.metadata:1:Console undefined:Exec
 ===> The given metadata was not in the XMP format

Example 2

Create a PDF report file with metadata from a document.

6.0

6.0 �

Acrobat JavaScript Scripting Reference
Doc Properties

218 Acrobat JavaScript Scripting Reference

var r = new Report();
r.writeText(this.metadata);
r.open("myMetadataReportFile");

modDate

The date the document was last modified. See info, which supersedes this property in
later versions.

Type: Date Access: R.

mouseX

Gets the x-coordinate of the mouse coordinates in default user space in relation to the
current page.

Type: Number Access: R.

Example

Get the coordinates of the mouse as the user moves it around the viewer.

function getMouseCoor() {
console.println("("+this.mouseX+","+ this.mouseY+")");

}
var ckMouse = app.setInterval("getMouseCoor()", 100);
var timeout = app.setTimeOut(

"app.clearInterval(ckMouse); app.clearTimeOut(timeout)",2000);

mouseY

Gets the y-coordinate of the mouse coordinates in default user space in relation to the
current page.

Type: Number Access: R.

noautocomplete

�

7.0

7.0

7.0

Acrobat JavaScript Scripting Reference 219

Acrobat JavaScript Scripting Reference
Doc Properties

This property is used to turn off the Auto-Complete feature of Acrobat Forms, for this
document only.

If set to true, no suggestions are made as the user enters data into a field. If this property
is set to false, auto-complete respects the user preference as set under File >
Preferences > General > Forms.

Setting this property does not affect the Auto-Complete preferences under File >
Preferences > General > Forms.

N O T E : Initially, this property has a value of undefined.

Type: Boolean Access: R/W.

Example

For this document, it is desired that auto-complete be turned off. The following script is
executed from an open page action, or as a top-level document JavaScript.

this.noautocomplete = true;

nocache

This property is used to turn off forms data caching for this document only.

Setting this property to true prevents Acrobat from retaining forms data in an Internet
browser. If nocache is set to false, Acrobat respects the user preference as set under File
> Preferences > General > Forms.

The value of the nocache property does not affect the checkbox item “Keep forms data
temporarily available on disk” under File > Preferences > General > Forms.

N O T E : Before this property is set for the first time, it has a value of undefined.

Type: Boolean Access: R/W.

Example

For this document, it is desired to turn off caching of form data, so that sensitive data are
not left on the local hard drive. The following script is executed from an open page action,
or as a top-level document JavaScript.

this.nocache = true;

7.0

Acrobat JavaScript Scripting Reference
Doc Properties

220 Acrobat JavaScript Scripting Reference

numFields

The total number of fields in the document. See also getNthFieldName.

Type: Integer Access: R.

Example 1
console.println("There are " + this.numFields + " in this document");

Example 2

The doc.numFields property, along with doc.getNthFieldName, can be used to
loop through all fields in the document. In the script below, we change all button fields so
that they have a beleved appearance.

for (var i = 0; i < this.numFields; i++) {
var fname = this.getNthFieldName(i);
if (fname.type = "button") f.borderStyle = border.b;

}

Other modifications to the buttons of the document can also be made.

numPages

The number of pages in the document.

Type: Integer Access: R.

Example 1
console.println("There are " + this.numPages + " in this document");

Example 2

Delete the last page from the document. The (0-based) page number of the last page in the
document is this.numPages - 1.

this.deletePages({ nStart: this.numPages - 1 });

numTemplates

The number of templates in the document. See templates, which supersedes this
property in later versions.

Type: Integer Access: R.

4.0

3.01

�

Acrobat JavaScript Scripting Reference 221

Acrobat JavaScript Scripting Reference
Doc Properties

path

The device-independent path of the document, for example /c/Program
Files/Adobe/Acrobat 5.0/Help/AcroHelp.pdf. See Section 3.10.1, “File
Specification Strings”, in the PDF Reference for exact syntax of the path.

Type: String Access: R.

The file name of the document can be acquired by doc.documentFileName. See also
doc.URL.

outerAppWindowRect

This property returns the rectangle, an array of screen coordinates, for the Acrobat outer
application window The application window is available as an inner rectangle as well. The
outer rectangle includes any title bar, resizing border, or the like, and the inner rectangle
does not include these items.

Type: Array of Numbers Access: R.

See also innerAppWindowRect, outerDocWindowRect, outerDocWindowRect and
pageWindowRect.

outerDocWindowRect

This property returns the rectangle, an array of screen coordinates, for the Acrobat outer
document window. The document window is available as an inner rectangle as well. The
outer rectangle includes any title bar, resizing border, or the like, and the inner rectangle
does not include these items.

These rectangles may differ quite a bit on different platforms. For example, on Windows,
the doc window is always inside the app window, while on the Macintosh they are the
same.

Type: Array of Numbers Access: R.

See also innerAppWindowRect, outerDocWindowRect, outerAppWindowRect and
pageWindowRect.

3.01

6.0

6.0

Acrobat JavaScript Scripting Reference
Doc Properties

222 Acrobat JavaScript Scripting Reference

pageNum

Gets or sets a page of the document. When setting the pageNum to a specific page,
remember that the values are 0-based.

Type: Integer Access: R/W.

Example

This example goes to the first page of the document.

this.pageNum = 0;

This example advances the document to the next page.

this.pageNum++;

pageWindowRect

This property returns the rectangle, an array of screen coordinates, for the Acrobat page
view window. The page view window is the area inside the inner document window in
which the actual PDF content is displayed.

Type: Array of Numbers Access: R.

See also innerAppWindowRect, outerDocWindowRect, outerAppWindowRect and
outerDocWindowRect.

permStatusReady

Indicates whether the permissions for this document have been resolved. This can return
false if the document is not available, for example when downloading over a network
connection, and permissions are determined based on a signature that covers the entire
document. Such documents will be signed with an author signature.

Type: Boolean Access: R.

3.01

6.0

6.0

Acrobat JavaScript Scripting Reference 223

Acrobat JavaScript Scripting Reference
Doc Properties

producer

The producer of the document (for example, "Acrobat Distiller", "PDFWriter", and so on). See
info, which supersedes this property in later versions.

Type: String Access: R.

requiresFullSave

The property requiresFullSave is a boolean which is true if the document requires a
full save because it is temporary or newly created; otherwise, requiresFullSave is
false.

Type: Boolean Access: R.

Example
var oDoc = app.newDoc();
console.println("It is " + oDoc.requiresFullSave

+ " that this document requires a full save.");

securityHandler

The name of the security handler used to encrypt the document. Returns null if there is
no security handler (for instance, the document is not encrypted).

Type: String | null Access: R.

Example
console.println(this.securityHandler != null ?

"This document is encrypted with " + this.securityHandler
+ " security." : "This document is unencrypted.");

This could print out the following if the document was encrypted with the standard
security handler.

This document is encrypted with Standard security.

�

7.0

5.0

Acrobat JavaScript Scripting Reference
Doc Properties

224 Acrobat JavaScript Scripting Reference

selectedAnnots

An array of Annot Objects corresponding to every markup annotation the user currently
has selected.

See also getAnnot and getAnnots.

Type: Array Access: R.

Example

Show all the comments of selected annots in console.

var aAnnots = this.selectedAnnots;
for (var i=0; i < aAnnots.length; i++)

console.println(aAnnots[i].contents);

sounds

An array containing all of the named Sound Objects in the document.

See also getSound, importSound, deleteSound, and the Sound Object.

Type: Array Access: R.

Example
var s = this.sounds;
for (i = 0; i < s.length; i++)

console.println("Sound[" + i + "]=" + s[i].name);

spellDictionaryOrder

Gets or sets the dictionary array search order for this document. For example, if a user is
filling out a Medical Form the form designer may want to specify a Medical dictionary to be
searched first before searching the user’s preferred order.

The Spelling plug-in searches for words first in this array, and then searches the dictionaries
the user has selected on the Spelling Preference panel. The user’s preferred order is

5.0 � �

5.0

5.0

Acrobat JavaScript Scripting Reference 225

Acrobat JavaScript Scripting Reference
Doc Properties

available from spell.dictionaryOrder. An array of the currently installed
dictionaries can be obtained using spell.dictionaryNames.

N O T E : When setting this property, an exception is thrown if any of the elements in the
array is not a valid dictionary name.

Type: Array Access: R/W.

spellLanguageOrder

This property can be used to access or specify the language array search order for this
document. The Spelling plug-in will search for words first in this array and then in will
search the languages the user has selected on the Spelling Preferences panel. The user’s
preferred order is available from the spell.languageOrder. An array of currently
installed languages can be obtained using the spell.languages property.

Type: Array Access: R/W.

subject

The document’s subject. See info, which supersedes this property in later versions.

N O T E : This property is read-only in Adobe Reader.

Type: String Access: R/W.

templates

An array of all of the Template Objects in the document. See also createTemplate,
getTemplate an removeTemplate.

Type: Array Access: R.

Example

List all templates in the document.

var t = this.templates
for (var i=0; i < t.length; i++)
{
 var state = (t[i].hidden) ? "visible" : "hidden"

6.0 �

� � �

5.0

Acrobat JavaScript Scripting Reference
Doc Properties

226 Acrobat JavaScript Scripting Reference

 console.println("Template: \"" + t[i].name
+ "\", current state: " + state);

}

title

The title of the document. See info, which supersedes this property in later versions.

N O T E : This property is read-only in Adobe Reader.

Type: String Access: R/W.

URL

The document’s URL. If the document is local, returns a URL with a file:///
scheme, for a window and Unix OS, and file://localhost/, for a Mac OS. This
may be different from the baseURL.

Type: String Access: R.

See also doc.path and doc.documentFileName.

zoom

Gets or sets the current page zoom level. Allowed values are between 8.33% and 6400%,
specified as an percentage number, for example, a zoom value of 100 specifies 100%..

Type: Number Access: R/W.

Example

This example zooms in to twice the current zoom level.

this.zoom *= 2;

This sets the zoom to 200%.

this.zoom = 200;

� � �

5.0

3.01

Acrobat JavaScript Scripting Reference 227

Acrobat JavaScript Scripting Reference
Doc Methods

zoomType

The current zoom type of the document. The table below lists the valid zoom types.

The convenience zoomtype object defines all the valid zoom types and is used to access
all zoom types.

Type: String Access: R/W.

Example

This example sets the zoom type of the document to fit the width.

this.zoomType = zoomtype.fitW;

Doc Methods

addAnnot

Creates an annot object having the specified properties. Properties not specified are given
their default values for the specified type of annotation.

3.01

Zoom Type Keyword Version

NoVary zoomtype.none

FitPage zoomtype.fitP

FitWidth zoomtype.fitW

FitHeight zoomtype.fitH

FitVisibleWidth zoomtype.fitV

Preferred zoomtype.pref

ReflowWidth zoomtype.refW 6.0

5.0 � � �

Acrobat JavaScript Scripting Reference
Doc Methods

228 Acrobat JavaScript Scripting Reference

Parameters

Returns

The new Annot Object.

Example 1

This example creates a "Square" annotation.

var sqannot = this.addAnnot({type: "Square", page: 0});

This is a minimal example; sqannot will be created as annotation of type "Square" located
on the first page (0-based page numbering).

Example 2
var annot = this.addAnnot
({

page: 0,
type: "Text",
author: "A. C. Robat",
point: [300,400],
strokeColor: color.yellow,
contents: "Need a little help with this paragraph.",
noteIcon: "Help"

});

Example 3
var annot = this.addAnnot({

page: 0,
type: "Square",
rect: [0, 0, 100, 100],
name: "OnMarketShare",
author: "A. C. Robat",
contents: "This section needs revision."

});

Example 4

Below is a fancy ink annotation in the shape of a three-leaf rose.

var inch = 72, x0 = 2*inch, y0 = 4*inch;
var scaledInch = .5*inch;
var nNodes = 60;
var theta = 2*Math.PI/nNodes;
var points = new Array();
for (var i = 0; i <= nNodes; i++) {
 Theta = i*theta;
 points[i] = [x0 + 2*Math.cos(3*Theta)*Math.cos(Theta)*scaledInch,
 y0 + 2*Math.cos(3*Theta)*Math.sin(Theta)*scaledInch];

objectLiteral A generic object which specifies the properties of the annot
object, such as type, rect, and page, to be created.

Acrobat JavaScript Scripting Reference 229

Acrobat JavaScript Scripting Reference
Doc Methods

}
var annot = this.addAnnot({

type: "Ink",
page: 0,
name: "myRose",
author: "A. C. Robat",
contents: "Three leaf rose",
gestures: [points],
strokeColor: color.red,
width: 1

});

addField

Creates a new form field and returns it as a Field Object.

N O T E : (�, version 6.0): Beginning with version 6.0, doc.addField can now be used
from within Adobe Reader for documents with “Advanced Form Features”.

Parameters

5.0 � �

cName The name of the new field to create. This name can use the dot
separator syntax to denote a hierarchy (for example, name.last
creates a parent node, name, and a child node, last).

cFieldType The type of form field to create. Valid types are:
text
button
combobox
listbox
checkbox
radiobutton
signature

nPageNum The 0-based index of the page to which to add the field.

oCoords An array of four numbers in rotated user space that specifies the size
and placement of the form field. These four numbers are the
coordinates of the bounding rectangle, in the following order: upper-
left x, upper-left y, lower-right x and lower-right y. See also
field.rect.

N O T E : If you use the Info panel to obtain the coordinates of the
bounding rectangle, you must transform them from info space
to rotated user space. To do this, subtract the info space y-
coordinate from the on-screen page height.

Acrobat JavaScript Scripting Reference
Doc Methods

230 Acrobat JavaScript Scripting Reference

Returns

The newly created Field Object.

Example

The following code might be used in a batch sequence to create a navigational icon on
every page of a document, for each document in a selected set of documents.

var inch = 72;
for (var p = 0; p < this.numPages; p++) {

// position rectangle (.5 inch, .5 inch)
var aRect = this.getPageBox({nPage: p});
aRect[0] += .5*inch; // from upper left hand corner of page.
aRect[2] = aRect[0]+.5*inch; // Make it .5 inch wide
aRect[1] -= .5*inch;
aRect[3] = aRect[1] - 24; // and 24 points high

// now construct button field with a right arrow from ZapfDingbats
var f = this.addField("NextPage", "button", p, aRect)
f.setAction("MouseUp", "this.pageNum++");
f.delay = true;
f.borderStyle = border.s;
f.highlight = "push";
f.textSize = 0; // auto sized
f.textColor = color.blue;
f.fillColor = color.ltGray;
f.textFont = font.ZapfD
f.buttonSetCaption("\341") // a right arrow
f.delay = false;

}

See field.setAction for another example.

addIcon

Adds a new named Icon Generic Object to the document level icon tree, storing it under
the specified name.

See also icons, getIcon, importIcon, removeIcon , and the field methods
buttonGetIcon, buttonImportIcon, and buttonSetIcon.

5.0 �

Acrobat JavaScript Scripting Reference 231

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

Nothing

Example

This example takes an icon already attached to a form button field in the document and
assigns a name to it. This name can be used to retrieve the icon object with a getIcon for
use in another button, for example.

var f = this.getField("myButton");
this.addIcon("myButtonIcon", f.buttonGetIcon());

addLink

Adds a new link to the specified page with the specified coordinates, if the user has
permission to add links to the document. See also getLinks, removeLinks and the
Link Object.

Parameters

Returns

The newly created Link Object.

Example 1

Create simple navigational links in the lower left and right corners of each page of the
current document. The link in lower left corner goes to the previous page; the one in the
lower right corner goes to the next page.

var linkWidth = 36, linkHeight = 18;
for (var i=0; i < this.numPages; i++)
{

var cropBox = this.getPageBox("Crop", i);
 var linkRect1 = [0,linkHeight,linkWidth,0];

cName The name of the new object

icon The Icon Generic Object to add.

6.0 � �

nPage The page on which to add the new link.

oCoords An array of four numbers in rotated user space that specifies the size
and placement of the link. These four numbers are the coordinates of
the bounding rectangle, listed in the following order: upper-left x,
upper-left y, lower-right x and lower-right y.

Acrobat JavaScript Scripting Reference
Doc Methods

232 Acrobat JavaScript Scripting Reference

 var offsetLink = cropBox[2] - cropBox[0] - linkWidth;
 var linkRect2 = [offsetLink,linkHeight,linkWidth + offsetLink,0]
 var lhLink = this.addLink(i, linkRect1);
 var rhLink = this.addLink(i, linkRect2);
 var nextPage = (i + 1) % this.numPages;
 var prevPage = (i - 1) % this.numPages;
 var prevPage = (prevPage>=0) ? prevPage : -prevPage;
 lhLink.setAction("this.pageNum = " + prevPage);
 lhLink.borderColor = color.red;
 lhLink.borderWidth = 1;
 rhLink.setAction("this.pageNum = " + nextPage);
 rhLink.borderColor = color.red;
 rhLink.borderWidth = 1;
}

See the Link Object for setting the properties and for setting the action of a link.

Example 2

Search through the document for the word “Acrobat” and create a link around that word.

for (var p = 0; p < this.numPages; p++)
{
 var numWords = this.getPageNumWords(p);

for (var i=0; i<numWords; i++)
 {

var ckWord = this.getPageNthWord(p, i, true);
 if (ckWord == "Acrobat")
 {
 var q = this.getPageNthWordQuads(p, i);

// convert quads in default user space to rotated
// user space used by Links.

 m = (new Matrix2D).fromRotated(this,p);
 mInv = m.invert()
 r = mInv.transform(q)
 r=r.toString()
 r = r.split(",");
 l = addLink(p, [r[4], r[5], r[2], r[3]]);
 l.borderColor = color.red
 l.borderWidth = 1
 l.setAction("this.getURL('http://www.adobe.com/');");
 }
 }
}

The Matrix2D object and its methods are defined in the Annots.js file.

Acrobat JavaScript Scripting Reference 233

Acrobat JavaScript Scripting Reference
Doc Methods

addRecipientListCryptFilter

This method adds a crypt filter to this document. The crypt filter is used for encrypting Data
Objects.

See also the cCryptFilter parameter of the doc.importDataObject,
doc.createDataObject and doc.setDataObjectContents methods.

N O T E S : (Security �): Can only be executed during batch, application initialization, menu or
console events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Not available in the Adobe Reader.

Parameters

Returns

Nothing

Example

This script takes the current document open in the viewer, and encrypts and embeds the
document into a "ePaper" envelope PDF document. This script was executed in the console,
but is perhaps best executed a folder JavaScript as part of larger script for sending PDF docs
in a secure way.

var Note = "Select the list of people that you want to send this"
+ " document to. Each person must have both an email address"
+ " and a certificate that you can use when creating the"
+ "envelope.";

var oOptions = { bAllowPermGroups: false, cNote: Note,
bRequireEmail: true };

var oGroups = security.chooseRecipientsDialog(oOptions);
var env = app.openDoc("/c/temp/ePaperMailEnvelope.pdf");
env.addRecipientListCryptFilter("MyFilter", oGroups);
env.importDataObject("secureMail0", this.path, "MyFilter");
var envPath = "/c/temp/outMail.pdf";
env.saveAs(envPath);

6.0 � � �

cCryptFilter The language independent name of the crypt filter. This same name
should be used as the value of the cCryptFilter parameter of
the Doc Object methods importDataObject,
createDataObject and setDataObjectContents.

oGroup An array of Group Objects that lists the recipients for whom the data
is to be encrypted.

Acrobat JavaScript Scripting Reference
Doc Methods

234 Acrobat JavaScript Scripting Reference

addScript

Sets a document level script for a document. See also setAction, setPageAction,
bookmark.setAction, and field.setAction.

N O T E : This method will overwrite any script already defined for cName.

Parameters

Returns

Nothing

Example

Create a beeping sound every time the document is opened.

this.addScript("My Code", "app.beep(0);");

See Example 2 following the doc.disclosed property for another example.

addThumbnails

Creates thumbnails for the specified pages in the document. See also
removeThumbnails.

6.0 � �

cName The name of the script that will be added. If a script with this name
already exists, the new script replaces the old one.

cScript The JavaScript expression that is to be executed when the document
is opened.

5.0 � �

Acrobat JavaScript Scripting Reference 235

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

Nothing

addWatermarkFromFile

Adds a page as a watermark to the specified pages in the document, and places the
watermark in an Optional Content Group (OCG). Since converting a file into a PDF
document could potentially invoke an external application, this method can only be
executed during batch or console events.

See the OCG Object.

N O T E : (Security �): Can only be executed during batch or console events.See also
Privileged versus Non-privileged Context.

Parameters

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nStart is specified
then the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nEnd is specified then
the range of a pages is 0 to nEnd.

7.0 � � �

cDIPath The device-independent path of the source file to use for the
watermark. If the file at this location is not a PDF file, then Acrobat will
attempt to convert the file to a PDF file.

nSourcePage (optional) The 0-based index of the page in the source file to be used
as the watermark. Default is 0.

nStart (optional) The 0-based index of the first page in the range of pages to
which the watermark should be added. If nStart and nEnd are not
specified then the range of pages is for all pages in the document. If
only nStart is specified then the range of pages is the single page
specified by nStart.

nEnd (optional) The last page in the range of pages to which the watermark
should be added. If nStart and nEnd are not specified then the
range of pages is for all pages in the document. If only nEnd is
specified then the range of a pages is 0 to nEnd.

Acrobat JavaScript Scripting Reference
Doc Methods

236 Acrobat JavaScript Scripting Reference

bOnTop (optional) A boolean indicating the desired z-ordering of the
watermark. A value of true will result in the watermark being added
above all other page content. A value of false will result in the
watermark being added below all other page content. This parameter
is ignored if bFixedPrint is true.
Default is true.

bOnScreen (optional) A boolean to indicate whether or not the watermark should
be displayed when viewing the document on screen. Default is true.

bOnPrint (optional) A boolean to indicate whether or not the watermark should
be displayed when printing the document. Default is true.

nHorizAlign (optional) A number indicating how the watermark should be aligned
horizontally. See app.constants.align for possible values. The
default is app.constants.align.center.

nVertAlign (optional) A number indicating how the watermark should be aligned
horizontally. See app.constants.align for possible values. The
default is app.constants.align.center.

nHorizValue (optional) Number used to shift the horizontal position of the
watermark on the page. If bPercentage is true, then this number
represents a percentage of the horizontal page size. If bPercentage
is false, then this number represents the number of points to be
offset. Default is 0.

nVertValue (optional) Number used to shift the vertical position of the watermark
on the page. If bPercentage is true, then this number represents
a percentage of the vertical page size. If bPercentage is false,
then this number represents the number of points to be offset.
Default is 0.

bPercentage (optional) A boolean used to indicate whether nHorizValue and
nVertValue represent a percentage of the page size or an explicit
number of points. Default is false.

nScale (optional) The scale to be used for the watermark, where 1.0 is 100%.
A value of -1 specifies that the watermark should fit to the page while
maintaining its proportions. Default is 1.0.

bFixedPrint (optional) A boolean used to indicate that this watermark should be
added as FixedPrint Watermark annotation. This allows watermarks to
be printed at a fixed size/position regardless of the size of the page
being printed to. If true, then bOnTop is ignored. Default is false.

nRotation (optional) The number of degrees to rotate the watermark
counterclockwise. Default is 0.

Acrobat JavaScript Scripting Reference 237

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Nothing

Example 1

Adds the first page of watermark.pdf as a watermark to the center all pages of the current
document.

this.addWatermarkFromFile("/C/temp/watermark.pdf");

Example 2

Adds the second page of watermark.pdf as a watermark to the first 10 pages of the current
document. The watermark will be rotated counter-clockwise 45 degrees, and positioned
one inch down and two inches over from the upper-left corner of the page.

this.addWatermarkFromFile({
cDIPath: "/C/temp/watermark.pdf",
nSourcePage: 4, nEnd: 9,
nHorizAlign: app.constants.align.left,
nVertAlign: app.constants.align.top,
nHorizValue: 144, nVertValue: -72,
nRotation: 45

});

addWatermarkFromText

Adds the given text as a watermark to the specified pages in the document, and places the
watermark in an Optional Content Group (OCG).

See the OCG Object.

Parameters

nOpacity (optional) The opacity to be used for the watermark, where 0 is
transparent, and 1.0 is opaque. Default is 1.0.

7.0 � � �

cText The text to use as the watermark. Multiline text is allowed. A newline
can be specified with the characters "\r".

nTextAlign (optional) The text alignment to use for cText within the watermark.
See app.constants.align for possible values. This parameter
has no effect if cText is only one line.

cFont (optional) The font to be used for this watermark. Valid fonts are
defined as properties of the font Object, as listed in field.textFont. An
arbitrary font can be used by passing a string that represents the
PostScript name of the font. Default is font.Helv.

Acrobat JavaScript Scripting Reference
Doc Methods

238 Acrobat JavaScript Scripting Reference

nFontSize (optional) The point size of the font to use for the watermark. Default
is 24.

aColor (optional) The color to use for the watermark. See Color Arrays
for information on defining color arrays. Default is color.black.

nStart (optional) The 0-based index of the first page in the range of pages to
which the watermark should be added. If nStart and nEnd are not
specified then the range of pages is for all pages in the document. If
only nStart is specified then the range of pages is the single page
specified by nStart.

nEnd (optional) optional) The last page in the range of pages to which the
watermark should be added. If nStart and nEnd are not specified
then the range of pages is for all pages in the document. If only nEnd
is specified then the range of a pages is 0 to nEnd.

bOnTop (optional) A boolean indicating the desired z-ordering of the
watermark. A value of true will result in the watermark being added
above all other page content. A value of false will result in the
atermark being added below all other page content. This parameter is
ignored if bFixedPrint is true.
Default is true.

bOnScreen (optional) A boolean to indicate whether or not the watermark should
be displayed when viewing the document on screen.

bOnPrint (optional) A boolean to indicate whether or not the watermark should
be displayed when printing the document.

nHorizAlign (optional) A number indicating how the watermark should be aligned
horizontally. See app.constants.align for possible values. The
default is app.constants.align.center.

nVertAlign (optional) A number indicating how the watermark should be aligned
horizontally. See app.constants.align for possible values. The
default is app.constants.align.center.

nHorizValue (optional) Number used to shift the horizontal position of the
watermark on the page. If bPercentage is true, then this number
represents a percentage of the horizontal page size. If bPercentage
is false, then this number represents the number of points to be
offset. Default is 0.

nVertValue (optional) Number used to shift the vertical position of the watermark
on the page. If bPercentage is true, then this number represents
a percentage of the vertical page size. If bPercentage is false,
then this number represents the number of points to be offset.
Default is 0.

Acrobat JavaScript Scripting Reference 239

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Nothing

Example 1

Adds “Confidential” as a watermark to the center of all pages of the current document.

this.addWatermarkFromText("Confidential", 0, font.Helv, 24, color.red);

Example 2

Adds a multiline watermark to each page of the current document one inch down and one
inch over from the upper-right corner.

this.addWatermarkFromText({
cText: "Confidential Document\rA. C. Robat",
nTextAlign: app.constants.align.right,
nHorizAlign: app.constants.align.right,
nVertAlign: app.constants.align.top,
nHorizValue: -72, nVertValue: -72

});

addWeblinks

Scans the specified pages looking for instances of text with a http: scheme, and converts
them into links with URL actions.

See also removeWeblinks.

bPercentage (optional) A boolean used to indicate whether nHorizValue and
nVertValue represent a percentage of the page size or an explicit
number of points. Default is false.

nScale (optional) The scale to be used for the watermark, where 1.0 is 100%.
A value of -1 specifies that the watermark should fit to the page while
maintaining its proportions. Default is 1.0.

bFixedPrint (optional) A boolean used to indicate that this watermark should be
added as FixedPrint Watermark annotation. This allows watermarks to
be printed at a fixed size/position regardless of the size of the page
being printed to. to. If true, then bOnTop is ignored. Default is
false.

nRotation (optional) The number of degrees to rotate the watermark
counterclockwise. Default is 0.

nOpacity (optional) The opacity to be used for the watermark, where 0 is
transparent, and 1.0 is opaque. Default is 1.0.

5.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

240 Acrobat JavaScript Scripting Reference

Parameters

Returns

The number of web links added to the document.

Example

Search the entire document and convert all content that appear to be a web address into a
web link. Report back the number of links created.

var numWeblinks = this.addWeblinks();
console.println("There were " + numWeblinks +

" instances of text that looked like a web address,"
+" and converted as such.");

bringToFront

Brings the document open in the Viewer to the front, if it is not already there.

Parameters

None

Returns

Nothing

Example

This example searches among the documents open in the Viewer for the document with a
title of "Annual Report" and brings it to the front.

var d = app.activeDocs; // lists only disclosed documents
for (var i = 0; i < d.length; i++)

if (d[i].info.Title == "Annual Report") d[i].bringToFront();

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nStart is specified
then the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified then the range of
pages is for all pages in the document. If only nEnd is specified then
the range of a pages is 0 to nEnd.

5.0

Acrobat JavaScript Scripting Reference 241

Acrobat JavaScript Scripting Reference
Doc Methods

calculateNow

Forces computation of all calculation fields in the current document.

Parameters

None

Returns

Nothing

Example

When a form contains a lot of calculations, there can be a significant delay after the user
inputs data into a field, even if that field is not a calculation field. One strategy is to turn off
calculations at some point and turn them back on at a later point.

// turn off calculations
this.calculate = false;
.....
// turn on calculations
this.calculate = true;
// Unless the user committed data after this.calculate is set to true,
// automatic calculation does not occur. Calculation can be forced to
// occur by using...
this.calculateNow();

closeDoc

Closes the document.

N O T E : (Document Save Rights �): For Adobe Reader 5.1 or later, the method is always
allowed. However, if the document was changed and no Document Save Rights are
available, the document is closed without any warnings and changes are lost. If
Document Save Rights are available, the user gets the option of saving the changed
file. It is important to use this method carefully as it is an abrupt change in the
document state that can affect any JS executing after the close. Triggering this
method from a Page event or Document event could cause the application to
behave strangely.

N O T E : In versions of Acrobat prior to 7.0, a document that closes itself by executing
this.closeDoc terminates any script that follows it. In Acrobat 7.0, the script is
allowed to continue and to terminate naturally; however, if the doc object of the
closed document is referenced, an exception will be thrown.

3.01

5.0 �

Acrobat JavaScript Scripting Reference
Doc Methods

242 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example 1

From the console, close all open documents.

var d = app.activeDocs;
for(var i in d) d[i].closeDoc();

The following code can be executed as a mouse up action from a document open in the
viewer. It closes all disclosed documents that are open in the viewer. The code is designed to
close the active document last so that the execution of the code will not be abruptly
terminated.

var d = app.activeDocs;
for(var i in d)
 if(d[i] != this) d[i].closeDoc();
if (this.disclosed) this.closeDoc();

Example 2

Create a series of three test files and save them to a directory. This code needs to be
executed in the console, because saveAs has a security restriction.

var myDoc = app.newDoc();
for (var i=0; i < 3; i++) {

myDoc.info.Title = "Test File " + i;
myDoc.saveAs("/c/temp/test"+i+".pdf);

}
myDoc.closeDoc(true);

See saveAs for an another example of closeDoc.

createDataObject

Creates a Data Object.

bNoSave (optional) Whether to close the document without saving. If false
(the default), the user is prompted to save the document if it has been
modified. If true, the document is closed without prompting the
user and without saving, even if the document has been modified.
Because this can cause data loss without user approval, use this
feature judiciously.

5.0 � �

Acrobat JavaScript Scripting Reference 243

Acrobat JavaScript Scripting Reference
Doc Methods

Data objects can be constructed ad hoc. This is useful if the data is being created in
JavaScript from sources other than an external file (for example, ADBC database calls).

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.getDataObject, doc.openDataObject, doc.importDataObject,
doc.removeDataObject, doc.getDataObjectContents and
doc.setDataObjectContents.

Parameters

Returns

Nothing

Example
this.createDataObject("MyData.txt", "This is some data.");

See also the example that follows addRecipientListCryptFilter.

createTemplate

Creates a visible template from the specified page. See also doc.templates, the
doc.getTemplate, doc.removeTemplate methods, and the Template Object.

N O T E S : (Security �): This method can only be executed during batch, console, or menu
events. See also Privileged versus Non-privileged Context. The Event Object
 contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

(Version 7.0) In Adobe Reader 5.1 and later, this method was allowed with Advanced
Form Features rights (�), beginning with this version of Adobe Reader, this method
is not allowed and will throw a NotAllowedError exception.

cName The name to associate with the data object.

cValue A string containing the data to be embedded.

cMIMEType (optional) The MIME type of the data. Default is "text/plain".

cCryptFilter (optional, version 6.0) The language independent name of a crypt
filter to use when encrypting this data object. This crypt filter must
have previously been added to the document’s list of crypt filters,
using the Doc Object addRecipientListCryptFilter method, otherwise
an exception will be thrown. The predefined "Identity" crypt filter
can be used if it is desired that this data object not be encrypted in a
file that is otherwise encrypted by the Doc Object
encryptForRecipients method.

5.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

244 Acrobat JavaScript Scripting Reference

Parameters

Returns

The newly created Template Object.

Example

Convert all pages beginning witih page 2 (base 0) to hidden templates. We have to be a
little careful, as the templates are hidden, this.numPages is updated to reflect that
change in the number of (visible) pages. Notice that in the loop below, only page 2 is made
a template then hidden; the next page will become the new page 2.

numNewTemplates = this.numPages - 2;
for (var i = 0; i < numNewTemplates; i++)
{

var t = this.createTemplate({cName:"myTemplate"+i, nPage:2 });
t.hidden = true;

}

deletePages

Deletes pages from the document. If neither page of the range is specified, the first page
(page 0) is deleted. See also insertPages, extractPages and replacePages .

N O T E : You cannot delete all pages in a document: there must be at least one page
remaining.

N O T E : (�, version 6.0): Beginning with version 6.0, doc.deletePages can now delete
spawned pages from within Adobe Reader for documents with “Advanced Form
Features”.

Parameters

Returns

Nothing

cName The name to be associated with this page.

nPage (optional) The 0-based index of the page to operate on. Default is 0,
the first page in the document.

5.0 � �

nStart (optional) The 0-based index of the first page in the range of pages to
be deleted. Default is 0, the first page in the document.

nEnd (optional) The last page in the range of pages to be deleted. If nEnd is
not specified then only the page specified by nStart is deleted.

Acrobat JavaScript Scripting Reference 245

Acrobat JavaScript Scripting Reference
Doc Methods

Example

Delete pages 1 through 3 (base 0), inclusive

this.deletePages({nStart: 1, nEnd: 3});

deleteSound

Deletes the Sound Object with the specified name from the document.

See also sounds, getSound, importSound , and the Sound Object.

Parameters

Returns

Nothing

Example
this.deleteSound("Moo");

embedDocAsDataObject

Embeds the specified document as a Data Object in the document.

N O T E : (Document Save Rights �): For Acrobat 7.0 Reader and later, this method is
commonly allowed, but document Save rights on the document to be embedded
are required in case the document to be embedded has changed and this changed
document is to be embedded.

Parameters

5.0 � �

cName The name of the sound object to delete.

7.0 �

cName The name to associate with the data object.

oDoc The document to embed as a data object.

Acrobat JavaScript Scripting Reference
Doc Methods

246 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example

In this example an envelope file has been previously authored which includes a ‘myFilter’
crypt filter and the envelope file has been included in ‘this’ document.

var authorEmail = "johndoe@acme.com";
var envelopeDoc = this.openDataObject("envelope");
envelopeDoc.embedDocAsDataObject("attachment", this, "myFilter");
envelopeDoc.title.Author = authorEmail;
envelopeDoc.mailDoc({

cTo: "support@mycompany.com",
cSubject: "Application from " + authorEmail

});

encryptForRecipients

Encrypts the document for the specified lists of recipients, using the public-key certificates
of each recipient. Encryption does not take place until the document is saved. Recipients
can be placed into groups, and each group can have its own unique permission settings.
This method throws an exception if it is unsuccessful.

N O T E S : (Security�): This method is available from batch, console, app initialization and
menu events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

It is also available in the Adobe Reader

See also the security.chooseRecipientsDialog method, the Data Object and the
createDataObject.

cCryptFilter (optional) The language independent name of a crypt filter to use
when encrypting this data object. This crypt filter must have
previously been added to the document’s list of crypt filters, using the
Doc.addRecipientListCryptFilter method, otherwise an
exception will be thrown. The predefined "Identity" crypt filter can be
used if it is desired that this data object not be encrypted in a file that
is otherwise encrypted by the Doc.encryptForRecipients
method.

bUI (optional) If true, an alert may be shown if oDoc requires saving and
permissions do not allow it to be saved. Default value is false.

6.0 � � �

Acrobat JavaScript Scripting Reference 247

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

true, if successful, otherwise an exception is thrown.

Group Object

A generic JS object that allows a set of permissions to be attached to a list of recipients for
which a document or data is to be encrypted. This object is passed to
doc.encryptForRecipients, and returned by
security.chooseRecipientsDialog. It contains the following properties:

Permissions Object

A generic JS object that contains a set of permissions, used in a Group Object. It contains
the following properties. The default value for all properties is false.

oGroups An array of generic Group Objects that list the recipients for which the
document is to be encrypted.

bMetaData (optional) Whether document meta data should be encrypted. The
default value is true. Setting this value to false will produce a
document that can only be viewed in Acrobat 6.0 or later.

bUI (optional) When true, the handler displays the user interface, in
which the user can select the recipients for whom to encrypt the
document. The default value is false.

Property Description

permissions A Group Object with the permissions for the group.

userEntities An array of UserEntity Generic Objects, the users to whom the
permissions apply.

Property Type Access Description

allowAll Boolean R/W Whether full, unrestricted access is
permitted. If true, overrides all other
properties.

allowAccessibility Boolean R/W Whether content access for the visually
impaired is permitted. When true, allows
content to be extracted for use by
applications that, for example, read text
aloud.

Acrobat JavaScript Scripting Reference
Doc Methods

248 Acrobat JavaScript Scripting Reference

Example

Encrypt all strings and streams in the document. This will produce a file that can be opened
with Acrobat 5.0 and later:

var sh = security.getHandler("Adobe.PPKMS");
var dir = sh.directories[0];
var dc = dir.connect();

dc.setOutputFields({oFields:["certificates"]});
var importantUsers = dc.search({oParams:{lastName:"Smith"}});
var otherUsers = dc.search({oParams: {lastName:"jones" }});

this.encryptForRecipients({
 oGroups :
 [
 {oUserEntities:importantUsers,oPermissions:{allowAll:true }},
 {oUserEntities:

otherUsers,
oPermissions:{allowPrinting:"highQuality"}

 }
],
 bMetaData : true
});

allowContentExtraction Boolean R/W Whether content copying and extraction is
permitted.

allowChanges String R/W What changes are allowed to be made to
the document. Values are:
none
documentAssembly
fillAndSign
editNotesFillAndSign
all

allowPrinting String R/W What the allowed printing security level is
for the document. Values are:
none
lowQuality
highQuality

Property Type Access Description

Acrobat JavaScript Scripting Reference 249

Acrobat JavaScript Scripting Reference
Doc Methods

encryptUsingPolicy

Encrypt the document using the specified policy object and handler. This method may
require user interaction and may result in a new Security Policy being created.

N O T E S : (Security �) This method can be executed only during batch, console or
application initialization events. See also Privileged versus Non-privileged Context.

Not available in Reader.

Parameters

7.0 � �

oPolicy The policy object to use when encrypting the document. This
may be a SecurityPolicy Object returned from
chooseSecurityPolicy or getSecurityPolicies.
This may also be a generic object with the policyId property
defined. If a predefined policy id is passed, the associated policy
will be retrieved and used. If the policy id passed is unknown, an
error will be returned.
There is a predefined policy id which has a special behavior. If
policyId is set to "adobe_secure_for_recipients" then a new
policy will be created by the Adobe Policy Server.

N O T E : If this special policy id is used and oGroups is null, an
error will be returned.

oGroups (optional) This is an array of Group Objects that the handler
should use when applying the policy handler when applying the
policy. The exact behavior will depend on the policy used and the
handler involved. The Group object may have embedded
permission information. Whether or not that information is used,
depends on the policy and associated security handler.
Default value is null.

oHandler (optional) The SecurityHandler Object to be used for encryption.
This will result in failure if this handler does not match the handler
name specified in the oPolicy object. If not specified, the
default object associated with this handler will be used.
See the paragraph below, On the use of oHandler.

bUI (optional) If true, user interface may be displayed (e.g. for
authentication). If false, user interface will not be displayed. If
user interaction is required but not allowed, an error is returned.
Default value is false.

Acrobat JavaScript Scripting Reference
Doc Methods

250 Acrobat JavaScript Scripting Reference

Returns

The value returned is a SecurityPolicyResults Generic Object.

On the use of oHandler

If you are using the APS security handler, you could create a new SecurityHandler ahead of
time, authenticate to a server not configured in Acrobat via the login() call, and then
pass that SecurityHandler in oHandler. This would allow you to use policies which are not
defined on the server Acrobat is configured to use.

If you are using the PPKLite security handler, you could create a new SecurityHandler ahead
of time, open a digital id file not configured in Acrobat via the login() call, and then pass
that SecurityHandler in oHandler. This would allow you to use certificates contained in
the digital id file but not in Acrobat.

SecurityPolicyResults Generic Object

The SecurityPolicyResults object has the following properties:

Property Type Description

errorCode Integer This will contain the error code returned from the
handler implementing the policy. There are three
possible errors:

0 = Success.
 errorText is not defined,
 unknownRecipients may be defined,
 policyApplied is defined.
1 = Failure.
 errorText is defined.
 unknownRecipients may be defined.
 policyApplied is not defined.
2 = Abort, the user aborted the process.
 errorText is not defined.
 unknownRecipients is not defined.
 policyApplied is not defined.

errorText String If defined, this will contain the localized error
description. See errorCode for when this is
defined.

policyApplied Object If defined, this will contain the SecurityPolicy
Object actually applied. If the policy passed in
was "adobe_secure_for_recipients", a new policy
was created by the call and the corresponding
policy object will be returned here.
See errorCode for when this is defined.

Acrobat JavaScript Scripting Reference 251

Acrobat JavaScript Scripting Reference
Doc Methods

Example 1

In this example a newly created document is encrypted using a chosen policy.

var doc = app.newDoc();
var policy = security.chooseSecurityPolicy();
var results = doc.encryptUsingPolicy({ oPolicyId: policy });
console.println("The policy applied was: "

+ results.policyApplied.name);

Example 2

In this example a newly created document is encrypted using a template policy.

var doc = app.newDoc();
var groups = [{ userEntities: [{email:"jdoe@mycorp.com"},

{email:"bsmith@mycorp.com"}]}
];
var policy = { policyId: "adobe_secure_for_recipients" };
var results = doc.encryptUsingPolicy({

oPolicy: policy,
oGroups: groups,
bUI: true

});
console.println("The policy applied was: "

+ results.policyApplied.name);

exportAsText

Exports form fields as a tab-delimited text file to a local hard disk. The text file that is
created follows the conventions specified by Microsoft Excel. In particular,
exportAsText correctly handles quotes and multiline text fields.

This method writes two lines to the text file, the first line a tab-delimited list of the names of
the fields specified by aFields, the second line is a tab-delimited list of the values of the
fields.

N O T E : (Security�): If the cPath parameter is specified, this method can only be executed
during batch, console or menu events. See also Privileged versus Non-privileged
Context. The Event Object includes a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

unknownRecipients Recipients
Object

If defined, this holds recipients passed in which
could not be used when applying the policy. See
errorCode for when this is defined.

6.0 � �

Property Type Description

Acrobat JavaScript Scripting Reference
Doc Methods

252 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

To export all fields to a tab-delimited file, execute the following script in the console:

this.exportAsText();

To create a tab-delimited file with more than just one data line, see the Example on
page 264.

exportAsFDF

Exports form fields as a FDF file to the local hard drive.

N O T E S : (Security�): If the cPath parameter is specified, then this method can only be
executed during batch, console, or menu events. See also Privileged versus Non-

bNoPassword (optional) If true (the default), do not include text fields that
have the "password" flag set in the exported text file.

aFields (optional) The array of field names to submit or a string
containing a single field name.
● If specified, only these fields are exported, except those

excluded by bNoPassword.
● If aFields is an empty array, no fields are exported.
● If this parameter is omitted or is null, all fields in the form are

exported, except those excluded by bNoPassword.

cPath (optional) A string specifying the device-independent pathname
for the file. (See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format.) The
pathname may be relative to the location of the current
document. If the parameter is omitted a dialog is shown to let the
user select the file.

N O T E : (Security�): The parameter cPath is required to have a
Safe Path and have a .txt extension. This method will
throw a NotAllowedError (see the Error Objects)
exception if these security conditions are not met, and the
method will fail.

4.0 � �

Acrobat JavaScript Scripting Reference 253

Acrobat JavaScript Scripting Reference
Doc Methods

privileged Context. The Event Object contains a discussion of Acrobat JavaScript
events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Nothing

bAllFields (optional) If true, all fields are exported, including those that have
no value. Iffalse (the default), excludes those fields that currently
have no value.

bNoPassword (optional) If true (the default), do not include text fields that have
the "password" flag set in the exported FDF.

aFields (optional) The array of field names to submit or a string containing a
single field name.
● If specified, only these fields are exported, except those excluded

by bNoPassword.
● If aFields is an empty array, no fields are exported. The FDF

might still contain data, depending on the bAnnotations
parameter.

● If this parameter is omitted or is null, all fields in the form are
exported, except those excluded by bNoPassword.

Specify non-terminal field names to export an entire subtree of
fields; see the example below.

bFlags (optional) If true, field flags are included in the exported FDF. The
default is false

cPath (optional) A string specifying the device-independent pathname for
the file. (See Section 3.10.1 of the PDF Reference for a description of
the device-independent pathname format.) The pathname may be
relative to the location of the current document. If the parameter is
omitted a dialog is shown to let the user select the file.

N O T E : (Security�): The parameter cPath is required to have a Safe
Path and have a .fdf extension. This method will throw a
NotAllowedError (see the Error Objects) exception if
these security conditions are not met, and the method will
fail.

bAnnotations (optional, version 6.0) If true, annotations are included in the
exported FDF. The default is false

Acrobat JavaScript Scripting Reference
Doc Methods

254 Acrobat JavaScript Scripting Reference

Example 1

Export the entire form (including empty fields) with flags.

this.exportAsFDF(true, true, null, true);

Example 2

Export the name subtree with no flags.

this.exportAsFDF(false, true, "name");

The example above illustrates a shortcut to exporting a whole subtree. Passing "name" as
part of the aFields parameter, exports "name.title", "name.first",
"name.middle" and "name.last", and so on.

exportAsXFDF

Exports form fields an XFDF file to the local hard drive.

XFDF is an XML representation of Acrobat form data. See the document entitled “Forms
System Implementation Notes” for an overview of XFDF, available as Adobe Web
Documentation. The XML Form Data Format Specification, XFDF, can be found at
http://partners.adobe.com/asn/tech/pdf/xmlformspec.jsp.

There is an import version of this same method, importAnXFDF.

N O T E S : (Security�): If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events. See also Privileged versus Non-
privileged Context. The Event Object contains a discussion of Acrobat JavaScript
events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

5.0 � �

bAllFields (optional) If true, all fields are exported, including those that have
no value. Iffalse (the default), excludes those fields that currently
have no value.

bNoPassword (optional) If true (the default), do not include text fields that have
the "password" flag set in the exported XFDF.

Acrobat JavaScript Scripting Reference 255

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Nothing

exportDataObject

This method extracts the specified data object to an external file.

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.openDataObject, doc.createDataObject, doc.removeDataObject,
doc.importDataObject, doc.getDataObjectContents, and
doc.setDataObjectContents.

N O T E S : (Security�): Beginning with Acrobat 6.0, if the parameter cDIPath is non-NULL a
NotAllowedError (see the Error Objects) exception will be thrown and the
method will fail.

If cDIPath is not passed to this method, a file selection dialog will open to allow the
user to select a save path for the embedded data object.

aFields (optional) The array of field names to submit or a string containing a
single field name.
● If specified, only these fields are exported, except those excluded

by bNoPassword.
● If aFields is an empty array, no fields are exported. The XFDF

might still contain data, depending on the bAnnotations
parameter.

● If this parameter is omitted or is null, all fields in the form are
exported, except those excluded by bNoPassword.

Specify non-terminal field names to export an entire subtree of
fields; see the example below.

cPath (optional) A string specifying the device-independent pathname for
the file. (See Section 3.10.1 of the PDF Reference for a description of
the device-independent pathname format.) The pathname may be
relative to the location of the current document. If the parameter is
omitted a dialog is shown to let the user select the file.

N O T E : (Security�): The parameter cPath is required to have a Safe
Path and have a .xfdf extension. This method will throw a
NotAllowedError (see the Error Objects) exception if
these security conditions are not met, and the method will
fail.

bAnnotations (optional, version 6.0) If true, annotations are included in the
exported XFDF. The default is false

5.0 �

Acrobat JavaScript Scripting Reference
Doc Methods

256 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example 1

Prompt the user for a file and location to extract to.

this.exportDataObject("MyData");

Example 2 (Version 6.0)

Extract PDF document and launch it in the viewer.

this.exportDataObject({ cName: "MyPDF.pdf", nLaunch: 2 });

cName The name of the data object to extract.

cDIPath (optional) A device-independent path to which to extract the data
object. This path may be absolute or relative to the current document.
If not specified, the user is prompted to specify a save location. See
“File Specification Strings” in the PDF Reference Manual for the exact
syntax of the path.

N O T E : (version 6.0) The use of this parameter is no longer supported
and should not be used. See the security notes above.

bAllowAuth (optional, version 6.0) If true, a dialog is used to obtain user
authorization. Authorization may be required if the data object was
encrypted using Doc.encryptForRecipients. Authorization dialogs
are allowed if bAllowAuth is true. The default value is false.

nLaunch (optional, version 6.0) nLaunch controls whether the file is launched,
or opened, after it is saved. Launching may involve opening an
external application if the file is not a PDF file. The values of nLaunch
are
● If the value is 0, the file will not be launched after it is saved.
● If the value is 1, the file will be saved and then launched.

Launching will prompt the user with a security alert warning if the
file is not a PDF file. The user will be prompted for a save path.

● If the value is 2, the file will be saved and then launched.
Launching will prompt the user with a security alert warning if the
file is not a PDF file. A temporary path is used, and the user will not
be prompted for a save path. The temporary file that is created will
be deleted by Acrobat upon application shutdown.

The default value is 0.

Acrobat JavaScript Scripting Reference 257

Acrobat JavaScript Scripting Reference
Doc Methods

Example 3

When a file attachment is imported using Doc.importDataObject, the value of its
Data.name is assigned via the parameter cName of that method; however, when a file is
attached using the UI, the name of the file attachment is automatically assigned. The first
attachment is assigned a name of "Untitled Object"; the second, a name of
"Untitled Object 2"; the third, a name of "Untitled Object 3"; and so on.

To export a file attached through the UI, the name of the attachment needs to be found. For
the code that follows, the last file attached by the UI, if any, is exported.

var d = this.dataObjects;
if (d == null) console.println("No file attachments");
else {

for (var i = d.length - 1; i>=0; i--)
if (d[i].name.indexOf("Untitled Object") != -1) break;

if (i != -1) this.exportDataObject(d[i].name);
else console.println("No attachment was embedded by UI");

}

exportXFAData

Exports an XFA data file to the local hard drive.

Form Rights (�): When exporting XFA data from the Adobe Reader, the document must
have export form rights.

N O T E S : (Security �): If the cPath parameter is specified, then this method can only be
executed during batch, console or menu events. See also Privileged versus Non-
privileged Context. The Event Object contains a discussion of Acrobat JavaScript
events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

6.0 � �

cPath (optional) A device-independent pathname for the file. The pathname
may be relative to the document. See File Specification Strings in the
PDF Reference Manual for the exact syntax of the path. If this
parameter is omitted, a dialog is shown to let the user select the file.

N O T E : (Security�): The parameter cPath is required to have a Safe
Path. Additionally, the file name must have a .xdp extension, if
bXDP is true, or a.xml extension, if bXDP is false. This
method will throw a NotAllowedError (see the Error
Objects) exception if these security conditions are not met, and
the method will fail.

Acrobat JavaScript Scripting Reference
Doc Methods

258 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example

In the first example, all packets are included; the PDF document is referenced, not
embedded, however.

this.exportXFAData({
cPath: "/c/temp/myData.xdp",
bXDP: true,
aPackets: ["*"]

})

In this example, all packets are included, with the PDF document embedded in the XDP.

this.exportXFAData({
cPath: "/c/temp/myData.xdp",
bXDP: true,
aPackets: ["*","pdf"]

})

bXDP (optional) If true (the default), the method exports in the XDP
format. Otherwise, it exports in the plain XML data format.

aPackets (optional) An array of strings specifying which packets to include in
the XDP export. This parameter is only applicable if bXDP is true.
Possible strings are:
template
datasets
stylesheet
xfdf
sourceSet
pdf
config
*

pdf means that the PDF should be embedded. If pdf is not specified,
only a link to the PDFis included in the XDP.
xfdf means include annotations in the XDP (since that packet uses
XFDF format).
* means that all packets should be included in the XDP. The default
for pdf is to include it as a reference. To embed the PDF file in the XDP,
explicitly specify pdf as one of the packets.

N O T E : (Save rights required �): When exporting in the XDP format
with from the Adobe Reader with pdf explicitly listed in the
aPackets array, the document must have document save
rights in this case only. (Read the description above of * above.)

The default for this parameter is: ["datasets", "xfdf"].

Acrobat JavaScript Scripting Reference 259

Acrobat JavaScript Scripting Reference
Doc Methods

extractPages

Creates a new document consisting of pages extracted from the current document. If a
page range is not specified, the method extracts all pages in the document.

See also deletePages, insertPages, and replacePages.

N O T E S : (Security�) If the cPath parameter is specified, then this method can only
be executed during batch, console or menu events, or through an external call
(for example, OLE). See also Privileged versus Non-privileged Context. The Event
Object contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

If cPath is not specified, returns the Doc Object for the new document; otherwise, returns
the null object.

Example

The following batch sequence would take each of the selected files, extract each page and
save the page to a folder with an unique name. This example may be used in the following
setting. Client’s one-page bills are produced by an application and placed in a single PDF
file. It is desired to separate the pages for distribution and/or separate printing jobs.

/* Extract Pages to Folder */
// regular expression used to acquire the base name of file

5.0 � � �

nStart (optional) A 0-based index that defines the start of the range of pages
to extract from the source document. If only nStart is specified then
the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of the range of pages
to extract from the source document. If only nEnd is specified then
the range of pages is 0 to nEnd.

cPath (optional) The device-independent pathname to save the new
document. See 3.10.1 of the PDF Reference for a description of the
device-independent path name format. The path name may be
relative to the location of the current document.

N O T E : (Security�): The parameter cPath is required to have a Safe
Path and have a .pdf extension. This method will throw a
NotAllowedError (see the Error Objects) exception if these
security conditions are not met, and the method will fail.

Acrobat JavaScript Scripting Reference
Doc Methods

260 Acrobat JavaScript Scripting Reference

var re = /\.pdf$/i;
// filename is the base name of the file Acrobat is working on
var filename = this.documentFileName.replace(re,"");
try {for (var i = 0; i < this.numPages; i++)

this.extractPages({
nStart: i,
cPath: "/F/temp/"+filename+"_" + i +".pdf"

 });
} catch (e) { console.println("Aborted: " + e) }

flattenPages

Converts all annotations in the specified page range to page contents. If a page range is not
specified, converts annotation for all the pages in the current document.

N O T E : Great care must be used when using this method. All annotations—including form
fields, comments and links—on the specified range of pages are flattened; they may
have appearances, but they will no longer be annotations.

Parameters

Returns

Nothing

Example

Flatten all pages in the document.

this.flattenPages();

5.0 � �

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the current document. If only nStart is specified, then
the page range is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the current document.

nNonPrint (optional, version 6.0) This parameter determines how to handle non
printing annotations. Values are

0 (default): Non-printing annotations are flattened.
1: Non-printing annotations are left as is.
2: Non-printing annotations are removed from the document.

Acrobat JavaScript Scripting Reference 261

Acrobat JavaScript Scripting Reference
Doc Methods

getAnnot

Gets the name of an annot object contained on a specific document page.

Parameters

Returns

The Annot Object, or null if there is no such annotation.

Example
var ann = this.getAnnot(0, "OnMarketShare");
if (ann == null)
 console.println("Not Found!")
else
 console.println("Found it! type: " + ann.type);

getAnnot3D

Gets the Annot3D Object with the given name from the given page.

Parameters

Returns

The Annot3D Object, or undefined, if there is no such annotation.

getAnnots

Gets an array of Annot Objects satisfying specified criteria. See also getAnnot and
syncAnnotScan.

5.0 � �

nPage The page that contains the desired Annot Object.

cName The name of the desired Annot Object.

7.0

nPage The 0-based page number that contains the desired Annot3D Object.

cName The name of the desired Annot3D Object.

5.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

262 Acrobat JavaScript Scripting Reference

Parameters

Returns

An array of Annot Objects, or null, if none are found.

Example
this.syncAnnotScan();
var annots = this.getAnnots({

nPage:0,
nSortBy: ANSB_Author,
bReverse: true

});
console.show();
console.println("Number of Annots: " + annots.length);

nPage (optional) A 0-based page number. If specified, gets only annotations
on the given page. If not specified, gets annotations that meet the
search criteria from all pages.

nSortBy (optional) A sort method applied to the array. Values are:
ANSB_None: (default) Do not sort; equivalent to not specifiying
this parameter.
ANSB_Page: Use the page number as the primary sort criteria.
ANSB_Author: Use the author as the primary sort criteria.
ANSB_ModDate: Use the modification date as the primary sort
criteria.
ANSB_Type: Use the annot type as the primary sort criteria.

bReverse (optional) If true, causes the array to be reverse sorted with respect
to nSortBy.

nFilterBy (optional) Gets only annotations satisfying certain criteria. Values are:
ANFB_ShouldNone: (default) Get all annotations. Equivalent of
not specifying this parameter.
ANFB_ShouldPrint: Only include annotations that can be
printed.
ANFB_ShouldView: Only include annotations that can be
viewed.
ANFB_ShouldEdit: Only include annotations that can be
edited.
ANFB_ShouldAppearInPanel: Only annotations that appear
in the annotations pane.
ANFB_ShouldSummarize: Only include annotations that can be
included in a summarization
ANFB_ShouldExport: Only include annotations that can be
included in an export

Acrobat JavaScript Scripting Reference 263

Acrobat JavaScript Scripting Reference
Doc Methods

var msg = "%s in a %s annot said: \"%s\"";
for (var i = 0; i < annots.length; i++)

console.println(util.printf(msg, annots[i].author, annots[i].type,
annots[i].contents));

getAnnots3D

Returns an array of Annot3D Objects for the given page.

Parameters

Returns

An array of Annot3D Objects, or undefined, if none is found.

getDataObject

Obtains a specific data object. See also dataObjects, createDataObject,
exportDataObject, importDataObject, removeDataObject.

Parameters

Returns

The Data Object corresponding to the specified name.

Example
var MyData = this.getDataObject("MyData");
console.show(); console.clear();
for (var i in MyData) console.println("MyData." + i + "=" + MyData[i]);

getDataObjectContents

This method allows access to the contents of the file attachment associated with a
DataObject.

7.0

nPage The 0-based page number that contains the desired Annot3D Object.

5.0

cName The name of the data object to obtain.

7.0

Acrobat JavaScript Scripting Reference
Doc Methods

264 Acrobat JavaScript Scripting Reference

Parameters

Returns

ReadStream Object

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.getDataObject, doc.openDataObject, doc.createDataObject,
doc.importDataObject, doc.setDataObjectContents and
doc.removeDataObject.

ReadStream Object

A ReadStream Object is an object literal that represents a stream of data. It contains a
method to allow reading data the stream.

Example

This code is part of a circulating memo. A PDF file is circulated among members on an email
list. Each recipient enters a budget figure, then forwards the document on to the next
person on the list. Before the document is sent, the budget number is appended to an
embedded tab-delimited document, budget.xls, an attachment to this document. The
last recipient can open the attachment, budget.xls, in a spreadsheet application to view
the various budget numbers.

// get the name and department of the current recipient
var firstName = this.getField("Name.First").value;
var lastName = this.getField("Name.Last").value;
var deptName = this.getField("Dept.Name").value;
// get the budget number
var deptBudget = this.getField("Dept.Budget").value;
if (app.viewerVersion >= 7) {

// get the file stream object of the embedded file
var oFile = this.getDataObjectContents("budget.xls");
// convert to a string
var myBudget = util.stringFromStream(oFile, "utf-8");
// append current data to the end, using tabs to separate info

cName The name associated with the Data Object to get.

bAllowAuth (optional) The default value is false. If true, a dialog is used to
obtain user authorization. Authorization may be required if the data
object was encrypted using Doc.encryptForRecipients.
Authorization dialogs are allowed if bAllowAuth is true.

Method Parameters Returns Description

read nBytes String The read method takes the number of bytes to read and
returns a hex encoded string with the data from the stream.
The read method is a destructive operation on the stream
and returns a zero length string to indicate end of stream.

Acrobat JavaScript Scripting Reference 265

Acrobat JavaScript Scripting Reference
Doc Methods

var myBudget = myBudget + "\r\n" + firstName
+ "\t" + lastName + "\t" + deptName + "\t" + deptBudget;

// convert back to a file stream
var oFile = util.streamFromString(myBudget, "uft-8");
// now "overwrite" budget.xls
this.setDataObjectContents("budget.xls", oFile);

} else {
 app.alert("Acrobat 7.0 or later is required."

 + " Your budget data will not be included. "
 + "Will e-mail on to the next correspondent, sorry. "
 + "Send in your budget request using traditional methods.");
}

The rest of the code, not shown, is to save the document and sent to the next person on the
mailing list.

This examples uses doc.getDataObjectContents, util.stringFromStream,
util.streamFromString and doc.setDataObjectContents.

getField

Maps a Field Object in the PDF document to a JavaScript variable.

Beginning with Acrobat 6.0, this method can return the Field Object of an individual
Widget. For more information, see Field Access from JavaScript.

Parameters

Returns

A Field Object representing a form field in the PDF document.

Example 1

Make a text field multiline and triple its height

var f = this.getField("myText");
var aRect = f.rect; // get bounding rectangle
f.multiline = true; // make it multiline
var height = aRect[1]-aRect[3];// calculate height
aRect[3] -= 2* height; // triple the height of the text field
f.rect = aRect; // and make it so

Example 2 (Version 6.0)

Attach a JavaScript action to an individual widget, in this case, a Radio Button.

var f = this.getField("myRadio.0");
f.setAction("MouseUp",

3.01

cName The name of the field of interest.

Acrobat JavaScript Scripting Reference
Doc Methods

266 Acrobat JavaScript Scripting Reference

"app.alert('Thanks for selecting the first choice.');");

Example 3

The following code lists all properties of a field. This technique can be used to
programmatically duplicate a field.

f = this.getField("myField");
for (var i in f) {
 try {
 if (typeof f[i] != "function") // remove a field methods
 console.println(i + ":" + f[i])
 } catch(e) {} // an exception occurs when we get a property that
} // does not apply to this field type.

getIcon

Obtains a specific icon object. See also icons, addIcon, importIcon, and
removeIcon, and field methods buttonGetIcon, buttonImportIcon, and
buttonSetIcon.

Parameters

Returns

An Icon Generic Object associated with the specified name in the document or null if no
icon of that name exists.

Example

The following is a custom keystroke script from a combobox. The face names of the items in
the combobox are the names of some of the icons that populate the document. As the user
chooses different items from the combobox, the corresponding icon appears as the button
face of the field "myPictures".

if (!event.willCommit) {
var b = this.getField("myPictures");
var i = this.getIcon(event.change);
b.buttonSetIcon(i);

}

See field.buttonSetIcon for a more elaborate variation on this example.

5.0

cName The name of the icon obejct to obtain.

Acrobat JavaScript Scripting Reference 267

Acrobat JavaScript Scripting Reference
Doc Methods

getLegalWarnings

This method returns the legal warnings for this document in the form of an object with
entries for each warning that has been found in the document. Legal warnings can be
embedded in a file at the time that a file is signed by an author signature. Legal warnings
can be embedded using the cLegalAttest of the field.signatureSign method.

The process that analyses a file to determine this list of warnings not available in the Adobe
Reader. The value of each entry is the number of occurances of this warning in the
document. Refer to PDF Reference 1.5.

Parameters

Returns

A object containing property names and values of legal warnings

Example

Process a document and get legal PDF warnings.

var w = this.getLegalWarnings(true);
console.println("Actual Legal PDF Warnings:");
for(i in w) console.println(i + " = " + w[i]);

var w1 = this.getLegalWarnings(false);
console.println("Declared Legal PDF Warnings:");
for(i in w1) console.println(i + " = " + w1[i]);

// For an author signature, note also if annotations are
// allowed by MDP settings

var f = this.getField("AuthorSig");
var s = f.signatureInfo();
if(s.mdp == "defaultAndComments")
 console.println("Annotations are allowed");

// What does author have to say about all this?

console.println("Legal PDF Attestation:");
console.println(w1.Attestation);

6.0 � �

bExecute If true, will cause the file to be examined and all detected warnings
will be returned. If false, the default value, the warnings that have
been embedded in the file will be returned.

Acrobat JavaScript Scripting Reference
Doc Methods

268 Acrobat JavaScript Scripting Reference

getLinks

Gets an array of link objects that are enclosed within the specified oCoords on a
specified page, nPage. See also addLink, removeLinks and the Link Object,

Parameters

Returns

An array of Link Objects.

Example

Count the number of links in a document and report to the console.

var numLinks=0;
for (var p = 0; p < this.numPages; p++)
{

var b = this.getPageBox("Crop", p);
 var l = this.getLinks(p, b);

console.println("Number of Links on page " + p +" is " + l.length);
 numLinks += l.length;
}
console.println("Number of Links in Document is " + numLinks);

getNthFieldName

Gets the nth field name in the document. See also numFields.

Parameters

Returns

The name of the field in the document.

Example

Enumerate through all of the fields in the document.

6.0 �

nPage The page that contains the desired link object. The first page is 0.

oCoords An array of four numbers in rotated user space, the coordinates of a
rectangle listed in the following order: upper-left x, upper-left y,
lower-right x and lower-right y.

4.0

nIndex The field name to obtain.

Acrobat JavaScript Scripting Reference 269

Acrobat JavaScript Scripting Reference
Doc Methods

for (var i = 0; i < this.numFields; i++)
console.println("Field[" + i + "] = " + this.getNthFieldName(i));

getNthTemplate

Gets the name of the nth template within the document.

This method is superseded by the templates property, the getTemplate method, and
the Template Object in later versions.

Parameters

Returns

The name of the specified template.

getOCGs

Gets an array of OCG Objects found on a specified page.

Related methods are doc.getOCGOrder and doc.setOCGOrder, and the OCG
Object.

Parameters

Returns

Returns an array of OCG Objects or null if no OCGs are present.

Example

Turn on all the OCGs on the given document and page.

function TurnOnOCGsForPage(doc, nPage)
{

var ocgArray = doc.getOCGs(nPage);
for (var i=0; i < ocgArray.length; i++)

ocgArray[i].state = true;
}

� �

nIndex The template to obtain.

6.0

nPage (optional) The 0-based page number. If not specified, all the OCGs
found in the document are returned.

Acrobat JavaScript Scripting Reference
Doc Methods

270 Acrobat JavaScript Scripting Reference

getOCGOrder

Returns this document’s OCGOrder array. This array represents how layers are displayed in
the UI.

Related methods are doc.getOCGs and doc.setOCGOrder, and the OCG Object.

Parameters

None

Returns

An array containing OCG objects, strings, and similar subarrays.

See setOCGOrder for a description of the order array.

getPageBox

Gets a rectangle in rotated user space that encompasses the named box for the page. See
also setPageBoxes.

Parameters

Returns

A rectangle in rotated user space that encompasses the named box for the page.

Example

Get the dimensions of the Media box.

var aRect = this.getPageBox("Media");
var width = aRect[2] - aRect[0];
var height = aRect[1] - aRect[3];
console.println("Page 1 has a width of " + width + " and a height of "

+ height);

7.0

5.0

cBox (optional) The type of box. Values are:
Art
Bleed
BBox
Crop (default)
Trim

For definitions of these boxes see “Page Boundaries” in the PDF Reference.

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

Acrobat JavaScript Scripting Reference 271

Acrobat JavaScript Scripting Reference
Doc Methods

getPageLabel

Gets page label information for the specified page.

Parameters

Returns

Page label information for the specified page.

Example

See setPageLabels for an example.

getPageNthWord

Gets the nth word on the page.

See also getPageNumWords and selectPageNthWord .

N O T E : (Security �): This method throws an exception if the document security is set to
prevent content extraction.

Parameters

Returns

The nth word on the page.

Example

See Example 2 of spell.checkWord for an example.

5.0

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

5.0 �

nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.

nWord (optional) The 0-based index of the word. Default is 0, the first word on
the page.

bStrip (optional) Whether punctuation and whitespace should be removed
from the word before returning. Default is true.

Acrobat JavaScript Scripting Reference
Doc Methods

272 Acrobat JavaScript Scripting Reference

getPageNthWordQuads

Gets the quads list for the nth word on the page. The quads can be used for constructing
text markup annotations, Underline, StrikeOut, Highlight and Squiggly. See
also getPageNthWord, getPageNumWords, and selectPageNthWord.

N O T E : (Security �): This method throws an exception if the document security is set to
prevent content extraction.

Parameters

Returns

The quads list for the nth word on the page.

Example

The following example underlines the fifth word on the second page of a document.

var annot = this.addAnnot({
page: 1,
type: "Underline",
quads: this.getPageNthWordQuads(1, 4),
author: "A. C. Acrobat",
contents: "Fifth word on second page"

});

See spell.checkWord for an additional example.

getPageNumWords

Gets the number of words on the page.

See also getPageNthWord, getPageNthWordQuads, and selectPageNthWord.

Parameters

5.0 �

nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.

nWord (optional) The 0-based index of the word. Default is 0, the first word on
the page.

5.0

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

Acrobat JavaScript Scripting Reference 273

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

The number of words on the page.

Example
// count the number of words in a document
var cnt=0;
for (var p = 0; p < this.numPages; p++)

cnt += getPageNumWords(p);
console.println("There are " + cnt + " words in this doc.");

See Example 2 of spell.checkWord for an additional example.

getPageRotation

Gets the rotation of the specified page. See also setPageRotations.

Parameters

Returns

The rotation value of 0, 90, 180, or 270.

getPageTransition

Gets the transition of the specified page. See also setPageTransitions.

Parameters

Returns

An array of three values: [nDuration, cTransition, nTransDuration].

● nDuration is the maximum amount of time the page is displayed before the viewer
automatically turns to the next page. A duration of -1 indicates that there is no
automatic page turning.

● cTransition is the name of the transition to apply to the page. See the application
property transitions for a list of valid transitions.

5.0

nPage (optional) The 0-based index of the page. Default is 0, the first page in the
document.

5.0

nPage (optional) The 0-based index of the page. Default is 0, the first page in
the document.

Acrobat JavaScript Scripting Reference
Doc Methods

274 Acrobat JavaScript Scripting Reference

● cTransDuration is the duration (in seconds) of the transition effect.

getPrintParams

Gets a printParams object that reflects the default print settings. See print, which
now takes the printParams object as its parameter.

Parameters

None

Returns

A printParams Object.

Example

Get the printParams object of the default printer.

var pp = this.getPrintParams();
pp.colorOverride = pp.colorOverrides.mono; // set some properties
this.print(pp); // print

getSound

Gets the sound object corresponding to the specified name. See also sounds,
importSound, deleteSound, and the Sound Object.

Parameters

Returns

The Sound Object corresponding to the specified name.

Example
var s = this.getSound("Moo");
console.println("Playing the " + s.name + " sound.");
s.play();

6.0

5.0

cName The name of the object to obtain.

Acrobat JavaScript Scripting Reference 275

Acrobat JavaScript Scripting Reference
Doc Methods

getTemplate

Gets the named template from the document. See also templates, createTemplate,
removeTemplate, and the Template Object.

Parameters

Returns

The Template Object or null if the named template does not exist in the document.

Example
var t = this.getTemplate("myTemplate");
if (t != null) console.println("myTemplate exists and is "

+ eval('(t.hidden) ? "hidden" : "visible"') + ".");
else console.println("myTemplate is not present!");

getURL

Gets the specified URL over the internet using a GET. If the current document is being
viewed inside the browser, or Acrobat Web Capture is not available, the method uses the
Weblink plug-in to retrieve the requested URL. If running inside Acrobat, the method gets
the URL of the current document either from the baseURL, from the URL of the first page
(page 0) if the document was WebCaptured, or from the file system.

N O T E : This method roughly corresponds to the “open a web page” action.

A related method is app.launchURL.

Parameters

5.0

cName The name of the template to retrieve.

4.0 � �

cURL A fully qualified URL or a relative URL. There can be a query string at the
end of the URL.

Acrobat JavaScript Scripting Reference
Doc Methods

276 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example
this.getURL("http://www.adobe.com/", false);

gotoNamedDest

Goes to a named destination within the PDF document. For details on named destinations
and how to create them, see Section 8.2, Document-Level Navigation, of the PDF Reference.

Parameters

Returns

Nothing

Example

The following example opens a document then goes to a named destination within that
document.

// open new document
var myNovelDoc = app.openDoc("/c/fiction/myNovel.pdf");
// go to destination in this new doc
myNovelDoc.gotoNamedDest("chapter5");
// close old document
this.closeDoc();

bAppend (optional) If true (the default), the resulting page or pages should be
appended to the current document. This flag is considered to be false
if the document is running inside the web browser, the Acrobat Web
Capture plug-in is not available, or if the URL is of type "file:///".

N O T E : (Security �): Beginning with Acrobat 6.0, if bAppend is true, the
getURL method can only be executed during a console, menu or
batch event. See also Privileged versus Non-privileged Context.

N O T E : Beginning with Acrobat 7.0, execution of JavaScript through a
menu event is no longer privileged, see JavaScript Execution
through the Menu for details.

3.01

cName The name of the destination within a document.

http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/pdfspec.pdf

Acrobat JavaScript Scripting Reference 277

Acrobat JavaScript Scripting Reference
Doc Methods

importAnFDF

Imports the specified FDF file. See also importAnXFDF and importTextData.

Parameters

Returns

Nothing

Example

The following code, which is an action of a Page Open event, checks whether a certain
function, ProcResponse, is already defined, if not, it installs a document level JavaScript,
which resides in an FDF file.

if(typeof ProcResponse == "undefined") this.importAnFDF("myDLJS.fdf");

Here, the pathname is a relative one. This technique may be useful for automatically
installing document level JavaScripts for PDF files distilled from a PostScript file.

importAnXFDF

Imports the specified XFDF file containing XML form data.

XFDF is an XML representation of Acrobat form data. See the document entitled “Forms
System Implementation Notes” for an overview of XFDF, available as Adobe Web
Documentation. The XML Form Data Format Specification, XFDF, can be found at
http://partners.adobe.com/asn/tech/pdf/xmlformspec.jsp.

See also exportAsXFDF, importAnFDF and importTextData.

4.0 � �

cPath (optional) The device-independent pathname to the FDF file. See
Section 3.10.1 of the PDF Reference for a description of the device-
independent pathname format. It should look like the value of the /F
key in an FDF exported with the submitForm method or with the
Advanced >Forms>Export Form Data menu item. The pathname may
be relative to the location of the current document. If this parameter is
omitted, a dialog is shown to let the user select the file.

5.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

278 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

importDataObject

Imports an external file into the document and associates the specified name with the
data object. Data objects can later be extracted or manipulated.

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.getDataObject, doc.openDataObject, doc.createDataObject,
doc.exportDataObject, doc.removeDataObject,
doc.getDataObjectContents, and doc.setDataObjectContents.

N O T E S : (Security�): If the cDIPath parameter is specified, then this method can
only be executed during batch, console or menu events, or through an
external call (for example, OLE). See also Privileged versus Non-privileged Context.
The Event Object contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

When a file attachment is imported using Doc.importDataObject, the value of its
Data.name is assigned via the parameter cName; however, when a file is attached using
the UI, the name of the file attachment is automatically assigned. The first attachment is
assigned a name of "Untitled Object"; the second, a name of "Untitled Object
2"; the third, a name of "Untitled Object 3"; and so on.

Parameters

cPath (optional) The device-independent pathname to the XFDF file. See Section
3.10.1 of the PDF Reference for a description of the device-independent
pathname format. The pathname may be relative to the location of the
current document. If the parameter is omitted, a dialog is shown to let the
user select the file.

5.0 � � �

cName The name to associate with the data object.

cDIPath (optional) A device-independent path to a data file on the user’s hard
drive. This path may be absolute or relative to the current document.
If not specified, the user is prompted to locate a data file. See File
Specification Strings in the PDF Reference Manual for the exact syntax
of the path.

Acrobat JavaScript Scripting Reference 279

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

true on success. An exception is thrown on failure.

Example
function DumpDataObjectInfo(dataobj)
{

for (var i in dataobj)
console.println(dataobj.name + "[" + i + "]=" + dataobj[i]);

}
// Prompt the user for a data file to embed.
this.importDataObject("MyData");
DumpDataObjectInfo(this.getDataObject("MyData"));
// Embed Foo.xml (found in parent director for this doc).
this.importDataObject("MyData2", "../Foo.xml");
DumpDataObjectInfo(this.getDataObject("MyData2"));

importIcon

Imports an icon into the document and associates it with the specified name.

See also icons, addIcon, getIcon, removeIcon, field methods buttonGetIcon,
buttonImportIcon, buttonSetIcon, and the Icon Generic Object.

Beginning with version 6.0, Acrobat will first attempt to open cDIPath as a PDF. On failure,
Acrobat will try to convert cDIPath to PDF from one of the known graphics formats (BMP,
GIF, JPEG, PCX, PNG, TIFF) and then import the converted file as a button icon.

N O T E S : (Security�): If cDIPath is specified, this method can only be executed during
batch, console or menu events. See also Privileged versus Non-privileged Context.
The Event Object contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

cCryptFilter (optional, version 6.0) The language independent name of a crypt
filter to use when encrypting this data object. This crypt filter must
have previously been added to the document’s list of crypt filters,
using the Document Object addRecipientListCryptFilter
method, otherwise an exception will be thrown. The predefined
"Identity" crypt filter can be used if it is desired that this data
object not be encrypted in a file that is otherwise encrypted by the
Document Object encryptForRecipients method.

5.0 � � �

cName The name to associate with the icon.

Acrobat JavaScript Scripting Reference
Doc Methods

280 Acrobat JavaScript Scripting Reference

Returns

An integer code indicating whether it was successful or not:

0: No error

1: The user cancelled the dialog

-1: The selected file could not be opened

-2: The selected page was invalid

Example

This function is useful to populate a document with a series of named icons for later
retrieval. For example, if a user of a document selects a particular state in a listbox, the
author may want the picture of the state to appear next to the listbox. In prior versions of
the application, this could be done using a number of fields that could be hidden and
shown. This is difficult to author, however; instead, the appropriate script might be
something like this:

var f = this.getField("StateListBox");
var b = this.getField("StateButton");
b.buttonSetIcon(this.getIcon(f.value));

This uses a single field to perform the same effect.

A simple user interface can be constructed to add named icons to a document. Assume the
existence of two fields: a field called IconName which will contain the icon name and a
field called IconAdd which will add the icon to the document. The mouse up script for
IconAdd would be:

var t = this.getField("IconName");
this.importIcon(t.value);

The same kind of script can be applied in a batch setting to populate a document with
every selected icon file in a folder.

importSound

Imports a sound into the document and associates the specified name with the sound.

cDIPath (optional) A device-independent path to a PDF file on the user’s hard
drive. This path may be absolute or relative to the current document.
cDIPath may only be specified in a batch environment or from the
console. See Section 3.10.1, “File Specification Strings” in the PDF
Reference for the exact syntax of the path. If not specified, the nPage
parameter is ignored and the user is prompted to locate a PDF file and
browse to a particular page.

nPage (optional) The 0-based index of the page in the PDF file to import as
an icon. Default is 0.

5.0 � � �

Acrobat JavaScript Scripting Reference 281

Acrobat JavaScript Scripting Reference
Doc Methods

N O T E S : (Security�): If cDIPath is specified, this method can only be executed during
batch, console, or menu events. See also Privileged versus Non-privileged Context.
The Event Object contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Nothing

Example
this.importSound("Moo");
this.getSound("Moo").play();
this.importSound("Moof", "./moof.wav");
this.getSound("Moof").play();

See also sounds, getSound, deleteSound, and the Sound Object.

importTextData

Imports a row of data from a text file. Each row must be tab delimited. The entries in the first
row of the text file are the column names of the tab delimited data. These names are also
field names for text fields present in the PDF file. The data row numbers are 0-based; that is,
the first row of data is row zero (this does not include the column name row). When a row of
data is imported, each column datum becomes the field value of the field that corresponds
to the column to which the data belongs.

See also the export version of this method, exportAsText.

cName The name to associate with the sound object.

cDIPath (optional) A device-independent path to a sound file on the user’s
hard drive. This path may be absolute or relative to the current
document. If not specified, the user is prompted to locate a sound file.
See Section 3.10.1, “File Specification Strings”, in the PDF Reference for
the exact syntax of the path.

5.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

282 Acrobat JavaScript Scripting Reference

Parameters

Returns

Integer, a return code. The return codes are given below.

Example 1

Suppose there are text fields named "First", "Middle" and "Last", and there is also a data file,
the first row of which consists of the three strings, First, Middle and Last, separated
by tabs. Suppose there are four additional rows of name data, again separated by tabs.

First Middle Last
A. C. Robat
T. A. Croba
A. T. Acrob
B. A. Tacro
// Import the first row of data from "myData.txt".
this.importTextData("/c/data/myData.txt", 0)

Example (continued)

The following code is a mouse up action for a button. Clicking on the button cycles through
the text file and populates the three fields "First", "Middle" and "Last" with the name data.

if (typeof cnt == "undefined") cnt = 0;
this.importTextData("/c/data/textdata.txt", cnt++ % 4)

The same functionality can be obtained using the ADBC Object and associated properties
and methods. The data file can be a spreadsheet or a database.

cPath (optional) A relative device-independent path to the text file. If not
specified, the user is prompted to locate the text data file.

nRow (optional) The 0-based index of the row of the data to import, not
counting the header row. If not specified, the user is prompted to
select the row to import.

Return Code Description Return Code Description

-3 Warning: Missing Data 1 Error: Cannot Open File

-2 Warning: User Cancelled Row
Select

2 Error: Cannot Load Data

-1 Warning: User Cancelled File
Select

3 Error: Invalid Row

0 No Error

Acrobat JavaScript Scripting Reference 283

Acrobat JavaScript Scripting Reference
Doc Methods

importXFAData

Imports the specified XFA file. See also importAnXFDF and importTextData.

N O T E S : (Security�): This method is only allowed in batch, console, and menu events. See
also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Nothing

insertPages

Inserts pages from the source document into the current document. If a page range is not
specified, the method gets all pages in the source document.

See also deletePages and replacePages.

N O T E S : (Security �) This method can only be executed during batch, console, or menu
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

6.0 � � �

cPath (optional) The device-independent pathname to the XFA file. The
pathname may be relative to the location of the current document. If
this parameter is omitted a dialog is shown to let the user select the
file.

5.0 � � �

Acrobat JavaScript Scripting Reference
Doc Methods

284 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Insert a cover page to the current document.

this.insertPages ({
nPage: -1,
cPath: "/c/temp/myCoverPage.pdf",
nStart: 0

});

mailDoc

Saves the current PDF document and mails it as an attachment to all recipients, with or
without user interaction.

See also app.mailGetAddrs, app.mailMsg, doc.mailForm, fdf.mail and
report.mail.

N O T E S : (Security �, version 7.0) When this method is executed in a non-privileged context,
the bUI parameter is not honored and defaults to true. See Privileged versus Non-
privileged Context.

(Save Rights�) For Adobe Reader 5.1 and beyond, this method is commonly
allowed, but document Save rights are required in case the document is changed.

On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

nPage (optional) The 0-based index of the page after which to insert the
source document pages. Use -1 to insert pages before the first page of
the document.

cPath The device-independent pathname to the PDF file that will provide
the inserted pages. See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format. The
pathname may be relative to the location of the current document.

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the source document to insert. If only nStart is specified
then the range of pages is the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the source document to insert. If only nEnd is specified
then the range of pages is 0 to nEnd.

4.0 �

Acrobat JavaScript Scripting Reference 285

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

Nothing

Example

This pops up the compose-new-message window.

this.mailDoc(true);

This sends out mail with the attached PDF file to fun1@fun.com and fun2@fun.com.
Beginning with version 7.0, the code below would have to be executed in a privileged
context if the bUI parameter (set to false) is to be honored.

this.mailDoc({
bUI: false,
cTo: "apstory@ap.com",
cCC: "dpsmith@ap.com",
cSubject: "The Latest News",
cMsg: "A.P., attached is my latest news story in PDF."

});

mailForm

Exports the form data and mails the resulting FDF file as an attachment to all recipients,
with or without user interaction. The method does not support signed signature fields.

bUI (optional) If true (the default), the rest of the parameters are used in
a compose-new-message window that is displayed to the user. If
false, the cTo parameter is required and all others are optional.

N O T E : (Security �, version 7.0) When this method is executed in a
non-privileged context, the bUI parameter is not honored and
defaults to true. See Privileged versus Non-privileged Context.

cTo (optional) The semicolon-delimited list of recipients for the message.

cCc (optional) The semicolon-delimited list of CC recipents for the
message.

cBcc (optional) The semicolon-delimited list of BCC recipents for the
message.

cSubject (optional) The subject of the message. The length limit is 64k bytes.

cMsg (optional) The content of the message. The length limit is 64k bytes.

4.0 �

Acrobat JavaScript Scripting Reference
Doc Methods

286 Acrobat JavaScript Scripting Reference

See also app.mailGetAddrs, app.mailMsg, doc.mailDoc, fdf.mail and
report.mail.

N O T E : On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Parameters

Returns

Nothing

Example

This pops up the compose new message window.

this.mailForm(true);

This sends out the mail with the attached FDF file to fun1@fun.com and
fun2@fun.com.

this.mailForm(false, "fun1@fun.com; fun2@fun.com", "", "",
"This is the subject", "This is the body of the mail.");

movePage

Moves a page within the document.

bUI If true , the rest of the parameters are used in a compose-new-
message window that is displayed to the user. If false, the cTo
parameter is required and all others are optional.

cTo (required if bUI is true) A semicolon-delimited list of recipients for
the message.

cCc (optional) A semicolon-delimited list of CC recipents for the message.

cBcc (optional) A semicolon-delimited list of BCC recipents for the
message.

cSubject (optional) The subject of the message. The length limit is 64k bytes.

cMsg (optional) The content of the message. The length limit is 64k bytes.

5.0 � �

Acrobat JavaScript Scripting Reference 287

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

Nothing

Example

Reverse the pages in the document.

for (i = this.numPages - 1; i >= 0; i--) this.movePage(i);

newPage

Adds a new page to the active document in the Acrobat Viewer.

N O T E S : (Security �): This method can only be executed during batch, console or menu
events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Nothing

Example

Add a new page to match the page size of the doc.

var Rect = this.getPageBox("Crop");
this.newPage(0, Rect[2], Rect[1]);

nPage (optional) The 0-based index of the page to move. Default is 0.

nAfter (optional) The 0-based index of the page after which to move the
specified page. Use -1 to move the page before the first page of the
document. Default is the last page in the document.

6.0 � � �

nPage (optional) The page after which to add the new page in a 1-based
page numbering system. The default is the last page of the document.
Use 0 to add a page before the first page. An invalid page range is
truncated to the valid range of pages.

nWidth (optional) The width of the page in points. The default value is 612.

nHeight (optional) The height of the page in points. The default value is 792.

Acrobat JavaScript Scripting Reference
Doc Methods

288 Acrobat JavaScript Scripting Reference

openDataObject

This method returns the Doc Object of a PDF document that is an embedded data object
(i.e. an attachment) within the document that this method is being called for. The
document is opened as a PDDoc.

The method can throw an exception instead of returning a doc object if

1. the document that this method is being called for does not contain the requested
embedded data object;

2. the data object is not a PDF document;

3. permissions forbid opening attachments via JavaScript.

The document should be closed (using doc.closeDoc) after it is no longer needed.

Parameters

The name of a data object is a property of the Data Object. A name is given to the object
when it is embedded, automatically by the Acrobat UI, or programmatically by the
JavaScript methods doc.createDataObject or doc.importDataObject.

Returns

Doc Object or an exception is thrown

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.setDataObjectContents, doc.getDataObjectContents,
doc.createDataObject and doc.importDataObject.

Example

Open a PDF attachment and extract form data from it.

var oDoc = this.openDataObject("myAttachment");
try {

var myField = this.getField("myTextField");
// get the value of "yourTextField" in PDF attachment
var yourField = oDoc.getField("yourTextField");
// view this value in "myTextField"
myField.value = yourField.value;
oDoc.closeDoc();

} catch(e) { app.alert("Operation failed");}

See also “Example 5 (Version 7.0)” on page 315 following the doc.submitForm method.

7.0

cName The name of the data object.

Acrobat JavaScript Scripting Reference 289

Acrobat JavaScript Scripting Reference
Doc Methods

print

Prints all or a specific number of pages of the document.

Beginning wtih Acrobat 6.0, the method can print the document using the settings
contained in a printParams Object, rather than through the other parameters. The
permanent print settings are not altered.

N O T E S : (Security �, version 6.0) When printing to a file, the path must be a Safe Path. The
print method will not overwrite an existing file.

(Security �, version 7.0) Non-interactive printing can only be executed during batch
and console events. Printing is made non-interactive by setting bUI is to false or
by setting the interactive property to silent, e.g.,

var pp = this.getPrintParams();
pp.interactive = pp.constants.interactionLevel.silent;

Outside of batch and console events, the values of bUI and of interactive are
ignored, and a print dialog will always be presented.

Doc.print can only be executed during batch or console events when printing is set to
non-interactive: bUI is set to false, or

See also Privileged versus Non-privileged Context.

N O T E S : On a Windows platform, the file name must include an extension of .ps or .prn
(case insensitive). Additionally, the print method will not create a file directly in
the root directory, the windows directory, or the windows system directory.

An InvalidArgsError (see the Error Objects) exception will be thrown and
print wiill fail if any of the above security restrictions are not met.

Parameters

3.01 �

bUI (optional) If true (the default), will cause a UI to be presented to
the user to obtain printing information and confirm the action.

nStart (optional) A 0-based index that defines the start of an inclusive
range of pages. If nStart and nEnd are not specified, prints all
pages in the document. If only nStart is specified then the
range of pages is the single page specified by nStart.
If nStart and nEnd parameters are used, bUI must be false.

nEnd (optional) A 0-based index that defines the end of an inclusive
range of page. If nStart and nEnd are not specified, prints all
pages in the document. If only nEnd is specified then the range of
a pages is 0 to nEnd.
If nStart and nEnd parameters are used, bUI must be false.

Acrobat JavaScript Scripting Reference
Doc Methods

290 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example 1

This example prints current page the document is on.

this.print(false, this.pageNum, this.pageNum);
// print a file silently
this.print({bUI: false, bSilent: true, bShrinkToFit: true});

Example 2 (Version 6.0)
var pp = this.getPrintParams();
pp.interactive = pp.constants.interactionLevel.automatic;
pp.printerName = "hp officejet d series";
this.print(pp);

N O T E : When printerName is an empty string and fileName is nonempty the current
document is saved to disk as a PostScript file.

Example 3 (Version 6.0)

Save the current document as a PostScript file.

var pp = this.getPrintParams();
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";
this.print(pp);

bSilent (optional) If true, suppresses the cancel dialog box while the
document is printing. The default is false

bShrinkToFit (optional, version 5.0) If true, the page is shrunk (if necessary) to
fit within the imageable area of the printed page. If false, it is
not. The default is false.

bPrintAsImage (optional, version 5.0) If true, print pages as an image. The
default is false.

bReverse (optional, version 5.0) If true, print from nEnd to nStart. The
default is false.

bAnnotations (optional, version 5.0) If true (the default), annotations are
printed.

printParams (optional, version 6.0) The printParams Object containing the
settings to use for printing. If this parameter is passed, any other
parameters are ignored.

Acrobat JavaScript Scripting Reference 291

Acrobat JavaScript Scripting Reference
Doc Methods

removeDataObject

Deletes the data object corresponding to the specified name from the document.

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.getDataObject, doc.openDataObject, doc.createDataObject,
doc.removeDataObject, doc.importDataObject,
doc.getDataObjectContents, and doc.setDataObjectContents.

Parameters

The name of a data object is a property of the Data Object. A name is given to the object
when it is embedded, automatically by the Acrobat UI, or programmatically by the
JavaScript methods doc.createDataObject or doc.importDataObject.

Returns

Nothing

Example
this.removeDataObject("MyData");

removeField

Removes the specified field from the document. If the field appears on more than one page
then all representations are removed.

N O T E : (�, version 6.0): Beginning with version 6.0, doc.removeField can now be used
from within Adobe Reader for documents with “Advanced Form Features”.

Parameters

Returns

Nothing

Example
this.removeField("myBadField");

5.0 � �

cName The name of the data object to remove.

5.0 � �

cName The field name to remove.

Acrobat JavaScript Scripting Reference
Doc Methods

292 Acrobat JavaScript Scripting Reference

removeIcon

Removes the specified named icon from the document.

See also icons, addIcon, getIcon, and importIcon, the field methods
buttonGetIcon, buttonImportIcon, and buttonSetIcon, and the Icon Generic
Object.

Parameters

The name of the icon is a property of the Icon Generic Object. A name is given to the object
either by doc.importIcon, when the the icon file is imported into the document, or by
doc.addIcon, which names an icons that is not in the document level named icons tree.

Returns

Nothing

Example

Remove all named icons from the document.

for (var i = 0; i < this.icons.length; i++)
this.removeIcon(this.icons[i].name);

removeLinks

Removes all the links on the specified page within the specified coordinates, if the user has
permission to remove links from the document.

See also addLink, getLinks and the Link Object.

Parameters

Returns

Nothing

5.0 � �

cName The name of the icon to remove.

6.0 � �

nPage The 0-based index of the page from which to remove links.

oCoords An array of four numbers in rotated user space, the coordinates of a
rectangle listed in the following order: upper-left x, upper-left y,
lower-right x and lower-right y.

Acrobat JavaScript Scripting Reference 293

Acrobat JavaScript Scripting Reference
Doc Methods

Example

Remove all links from the document.

// remove all links from the document
for (var p = 0; p < this.numPages; p++)
{

var b = this.getPageBox("Crop", p);
this.removeLinks(p, b);

}

Use getLinks to help count the number of links removed.

removeScript

This method removes a document level JavaScript—provided permissions for script
removal is granted—specified by cName, the script name.

Parameters

Returns

The undefined value on success and throws an exception if the script is not found.

Example

Add a document level script, then remove it again.

this.addScript("myScript", "app.alert('A.C. Robat welcomes you!')");

Now remove this script:

this.removeScript("myScript");

removeTemplate

Removes the named template from the document.

See also templates, createTemplate, getTemplate, and the Template Object.

N O T E S : (Security �): This method can only be executed during batch or console events.
See also Privileged versus Non-privileged Context. The Event Object contains a
discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

7.0

cName A string that specifies the name of the script to be removed.

5.0 � � �

Acrobat JavaScript Scripting Reference
Doc Methods

294 Acrobat JavaScript Scripting Reference

Parameters

The name of the template is a property of the Template Object. A name is given to a
template when it is created, either by the Acrobat UI or by the JavaScript method
doc.getTemplate.

Returns

Nothing

removeThumbnails

Deletes thumbnails for the specified pages in the document. See also addThumbnails.

Parameters

Returns

Nothing

removeWeblinks

Scans the specified pages looking for links with actions to go to a particular URL on the web
and deletes them. See also addWeblinks.

N O T E : This method only removes weblinks authored in the application using the UI. Web
links that are executed via JavaScript (for example, using getURL) are not removed.

cName The name of the template to remove.

5.0 � �

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nStart is specified, the range of pages is
the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nEnd is specified, the range of pages is 0 to
nEnd.

5.0 � �

Acrobat JavaScript Scripting Reference 295

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

The number of web links removed from the document.

Example

Remove all web links from the document and report results to the console window.

var numWeblinks = this.removeWeblinks();
console.println("There were " + numWeblinks +

" web links removed from the document.");

replacePages

Replaces pages in the current document with pages from the source document.

See also deletePages, extractPages, and insertPages.

N O T E : (Security �): This method can only be executed during batch, console, or menu
events. See the Event Object for a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nStart is specified, the range of pages is
the single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages. If nStart and nEnd are not specified, operates on all pages
in the document. If only nEnd is specified, the range of a pages is 0 to
nEnd.

5.0 � � �

nPage (optional) The 0-based index of the page at which to start
replacement. Default is 0.

cPath The device-independent pathname to the PDF file that will provide
the replacement pages. See Section 3.10.1 of the PDF Reference for a
description of the device-independent pathname format. The
pathname may be relative to the location of the current document.

Acrobat JavaScript Scripting Reference
Doc Methods

296 Acrobat JavaScript Scripting Reference

Returns

Nothing

resetForm

Resets the field values within a document.

N O T E : Resetting a field causes it to take on its default value, which in the case of text fields
is usually blank.

Parameters

Returns

Nothing

Example 1

Select fields to be reset and reset.

var fields = new Array();
fields[0] = "P1.OrderForm.Description";
fields[1] = "P1.OrderForm.Qty";
this.resetForm(fields);

or, the same fields can be reset using only one line of code:

this.resetForm(["P1.OrderForm.Description","P1.OrderForm.Qty"]);

Example 2

This example illustrates how to reset a whole subtree. For example, if you pass "name" as
part of the fields array then name.first, name.last, and so on, are reset.

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the source document to be used for replacement.
If nStart and nEnd are not specified, gets all pages in the source
document. If only nStart is specified, the range of pages is the
single page specified by nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the source document to be used for replacement .
If nStart and nEnd are not specified, gets all pages in the source
document. If only nEnd is specified, the range of pages is 0 to nEnd.

3.01 �

aFields (optional) An array specifying the fields to reset. If not present or
null, all fields in the form are reset. You can include non-terminal
fields in the array.

Acrobat JavaScript Scripting Reference 297

Acrobat JavaScript Scripting Reference
Doc Methods

this.resetForm(["name"]);

saveAs

Saves the file to the device-independent path specified by the required parameter, cPath.
The file is not saved in linearized format. Beginning with Acrobat 6.0, the document can be
converted to another file type (other than PDF) and saved as specified by the value of the
cConvID parameter.

N O T E S : (Security �): This method can only be executed during batch, console, or menu
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

N O T E : (Adobe Reader �): This method is available in the Adobe Reader for documents
that have “Save rights”.

Parameters

5.0 � �

cPath The device-independent path in which to save the file.

N O T E : (Security �): The parameter cPath is required to
have a Safe Path and have an extension appropriate
to the value of cConvID. See the Values of cConvID
 and Valid Extensions table below. This method will
throw a NotAllowedError (see the Error
Objects) exception if these security conditions are
not met, and the method will fail.

cConvID (optional, version 6.0) A conversion ID string that specifies
the conversion file type. Currently supported values for
cConvID are listed by the app.fromPDFConverters.
If cConvID is not specified, then PDF is assumed.

cFS (optional, version 7.0) A string that specifies the source file
system name. Two values are supported: "" (the empty
string) representing the default file system and "CHTTP".
The default is the default file system. This parameter is only
relevant if the web server supports WebDAV.

bCopy (optional, version 7.0) A boolean which, if true, saves the
PDF file as a copy. The default is false.

bPromptToOverwrite (optional, version 7.0) A boolean which, if true, prompts
the user if the destination file already exists. The default is
false.

Acrobat JavaScript Scripting Reference
Doc Methods

298 Acrobat JavaScript Scripting Reference

Returns

The value undefined is returned on success. An exception is thrown if an error occurs. For
example, this method will throw a NotAllowedError (see the Error Objects) if the users
disallows an overwrite.

N O T E : Prior to Version 7.0, this method had no return value.

Values of cConvID and Valid Extensions

N O T E S : When the conversion ID corresponds to jpeg, jp2k, png, or tiff, this method
saves each page individually under a filename obtained by appending "_Page_#"
to the basename of the filename provided. For example, if the value of the cPath is
"/C/temp/mySaveAsDocs/myJPGs.jpg", then names of the files generated
will be myJPGs_Page_1.jpg, myJPGs_Page_2.jpg, and so on.

Example 1

The following code could appear as a batch sequence. Assume there is a PDF file already
open containing form files that needs to be populated from a database and saved. Below is
an outline of the script:

// code lines to read from a database and populate the form with data
// now save file to a folder; use customerID from database record
// as name
var row = statement.getRow();

cConvID Valid Extensions

com.adobe.acrobat.eps eps

com.adobe.acrobat.html-3-20 html, htm

com.adobe.acrobat.html-4-01-css-1-00 html, htm

com.adobe.acrobat.jpeg jpeg ,jpg, jpe

com.adobe.acrobat.jp2k jpf,jpx,jp2,j2k,j2c,jpc

com.adobe.acrobat.doc doc

com.adobe.acrobat.png png

com.adobe.acrobat.ps ps

com.adobe.acrobat.rtf rft

com.adobe.acrobat.accesstext txt

com.adobe.acrobat.plain-text txt

com.adobe.acrobat.tiff tiff, tif

com.adobe.acrobat.xml-1-00 xml

Acrobat JavaScript Scripting Reference 299

Acrobat JavaScript Scripting Reference
Doc Methods

.......
this.saveAs("/c/customer/invoices/" + row.customerID + ".pdf");

Example 2

You can use newDoc and addField to dynamically layout a form, then populate it from a
database and save.

var myDoc = app.newDoc()
// layout some dynamic form fields
// connect to database, populate with data, perhaps from a database
..........
// save the doc and/or print it; print it silently this time
// to default printer
myDoc.saveAs("/c/customer/invoices/" + row.customerID + ".pdf");
myDoc.closeDoc(true); // close the doc, no notification

Example 3 (Version 6.0)

Save the current document in rich text format:

this.saveAs("/c/myDocs/myDoc.rtf", "com.adobe.acrobat.rtf");

See fromPDFConverters for a listing of supported conversion ID strings.

Example 3 (Version 7.0)

Save the document to a WebDAV folder.

this.saveAs({
cPath: "http://www.myCom.com/WebDAV/myDoc.pdf",
bPromptToOverwrite: true,
cFS: "CHTTP"

});

scroll

Scrolls the specified point on the current page into middle of the current view. These
coordinates must be defined in rotated user space. See the PDF Reference for details on the
user space coordinate system.

Parameters

Returns

Nothing

3.01

nX The x-coordinate for the point to scroll.

nY The y-coordinate for the point to scroll.

http://www.adobe.com/supportservice/devrelations/PDFS/TN/PDFSPEC.PDF

Acrobat JavaScript Scripting Reference
Doc Methods

300 Acrobat JavaScript Scripting Reference

selectPageNthWord

Changes the current page number and selects the specified word on the page.

See also getPageNthWord, getPageNthWordQuads and getPageNumWords.

Parameters

Returns

Nothing

Example

Get and select a particular word.

// get the 20th word on page 2 (page 1, 0-based)
var cWord = this.getPageNthWord(1, 20);
// Select that word (highlight) for the user to see, change page if
// necessary.
this.selectPageNthWord(1, 20);

setAction

Sets the JavaScript action of the document for a given trigger.

See also doc.addScript, doc.setPageAction, bookmark.setAction, and
field.setAction.

N O T E : This method will overwrite any action already defined for the selected trigger.

5.0

nPage (optional) The 0-based index of the page to operate on. Default is 0,
the first page in the document.

nWord (optional) The 0-based index of the word to obtain. Default is 0, the
first word on the page.

bScroll (optional) Whether to scroll the selected word into the view if it is not
already viewable. Default is true.

6.0 � �

Acrobat JavaScript Scripting Reference 301

Acrobat JavaScript Scripting Reference
Doc Methods

Parameters

Returns

Nothing

Example

This example insert WillSave and DidSave actions. The code gets the filesize before
saving and after saving, and compares the two.

// WillSave Script
var myWillSave = 'var filesizeBeforeSave = this.filesize;\r'

+ 'console.println("File size before saving is " + '
+ ' filesizeBeforeSave);';

// DidSave Script
var myDidSave = 'var filesizeAfterSave = this.filesize;\r'

+ 'console.println("File size after saving is "'
+ 'filesizeAfterSave);\r'

 + 'var difference = filesizeAfterSave - filesizeBeforeSave;\r'
 + 'console.println("The difference is " + difference);\r'
 + 'if (difference < 0)\r\t'
 + 'console.println("Reduced filesize!");\r'
 + 'else\r\t'
 + 'console.println("Increased filesize!");'

// Set Document Actions...
this.setAction("WillSave", myWillSave);
this.setAction("DidSave", myDidSave);

setDataObjectContents

This method replaces the file attachment specified by the parameter cName with the
contents of the oStream parameter.

cTrigger The name of the trigger point to which to attach the action. Values
are:
WillClose
WillSave
DidSave
WillPrint
DidPrint

cScript The JavaScript expression to be executed when the trigger is
activated.

7.0 �

Acrobat JavaScript Scripting Reference
Doc Methods

302 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example 1

See the Example on page 264.

Example 2

This document has a file attachment named acrobat.xml. The attachment is opened,
the XML data is updated, then the new XML document is saved back to the attachment. It is
possible to submit this XML file attachment. See “Example 5 (Version 7.0)” on page 315,
following the Doc.submitForm() method. This example uses the XML data defined in
the Example following XMLData.applyXPath().

// get the file stream object of the attachment
var acrobat = this.getDataObjectContents("acrobat.xml");

// convert to a string
var cAcrobat = util.stringFromStream(acrobat, "utf-8");

// parse this and get XFAObject
var myXML = XMLData.parse(cAcrobat,false);

// change the value of grandad's income
myXML.family.grandad.personal.income.value = "300000";

// save XML document as string, cAcrobat
var cAcrobat = myXML.saveXML('pretty');

// convert to a file stream
var acrobat = util.streamFromString(cAcrobat, "utf-8");

// now "update" the attachment acrobat.xml with this file stream

cName The name associated with the Data Object that is to be replaced with
oStream.

oStream A ReadStream Object representing the contents of the file
attachment.

cCryptFilter (optional) The language independent name of a crypt filter to use
when encrypting this data object. This crypt filter must have
previously been added to the document’s list of crypt filters, using the
doc.addRecipientListCryptFilter method, otherwise, an
exception will be thrown. The predefined "Identity" crypt filter can be
used if it is desired that this data object not be encrypted in a file that
is otherwise encrypted by the doc.encryptForRecipients
method.

Acrobat JavaScript Scripting Reference 303

Acrobat JavaScript Scripting Reference
Doc Methods

this.setDataObjectContents("acrobat.xml", acrobat);

Related objects, properties and methods are the Data Object, doc.dataObjects,
doc.getDataObject, doc.openDataObject, doc.createDataObject,
doc.importDataObject, doc.getDataObjectContents and
doc.removeDataObject.

setOCGOrder

Sets this document’s OCGOrder array. This array represents how layers are displayed in the
UI.

The simplest order array is a flat array of OCG objects. In this case the listed OCGs are
displayed in the UI as a flat list in the same order. If a subarray is present in the order array,
and the first element of the array is a string, then the string will be listed with the rest of the
array nested underneath it. If the first element if the array is not a string, then the entire
array will appear nested underneath the OCG preceding the subarray.

Related methods are doc.getOCGs and doc.getOCGOrder, and the OCG Object.

Parameters

Returns

Nothing

Example

Reverse the order of OCGs as listed in the UI.

var ocgOrder = this.getOCGOrder();
var newOrder = new Array();
for (var j=0; j < ocgOrder.length; j++)

newOrder[j] = ocgOrder[ocgOrder.length-j-1];
this.setOCGOrder(newOrder);

setPageAction

Sets the action of a page in a document for a given trigger.

See also doc.setAction, doc.addScript, bookmark.setAction, and
field.setAction.

N O T E : This method will overwrite any action already defined for the chosen page and
trigger.

7.0 � � �

oOrderArray The array to be used as this document’s OCG Order array.

6.0 � �

Acrobat JavaScript Scripting Reference
Doc Methods

304 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

This example causes the application to beep when the first page is opened.

this.setPageAction(0, "Open", "app.beep(0);");

setPageBoxes

Sets a rectangle that encompasses the named box for the specified pages.

See also getPageBox.

Parameters

nPage The 0-based index of the page in the document to which an action is
added.

cTrigger The trigger for the action. Values are:
Open
Close

cScript The JavaScript expression to be executed when the trigger is activated.

5.0 � �

cBox (optional) The box type value, one of:
Art
Bleed
Crop
Media
Trim

Note that the BBox box type is read-only and only supported in
getPageBox. For definitions of these boxes see Section 8.6.1, “Page
Boundaries” in the PDF Reference.

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document.

Acrobat JavaScript Scripting Reference 305

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Nothing

setPageLabels

Establishes the numbering scheme for the specified page and all pages following it until
the next page with an attached label is encountered.

See also getPageLabel.

Parameters

Returns

Nothing

Example 1

10 pages in the document, label the first 3 with small roman numerals, the next 5 with
numbers (starting at 1) and the last 2 with an "Appendix- prefix" and alphabetics.

this.setPageLabels(0, ["r", "", 1]);
this.setPageLabels(3, ["D", "", 1]);
this.setPageLabels(8, ["A", "Appendix-", 1]);
var s = this.getPageLabel(0);
for (var i = 1; i < this.numPages; i++)

rBox (optional) An array of four numbers in rotated user space to which to
set the specified box. If not provided, the specified box is removed.

5.0 � �

nPage (optional) The 0-based index for the page to be labelled.

aLabel (optional) An array of three required items [cStyle, cPrefix,
nStart].
● cStyle is the style of page numbering. Can be:

 D: decimal numbering
 R or r: roman numbering, upper or lower case
 A or a: alphabetic numbering, upper or lower case
See the PDF Reference, Section 7.3.1, for the exact definitions of
these styles.

● cPrefix is a string to prefix the numeric portion of the page
label.

● nStart is the ordinal with which to start numbering the pages.
If not supplied, any page numbering is removed for the specified
page and any others up to the next specified label.
The value of aLabel cannot be null.

Acrobat JavaScript Scripting Reference
Doc Methods

306 Acrobat JavaScript Scripting Reference

s += ", " + this.getPageLabel(i);
console.println(s);

The example will produce the following output on the console:

i, ii, iii, 1, 2, 3, 4, 5, Appendix-A, Appendix-B

Example 2

Remove all page labels from a document.

for (var i = 0; i < this.numPages; i++) {
if (i + 1 != this.getPageLabel(i)) {

// Page label does not match ordinal page number.
this.setPageLabels(i);

 }
}

setPageRotations

Rotates the specified pages in the current document.

See also getPageRotation.

Parameters

Returns

Nothing

Example

Rotate pages 0 through 10 of the current document.

this.setPageRotations(0, 10, 90);

5.0 � �

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nEnd is
specified, the range of pages is 0 to nEnd.

nRotate (optional) The amount of rotation that should be applied to the target
pages. Can be 0, 90, 180, or 270. Default is 0.

Acrobat JavaScript Scripting Reference 307

Acrobat JavaScript Scripting Reference
Doc Methods

setPageTabOrder

Sets the tab order of the form fields on a page. The tab order can be set by row, by column,
or by structure.

If a PDF 1.4 documents is viewed in Acrobat 6.0, tabbing between fields is in the same order
as it is in Acrobat 5.0. Similarly, if a PDF 1.5 document is opened in Acrobat 5.0, the tabbing
order for fields is the same as it is in Acrobat 6.0.

Parameters

Returns

Nothing

Example

Set the page tab order for all pages to rows.

for (var i = 0; i < this.numPages; i++)
this.setPageTabOrder(i, "rows");

setPageTransitions

Sets the page transition for a specific range of pages.

See also getPageTransition.

Parameters

6.0 � �

nPage The 0-based index of the page number on which the tabbing order is
to be set.

cOrder The order to be used. Values are:
rows
columns
structure

5.0 � �

nStart (optional) A 0-based index that defines the start of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nStart
is specified, the range of pages is the single page specified by
nStart.

Acrobat JavaScript Scripting Reference
Doc Methods

308 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example

Put document into fullscreen mode, and apply some transitions.

this.setPageTransitions({ aTrans: [-1, "Random", 1] });
app.fs.isFullScreen=true;

spawnPageFromTemplate

Spawns a page in the document using the given template, as returned by
getNthTemplate.

See templates, createTemplate, and template.spawn, which supersede this
method in later versions.

N O T E : The template feature does not work in Adobe Reader.

Parameters

nEnd (optional) A 0-based index that defines the end of an inclusive range
of pages in the document to be operated on. If nStart and nEnd are
not specified, operates on all pages in the document. If only nEnd is
specified, the range of pages is 0 to nEnd.

aTrans (optional) The page transition array consists of three values:
[nDuration, cTransition, nTransDuration].
● nDuration is the maximum amount of time the page is

displayed before the viewer automatically turns to the next page.
Set to -1 to turn off automatic page turning.

● cTransition is the name of the transition to apply to the page.
See fullScreen.transitions for a list of valid transitions.

● nTransDuration is the duration (in seconds) of the transition
effect.

If aTrans is not present, any page transitions for the pages are
removed.

� � �

cTemplate The template name.

nPage (optional) The 0-based page number before which or into which the
template is spawned, depending on the value of bOverlay. If
nPage is omitted, a new page is created at the end of the document.

bRename (optional) Whether fields should be renamed. The default is true.

Acrobat JavaScript Scripting Reference 309

Acrobat JavaScript Scripting Reference
Doc Methods

Returns

Prior to Acrobat 6.0, this method returned nothing. Now, this method returns an object
representing the page contents of the page spawned. This return object can then be used
as the value of the optional parameter oXObject for subsequent calls to
spawnPageFromTemplate.

N O T E : Repeatedly spawning the same page can cause a large inflation in the file size. To
avoid this file size inflation problem, spawnPageFromTemplate now returns an
object that represents the page contents of the spawned page. This return value can
be used as the value of the oXObject parameter in subsequent calls to the
spawnPageFromTemplate method to spawn the same page.

Example 1
var n = this.numTemplates;
var cTempl;
for (i = 0; i < n; i++) {

cTempl = this.getNthTemplate(i);
this.spawnPageFromTemplate(cTempl);

}

Example 2 (version 6.0)

The following example spawns the same template 31 times using the oXObject
parameter and return value. Using this technique avoids overly inflating the file size.

var t = this.getNthTemplate(0)
var XO = this.spawnPageFromTemplate(t, this.numPages, false, false);
for (var i=0; i < 30; i++)

this.spawnPageFromTemplate(t,this.numPages, false, false, XO);

submitForm

Submits the form to a specified URL. To call this method , you must be running inside a web
browser or have the Acrobat Web Capture plug-in installed (unless the URL uses the
"mailto" scheme, in which case it will be honored even if not running inside a web browser,
as long as the SendMail plug-in is present). Beginning with Adobe Reader 6.0, you need not
be inside a web browser to call this method.

N O T E : (Version 6.0) Depending on the parameters passed, there are restrictions on the use
of submitForm. See the notes embedded in the description of the parameters.

bOverlay (optional, version 4.0) If false, the template is inserted before the
page specified by nPage. When true (the default) it is overlaid on
top of that page.

oXObject (optional, version 6.0) The value of this parameter is the return value
of an earlier call to spawnPageFromTemplate.

3.01

Acrobat JavaScript Scripting Reference
Doc Methods

310 Acrobat JavaScript Scripting Reference

The https protocol is supported for secure connections.

Parameters

cURL The URL to submit to. This string must end in #FDF if the
result from the submission is FDFor XFDF (that is, the value
of cSubmitAs is "FDF" or "XFDF") and the document is
being viewed inside a browser window.

bFDF � (optional) Whether to submit as FDF or HTML If true,
the default, submits the form data as FDF. If false, submits
it as URL-encoded HTML.
This option has been deprecated, use cSubmitAs instead.

bEmpty (optional) When true, submit all fields, including those that
have no value. When false (the default), exclude fields
that currently have no value.

N O T E : If data is submitted as XDP, XML or XFD (see the
cSubmitAs parameter, below) , the bEmpty
parameter is ignored. All fields are submitted, even
fields that are empty. See aFields below.

aFields (optional) An array of field names to submit or a string
containing a single field name.
● If supplied, only the fields indicated are submitted,

except those excluded by bEmpty.
● If omitted or null, all fields are submitted, except those

excluded by bEmpty.
● If an empty array, no fields are submitted. A submitted

FDF might still contain data if bAnnotations is true.
You can specify non-terminal field names to export an entire
subtree of fields.

N O T E : If data is submitted as XDP, XML or XFD (see the
cSubmitAs parameter, below) , the aFields
parameter is ignored. All fields are submitted, even
fields that are empty. See bEmpty above.

bGet (optional, version 4.0) When true, submit using the HTTP
GET method. When false (the default), use a POST. GET is
only allowed if using Acrobat Web Capture to submit (the
browser interface only supports POST) and only if the data is
sent as HTML (that is, cSubmitAs is HTML).

bAnnotations (optional, version 5.0) When true, annotations are included
in the submitted FDF or XML. The default is false. Only
applicable if cSubmitAs is FDF or XFDF.

Acrobat JavaScript Scripting Reference 311

Acrobat JavaScript Scripting Reference
Doc Methods

bXML � (optional, version 5.0) If true, submit as XML. The
default is false.
This option has been deprecated, use cSubmitAs instead.

bIncrChanges (optional, version 5.0) When true, include the incremental
changes to the PDF in the submitted FDF. The default is
false. Only applicable if cSubmitAs is FDF. Not available
in the Adobe Reader.

bPDF � (optional, version 5.0) If true, submit the complete PDF
document. The default is false. When true, all other
parameters except cURL are ignored. Not available in the
Adobe Reader.
This option has been deprecated, use cSubmitAs instead.

bCanonical (optional, version 5.0) When true, convert any dates being
submitted to standard format (that is,
D:YYYYMMDDHHmmSSOHH’mm’; see the PDF Reference for
details). The default is false.

bExclNonUserAnnots (optional, version 5.0) A boolean that indicates, if true, to
exclude any annotations that are not owned by the current
user. The default is false.

bExclFKey (optional, version 5.0) When true, exclude the "F" key. The
default is false.

cPassword (optional, Version 5.0) The password to use to generate the
encryption key, if the FDF needs to be encrypted before
getting submitted.
Pass the value true (no quotes), to use the password that
the user has previously entered (within this Acrobat session)
for submitting or receiving an encrypted FDF. If no password
has been entered, prompts the user to enter a password.
Regardless of whether the password is passed in or
requested from the user, this new password is remembered
within this Acrobat session for future outgoing or incoming
encrypted FDFs.
Only applicable if cSubmitAs is FDF.

bEmbedForm (optional, version 6.0) When true, the call embeds the
entire form from which the data is being submitted in the
FDF.
Only applicable if cSubmitAs is FDF.

Acrobat JavaScript Scripting Reference
Doc Methods

312 Acrobat JavaScript Scripting Reference

oJavaScript (optional, version 6.0) Can be used to include Before,
After, and Doc JavaScripts in a submitted FDF. If present,
the value is converted directly to an analagous CosObj and
used as the /JavaScript attribute in the FDF. For example:
oJavaScript:
{

Before: 'app.alert("before!")',
After: 'app.alert("after")',
Doc: ["MyDocScript1", "myFunc1()",

 "MyDocScript2", "myFunc2()"]
}

Only applicable if cSubmitAs is FDF.

cSubmitAs (optional, version 6.0) This parameter indicates the format
for submission. Values are
FDF (default)
XFDF
HTML
XDP
XML
XFD
PDF

N O T E : Additional notes on the values of this parameter:

● PDF means submit the complete PDF document; in this
case, all other parameters except cURL are ignored.

● Save rights required (�): The PDF choice is not available
in Adobe Reader, unless the document has save rights.

● (version 7.0) If XML is the value of this parameter, the
form data for the current document is submitted in XML
format, unless the parameter oXML (new to version 7.0)
contains a valid XMLData Object, in which case that is
what gets submitted instead.

This parameter supercedes the individual format
parameters; however, they are considered in the following
priority order, from high to low: cSubmitAs, bPDF, bXML,
bFDF.

bInclNMKey (optional, version 6.0) When true, include the "NM" key of
any annotations. The default is false.

Acrobat JavaScript Scripting Reference 313

Acrobat JavaScript Scripting Reference
Doc Methods

aPackets (optional, version 6.0) An array of strings, specifying which
packets to include in an XDP submission. Possible strings
are:
template
datasets
stylesheet
xfdf
sourceSet
pdf
config
*

This parameter is only applicable if cSubmitAs is XDP.
pdf means that the PDF should be embedded; if pdf is not
included here, only a link to the PDF is included in the XDP.
xfdf means to include annotations in the XDP (since that
packet uses XFDF format).
* means that all packets should be included in the XDP. The
default for pdf is to include it as a reference. To embed the
PDF file in the XDP, explicitly specify pdf as one of the
packets.

N O T E : (Save rights required �): When submitting a
document as XDP from the Adobe Reader with pdf
explicitly listed in the aPackets array, the document
must have document save rights. (Read the
description of * above.)

The default is: ["datasets", "xfdf"].

cCharset (optional, version 6.0) The encoding for the values
submitted. String values are:
utf-8
utf-16
Shift-JIS
BigFive
GBK
UHC

If not passed, the current Acrobat behavior applies. For XML-
based formats, utf-8 is used. For other formats, Acrobat
tries to find the best host encoding for the values being
submitted.
XFDF submission ignores this value and always uses utf-8.

oXML (optional, version 7.0) This parameter is only applicable if
cSubmitAs equals XML. It should be an XMLData Object,
which will get submitted.

Acrobat JavaScript Scripting Reference
Doc Methods

314 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example 1

Submit the form to the server.

this.submitForm("http://myserver/cgi-bin/myscript.cgi#FDF");

Example 2
var aSubmitFields = new Array("name", "id", "score");
this.submitForm({

cURL: "http://myserver/cgi-bin/myscript.cgi#FDF",
aFields: aSubmitFields,
cSubmitAs: "FDF" // the default, not needed here

});

Example 3

This example illustrates a shortcut to submitting a whole subtree. Passing "name" as part of
the field parameter, submits "name.title", "name.first", "name.middle" and
"name.last".

this.submitForm("http://myserver/cgi-bin/myscript.cgi#FDF",
true, false, "name");

Example 4
this.submitForm({

cURL: "http://myserver/cgi-bin/myscript.cgi#FDF",
cSubmitAs: "XFDF"

});

cPermID (optional, version 7.0) Specifies a permanent ID to assign to
the PDF that is submitted if either the value of cSubmitAs
is PDF or bEmbedForm is true. This permanent ID is the
first entry in the doc.docID array (doc.docID[0]).
Does not affect the current document.

cInstID (optional, version 7.0) Specifies an instance ID to assign to
the PDF that is submitted if either the value of cSubmitAs
is PDF or bEmbedForm is true. This instance ID is the
second entry in the doc.docID array (doc.docID[1]).
Does not affect the current document.

cUsageRights (optional, version 7.0) Specifies the additional usage rights
to be applied to the PDF that is submitted if either the value
of cSubmitAs is PDF or bEmbedForm is true. The only
valid value is submitFormUsageRights.RMA .
Does not affect the current document.

Acrobat JavaScript Scripting Reference 315

Acrobat JavaScript Scripting Reference
Doc Methods

Example 5 (Version 7.0)

A PDF file contains several XFA forms as attachments, the following script gathers the XML
data from each attachment and concatenates them. The combined data is then submitted.

var oParent = event.target;
var oDataObjects = oParent.dataObjects;
if (oDataObjects == null)

app.alert("This form has no attachments!");
else {

var nChildren = oDataObjects.length;
var oFirstChild = oParent.openDataObject(oDataObjects[0].name);
var oSubmitData = oFirstChild.xfa.data.nodes.item(0).clone(true);
for (var iChild = 1; iChild < nChildren; iChild++) {

var oNextChild = oParent.openDataObject(
oDataObjects[iChild].name);

oSubmitData.nodes.append(oNextChild.xfa.data.nodes.item(0));
oNextChild.closeDoc();

}
oParent.submitForm({
cURL: "http://www.myCom.com/cgi-bin/myCGI.pl#FDF",
cSubmitAs: "XML",
oXML: oSubmitData
});
oFirstChild.closeDoc();

}

This example uses doc.dataObjects, doc.openDataObject and properties and
method of the XFAObject Object.

Example 6 (Version 7.0)

This script illustrates cPermID, cInstID and cUsageRights.

this.submitForm({
cUrl: myURL,
cSubmitAs: "PDF",
cPermID: someDoc.docID[0],
cInstID: someDoc.docID[1],
cUsageRights: submitFormUsageRights.RMA

});

syncAnnotScan

Guarantees that all annotations will be scanned by the time this method returns.

In order to show or process annotations for the entire document, all annotations must have
been detected. Normally, a background task runs that examines every page and looks for
annotations during idle time, as this scan is a time consuming task. Much of the annotation

5.0 � �

Acrobat JavaScript Scripting Reference
Doc.media Object

316 Acrobat JavaScript Scripting Reference

behavior works gracefully even when the full list of annotations is not yet acquired by
background scanning.

In general, you should call this method if you want the entire list of annotations.

See also getAnnots.

Parameters

None

Returns

Nothing

Example

The second line of code will not be executed until syncAnnotScan returns and this will
not occur until the annot scan of the document is completed.

this.syncAnnotScan();
annots = this.getAnnots({nSortBy:ANSB_Author});
// now, do something with the annotations.

Doc.media Object

The doc.media of each document contains multimedia properties that are specific to
that document, and methods that apply to the document.

Doc.media Object Properties

canPlay

The doc.media.canPlay property indicates whether multimedia playback is allowed
for a document. Playback depends on the user’s Trust Manager preferences and other
factors. For example, playback is not allowed in authoring mode.

doc.media.canPlay returns an object that contains both a yes/no indication and a
reason why playback is not allowed, if that is the case.

Type: Object Access: R.

If playback is allowed, then canPlay.yes exists to indicate this. (It is an empty object, but
it may contain other information in the future.) You can make a simple test like this:

6.0

Acrobat JavaScript Scripting Reference 317

Acrobat JavaScript Scripting Reference
Doc.media Object Properties

if(doc.media.canPlay.yes)
{

// We can play back multimedia for this document
}

If playback is not allowed, canPlay.no object exists instead. As with canPlay.yes, you
can simply test for the existence of canPlay.no, or you can look inside it for information
about why playback is not allowed. At least one of these properties or other properties that
may be added in the future will exist within canPlay.no:

In addition, canPlay.canShowUI indicates whether any alert boxes or other user
interface are allowed in response to this particular playback rejection.

Example:
var canPlay = doc.media.canPlay;
if(canPlay.no)
{

// We can’t play, why not?
if(canPlay.no.security)
{

// The user’s security settings prohibit playback,
// are we allowed to put up alerts right now?
if(canPlay.canShowUI)

app.alert("Security prohibits playback");
else

console.println("Security prohibits playback");
}
else
{

// Can’t play for some other reason, handle it here
}

}

Properties of canPlay.no

Property Description

authoring can’t play when in authoring mode

closing can’t play because the document is closing

saving can’t play because the document is saving

security can’t play because of security settings

other can’t play for some other reason

Acrobat JavaScript Scripting Reference
Doc.media Object Methods

318 Acrobat JavaScript Scripting Reference

Doc.media Object Methods

deleteRendition

The doc.media.deleteRendition() method deletes the named Rendition from the
document. The Rendition is no longer accessible with JavaScript. It does nothing if the
Rendition is not present.

Parameters

Returns

Nothing

Example
this.media.deleteRendition("myMedia");
if (this.media.getRendition("myMedia") == null)

console.println("Rendition successfully deleted");

getAnnot

Doc.media.getAnnot() looks for and returns a ScreenAnnot Object in the document
by page number and either name or title, or returns null if there is no matching
ScreenAnnot. If both name and title are specified, both must match.

Parameters

Properites of args

6.0

cName cName, a string, is the name of the Rendition.

6.0

args An object containing the properties to be passed to this
method. The properties are described below.

nPage The page number (base 0) on which the Annot resides

cAnnotName (optional) The name of the ScreenAnnot.

N O T E : cAnnotName is never used in pdf generated by Acrobat.

cAnnotTitle (optional) The title of the ScreenAnnot

Acrobat JavaScript Scripting Reference 319

Acrobat JavaScript Scripting Reference
Doc.media Object Methods

N O T E : The parameters for this method must be passed as an object literal, and not as an
ordered listing of parameters.

Returns

ScreenAnnot Object

Example

The Acrobat user interface allows you to specify the title for a ScreenAnnot but not its
name, so a typical use of getAnnot would be:

var annot= myDoc.media.getAnnot
({ nPage: 0,cAnnotTitle: "My Annot Title" });

See the example following getRendition() for an additional example.

getAnnots

The doc.media.getAnnots() method returns an Array of all the ScreenAnnot Objects
on the specified page of the document, or all the ScreenAnnot Objects on all pages of the
document if nPage is omitted. The array is empty if there are no such ScreenAnnots.

Parameters

Returns

Array of ScreenAnnot Objects

Example

Get a listing of the ScreenAnnots on page 0, then play a media clip in a ScreenAnnot
randomly chosen from the list.

var annots = this.media.getAnnots({ nPage: 0 });
var rendition = this.media.getRendition("myClip");
var settings = { windowType: app.media.windowType.docked }
var l = annots.length
var i = Math.floor(Math.random() * l) % l
var args = { rendition:rendition, annot:annots[i], settings:settings };
app.media.openPlayer(args);

6.0

nPage The page number (base 0) on which the Annots reside

Acrobat JavaScript Scripting Reference
Doc.media Object Methods

320 Acrobat JavaScript Scripting Reference

getOpenPlayers

This method returns an array of MediaPlayer Objects, one for each currently open media
player. The players in the array are listed in the order in which they were opened. Using this
array, some or all of the open players can be manipulated. For example, you can stop or
close all players that the document has opened, without having to keep a list of them
yourself.

Each time getOpenPlayers is called, it returns a new copy of the array, listing the players
open at that moment. New players that are subsequently opened don't show up in an array
already gotten. If a player that is in the array is closed, the player object remains in the array
and player.isOpen becomes false. The doc.media.getOpenPlayers() can be
called again at any time to get a new, up to date player array.

Do not write code that iterates directly over doc.media.getOpenPlayers:

for(var i in doc.media.getOpenPlayers()) // Wrong!

Instead, get a copy of the player array and iterate over that:

var players = doc.media.getOpenPlayers();
for(var i in players) {
....
}

This insures that the loop works correctly even if players are opened or closed during the
loop.

Parameters

None

Returns

Array of MediaPlayer Objects.

Example

The following two functions take a doc object as a parameter and operate on the running
players associated with that doc object.

// Stop all running players.
function stopAllPlayers(doc) {

var players = doc.media.getOpenPlayers();
for(var i in players) players[i].stop();

}
// Close all running players. Closing a player does not remove it from
// the array.
function closeAllPlayers(doc) {

var players = doc.media.getOpenPlayers();
for(var i in players)

players[i].close(app.media.closeReason.general);
}

7.0

Acrobat JavaScript Scripting Reference 321

Acrobat JavaScript Scripting Reference
Doc.media Object Methods

getRendition

doc.media.getRendition() looks up a Rendition in the document by name and
returns it, or returns null if there is no Rendition with that name.

Parameters

Returns

Rendition Object

Example

The following script is executed from a mouse up action of a form button. It plays a docked
media clip in a ScreenAnnot.

app.media.openPlayer({
rendition: this.media.getRendition("myClip"),
annot: this.media.getAnnot({nPage:0,cAnnotTitle:"myScreen"}),
settings: { windowType: app.media.windowType.docked }

});

newPlayer

The doc.media.newPlayer() method creates and returns a MediaPlayer Object. The
args parameter must contain a settings property and optionally can contain an
events property. It can also contain any number of additional user-defined properties. All
the properties of args are copied into the new MediaPlayer Object. This is a shallow copy:
The properties of args are copied into the new player, but if any of those properties are
objects themselves, those objects are shared between args and the new player.

The newPlayer() method creates a bare-bones player which does not have any of the
standard event listeners required for standard Acrobat media player behavior. Use
app.media.addStockEvents() to add the necessary event listeners.

In most cases it is better to use app.media.createPlayer() to create a media player
instead of doc.media.newPlayer(). The createPlayer() sets up the standard
event listeners and other player properties automatically. If you do call newPlayer()
directly, the source code for createPlayer() in media.js should be reviewed for
sample code.

6.0

cName cName, a string, is the name of the Rendition.

6.0

Acrobat JavaScript Scripting Reference
Error Objects

322 Acrobat JavaScript Scripting Reference

Parameters

Returns

MediaPlayer Object

Example:

See Events.dispatch() for a rough example.

Error Objects

Error objects are dynamically created whenever an exception is thrown from methods or
properties implemented in Acrobat JavaScript. Several sub-classes of the Error object can
be thrown by core JavaScript (EvalError, RangeError, SyntaxError, TypeError,
ReferenceError, URLError). They all have the Error object as prototype. Acrobat
JavaScript can throw some of these exceptions, or implement subclasses of the Error
object at its convenience. If your scripts are using the mechanism of try/catch error
handling, the object thrown should be one of the types listed in the following table.

args args is a PlayerArgs object. See PlayerArgs Object.

Error Object Brief Description

RangeError Argument value is out of valid range

TypeError Wrong type of argument value

ReferenceError Reading a variable that does not exist

MissingArgError Missing required argument

NumberOfArgsError Invalid number of arguments to a method

InvalidSetError A property set is not valid or possible

InvalidGetError A property get is not valid or possible

OutOfMemoryError Out of memory condition occurred

NotSupportedError Functionality not supported in this configuration (for
example,: Reader)

NotSupportedHFTError HFT is not available (a plug-in may be missing)

NotAllowedError Method or property is not allowed for security reasons

GeneralError Unspecified error cause

RaiseError Acrobat internal error

Acrobat JavaScript Scripting Reference 323

Acrobat JavaScript Scripting Reference
Error Properties

Error object types implemented by Acrobat JavaScript inherit properties and methods
from the core Error object. Some Acrobat Javascript objects may implement their own
specific types of exception. A description of the Error subclass (with added methods and
properties, if any) should be provided in the documentation for the particular object.

Example

Print all properties of the Error object to the console.

try {
app.alert(); // one argument is required for alert

} catch(e) {
for (var i in e)
console.println(i + ": " + e[i])

}

Error Properties

fileName

The name of the script which caused the exception to be thrown.

Type: String Access: R.

lineNumber

The offending line number from where an exception was thrown in the JavaScript code.

Type: Integer Access: R.

extMessage

An message providing additional details about the exception.

DeadObjectError Object is dead

HelpError User requested for help with a method

6.0

6.0

7.0

Error Object Brief Description

Acrobat JavaScript Scripting Reference
Error Methods

324 Acrobat JavaScript Scripting Reference

Type: String Access: R.

message

The error message providing details about the exception.

Type: String Access: R.

name

The name of the Error object subclass, indicating the type of the Error object instance.

Type: String Access: R/W.

Error Methods

toString

Gets the error message providing details about the exception.

Parameters

None

Returns

The error message string. (See message.)

Event Object

All JavaScripts are executed as the result of a particular event. Each event has a type and a
name. The events detailed here are listed as type/name pairs.

For each of these events, Acrobat JavaScript creates an event object. During the occurrence
of each event, you can access this event object to get, and possibly manipulate, information
about the current state of the event.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 325

Acrobat JavaScript Scripting Reference
Event Object

It is important for JavaScript writers to know when these events occur and in what order
they are processed. Some methods or properties can only be accessed during certain
events; therefore, a knowledge of these events will prove useful.

Event Type/Name Combinations

App/Init

When the Viewer is started, the Application Initialization Event occurs. Script files, called
Folder Level JavaScripts, are read in from the application and user JavaScript folders. They
load in the following order: config.js, glob.js, all other files, then any user files.

This event defines the name and type properties for the event object.

This event does not listen to the rc return code.

Batch/Exec

A batch event occurs during the processing of each document of a batch sequence.
JavaScripts that authored as part of a batch sequence can access the event object upon
execution.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event listens to the rc return code. If the return code is set to false, the batch
sequence is stopped.

Bookmark/Mouse Up

This event occurs whenever a user clicks on a bookmark that executes a JavaScript.

This event defines the name, target, and type properties for the event object. The
target in this event is the bookmark object that was clicked.

This event does not listen to the rc return code.

Console/Exec

A console event occurs whenever a user evaluates a JavaScript in the console.

This event defines the name, and type properties for the event object.

This event does not listen to the rc return code.

5.0

5.0

5.0

Acrobat JavaScript Scripting Reference
Event Object

326 Acrobat JavaScript Scripting Reference

Doc/DidPrint

This event is triggered after a document has printed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Doc/DidSave

This event is triggered after a document has been saved.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Doc/Open

This event is triggered whenever a document is opened. When a document is opened, the
document level script functions are scanned and any exposed scripts are executed.

This event defines the name, target, targetName, and type properties for the event
object. The target in this event is the document object.

This event does not listen to the rc return code.

Doc/WillClose

This event is triggered before a document is closed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Doc/WillPrint

This event is triggered before a document is printed.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

5.0

5.0

4.0

5.0

5.0

Acrobat JavaScript Scripting Reference 327

Acrobat JavaScript Scripting Reference
Event Object

Doc/WillSave

This event is triggered before a document is saved.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

External/Exec

This event is the result of an external access, for example, through OLE, AppleScript, or
loading an FDF.

This event defines the name and type properties for the event object.

This event does not listen to the rc return code.

Field/Blur

The blur event occurs after all other events just as the field loses focus. This event is
generated regardless of whether or not a mouse click is used to deactivate the field (for
example, tab key).

This event defines the modifier, name, shift, target, targetName, type, and
value properties for the event object. The target in this event is the field whose
validation script is being executed.

This event does not listen to the rc return code.

Field/Calculate

This event is defined when a change in a form requires that all fields that have a calculation
script attached to them be executed. All fields that depend on the value of the changed
field will now be re-calculated. These fields may in turn generate additional Field/Validate,
Field/Blur, and Field/Focus events.

Calculated fields may have dependencies on other calculated fields whose values must be
determined beforehand. The calculation order array contains an ordered list of
all the fields in a document that have a calculation script attached. When a full calculation is
needed, each of the fields in the array is calculated in turn starting with the zeroth index of
the array and continuing in sequence to the end of the array.

To change the calculation order of fields, use the Advanced>Forms>Set Field Calculation
Order... menu item in Adobe Acrobat.

5.0

5.0

4.05

3.01

Acrobat JavaScript Scripting Reference
Event Object

328 Acrobat JavaScript Scripting Reference

This event defines the name, source, target, targetName, type, and value
properties for the event object. The target in this event is the field whose calculation
script is being executed.

This event does listen to the rc return code. If the return code is set to false, the field’s
value is not changed. If true, the field takes on the value found in the value.

Field/Focus

The focus event occurs after the mouse down but before the mouse up after the field
gains the focus. This routine is called whether or not a mouse click is used to activate the
field (for example, tab key) and is the best place to perform processing that must be done
before the user can interact with the field.

This event defines the modifier, name, shift, target, targetName, type, and
value properties for the event object. The target in this event is the field whose
validation script is being executed.

This event does not listen to the rc return code.

Field/Format

Once all dependent calculations have been performed the format event is triggered. This
event allows the attached JavaScript to change the way that the data value appears to a
user (also known as its presentation or appearance). For example, if a data value is a
number and the context in which it should be displayed is currency, the formatting script
can add a dollar sign ($) to the front of the value and limit it to two decimal places past the
decimal point.

This event defines the commitKey, name, target, targetName, type, value, and
willCommit properties for the event object. Thetarget in this event is the field whose
format script is being executed.

This event does not listen to the rc return code. However, the resulting value is used as
the fields formatted appearance.

Field/Keystroke

The keystroke event occurs whenever a user types a keystroke into a text box or
combobox (this includes cut and paste operations), or selects an item in a combobox
drop down or listbox field. A keystroke script may want to limit the type of keys allowed.
For example, a numeric field might only allow numeric characters.

The user interface for Acrobat allows the author to specify a Selection Change script for
listboxes. The script is triggered every time an item is selected. This is implemented as the
keystroke event where the keystroke value is equivalent to the user selection. This behavior

4.05

3.01

3.01

Acrobat JavaScript Scripting Reference 329

Acrobat JavaScript Scripting Reference
Event Object

is also implemented for the combobox—the "keystroke" could be thought to be a paste
into the text field of the value selected from the drop down list.

There is a final call to the keystroke script before the validate event is triggered. This call sets
the willCommit to true for the event. With keystroke processing, it is sometimes useful
to make a final check on the field value before it is committed (pre-commit). This allows the
script writer to gracefully handle particularly complex formats that can only be partially
checked on a keystroke by keystroke basis.

The keystroke event of text fields is called in situations other than when the user is
entering text with the keyboard or committing the field value. It is also called to validate
the default value of a field when set through the UI or by JavaScript, and to validate entries
provided by autofill. In these situations not all properties of the event are defined.
Specifically event.target will be undefined when validating default values and
event.richChange and event.richValue will be undefined when validating
autofill entries.

This event defines the commitKey, change, changeEx, keyDown, modifier, name,
selEnd, selStart, shift, target (except when validating default values),
targetName, type, value, and willCommit properties for the event object. The
target in this event is the field whose keystroke script is being executed.

This event does listen to the rc return code. If set to false, the keystroke is ignored. The
resulting change is used as the keystroke if the script desires to replace the keystroke
code. The resultant selEnd and selStart properties can change the current text
selection in the field.

Field/Mouse Down

The mouse down event is triggered when a user starts to click on a form field and the
mouse button is still down. It is advised that you perform very little processing (that is, play
a short sound) during this event. A mouse down event will not occur unless a mouse
enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation
script is being executed.

This event does not listen to the rc return code.

Field/Mouse Enter

The mouse enter event is triggered when a user moves the mouse pointer inside the
rectangle of a field. This is the typical place to open a text field to display help text, and so
on.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation
script is being executed.

3.01

3.01

Acrobat JavaScript Scripting Reference
Event Object

330 Acrobat JavaScript Scripting Reference

This event does not listen to the rc return code.

Field/Mouse Exit

The mouse exit event is the opposite of the mouse enter event and occurs when a user
moves the mouse pointer outside of the rectangle of a field. A mouse exit event will not
occur unless a mouse enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation
script is being executed.

This event does not listen to the rc return code.

Field/Mouse Up

The mouse up event is triggered when the user clicks on a form field and releases the
mouse button. This is the typical place to attach routines such as the submit action of a
form. A mouse up event will not occur unless a mouse down event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the field whose validation
script is being executed.

This event does not listen to the rc return code.

Field/Validate

Regardless of the field type, user interaction with a field may produce a new value for that
field. After the user has either clicked outside a field, tabbed to another field, or pressed the
enter key, the user is said to have committed the new data value.

The validate event is the first event generated for a field after the value has been
committed so that a JavaScript can verify that the value entered was correct. If the validate
event is successful, the next event triggered is the calculate event.

This event defines the change, changeEx, keyDown, modifier, name, shift,
target, targetName, type, and value properties for the event object. The target in
this event is the field whose validation script is being executed.

This event does listen to the rc return code. If the return code is set to false, the field
value is considered to be invalid and the value of the field is unchanged.

Link/Mouse Up

This event is triggered when a link containing a JavaScript action is activated by the user.

3.01

3.01

3.01

5.0

Acrobat JavaScript Scripting Reference 331

Acrobat JavaScript Scripting Reference
Event Object

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Menu/Exec

A menu event occurs whenever JavaScript that has been attached to a menu item is
executed. In Acrobat 5.0, the user can add a menu item and associate JavaScript actions
with it. For example,

app.addMenuItem({ cName: "Hello", cParent: "File",
cExec: "app.alert('Hello',3);", nPos: 0});

The script app.alert('Hello',3) will execute during a menu event. There are two
ways for this to occur:

1. Through the user interface, the user can click on that menu item and the script will
execute; and

2. Programmatically, when app.execMenuItem("Hello") is executed (perhaps,
during a mouse up event of a button field), the script will execute.

This event defines the name, target, targetName, and type properties for the event
object. The target in this event is the currently active document, if one is open.

This event listens to the rc return code in the case of the enable and marked proc for menu
items. (See the cEnabled and cMarked parameters of app.addMenuItem.) A return
code of false will disable or unmark a menu item. A return code of true enable or mark
a menu item.

Page/Open

This event happens whenever a new page is viewed by the user and after page drawing for
the page has occurred.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

Page/Close

This event happens whenever the page being viewed is no longer the current page; that is,
the user switched to a new page or closed the document.

This event defines the name, target, and type properties for the event object. The
target in this event is the document object.

This event does not listen to the rc return code.

5.0

4.05

4.05

Acrobat JavaScript Scripting Reference
Event Object

332 Acrobat JavaScript Scripting Reference

Screen/InView

This event happens whenever a new page first comes into view by the user. When the page
layout is set to “Continuous” or “Continuous - Facing”, this event occurs before the
Screen/Open event.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/OutView

This event happens whenever a page first goes out of view from the user. When the page
layout is set to “Continuous” or “Continuous - Facing”, this event occurs after the
Screen/Close event.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Open

This event happens whenever a new page is viewed by the user and after page drawing for
the page has occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Close

This event happens whenever the page being viewed is no longer the current page; that is,
the user switched to a new page or closed the document.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 333

Acrobat JavaScript Scripting Reference
Event Object

Screen/Focus

The focus event occurs after the mouse down but before the mouse up after the field
gains the focus. This routine is called whether or not a mouse click is used to activate the
ScreenAnnot (for example, tab key) and is the best place to perform processing that must
be done before the user can interact with the field.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Blur

The blur event occurs after all other events just as the ScreenAnnot loses focus. This event
is generated regardless of whether or not a mouse click is used to deactivate the
ScreenAnnot (for example, tab key).

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Mouse Up

The mouse up event is triggered when the user clicks on a ScreenAnnot and releases the
mouse button. This is the typical place to attach routines such as the starting a Multimedia
clip. A mouse up event will not occur unless a mouse down event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Mouse Down

The mouse down event is triggered when a user starts to click on a ScreenAnnot and the
mouse button is still down. It is advised that you perform very little processing (that is, play
a short sound) during this event. A mouse down event will not occur unless a mouse
enter event has already occurred.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Event Object

334 Acrobat JavaScript Scripting Reference

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Mouse Enter

The mouse enter event is triggered when a user moves the mouse pointer inside the
rectangle of an ScreenAnnot.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Screen/Mouse Exit

The mouse exit event is the opposite of the mouse enter event and occurs when a user
moves the mouse pointer outside of the rectangle of a ScreenAnnot. A mouse exit event
will not occur unless a mouse enter event has already occurred.

This event defines the modifier, name, shift, target, targetName, and type
properties for the event object. The target in this event is the ScreenAnnot (see
ScreenAnnot Object) that initiated this event, targetName is the title of the ScreenAnnot.

This event does not listen to the rc return code.

Document Event Processing

When a document is opened, the Doc/Open event occurs; functions are scanned, and any
exposed (top-level) scripts are executed. Next, if the NeedAppearances key in the PDF file is
set to true in the AcroForm dictionary, the formatting scripts of all form fields in the
document are executed. (See Section 3.6.1 and 7.6.1 of the PDF Reference.) Finally, the
Page/Close event occurs.

N O T E : For user’s who create PDF files containing form fields with the NeedAppearances key
set to true, be sure to do a “Save As” before posting such files on the Web.
Performing a “Save As” on a file generates the form appearances, which are saved
with the file. This increases the performance of Reader when it loads the file within a
Web browser.

6.0

6.0

Acrobat JavaScript Scripting Reference 335

Acrobat JavaScript Scripting Reference
Event Object

Form Event Processing

The order in which the form events occur is illustrated in the state diagram below. This
illustrates certain dependencies that are worth noting, for example, the Mouse Up event
cannot occur if the Focus event did not occur.

Multimedia Event Processing

Whenever an event fires and is dispatched to an event listener, a (multimedia) Event Object
is passed as a parameter to the event listener. This object is similar to the event object used
elsewhere in Acrobat, and it has the properties listed below.

Multimedia Event objects fired by rendition actions (e.g. in custom JavaScript entered from
the Actions tab in the Multimedia Properties panel) also include these properties:

action.annot The Screen Annotation for this event (See ScreenAnnot Object)

action.rendition The Rendition for this event (See Rendition Object)

Mouse Enter

Mouse Exit

Mouse Down Mouse UpFocus Blur
Keystroke

or
Selection
Change*

Validate

Calculate

Format

*Selection change for list box only.

Acrobat JavaScript Scripting Reference
Event Properties

336 Acrobat JavaScript Scripting Reference

Multimedia Event objects that have been dispatched by the standard multimedia event
dispatcher also include these properties. These are not present if you provide your own
events.dispatch() method:

Individual events may have additional properties; see the description of each EventListener
Object method for details.

An event method called by the standard event dispatcher may set either of these
properties to stop further event dispatching:

stopDispatch
stopAllDispatch

To stop the current event from being dispatched to any remaining event listeners, an event
method can set event.stopDispatch to true. If this is done in an “on” event method,
no more “on” methods will be called for the event, but “after” methods will still be called. If
you set event.stopAllDispatch, then no more event methods of either type will be
called. Read about the EventListener Object for a description of the “on” and “after” event
listeners

Event Properties

change

Specifies the change in value that the user has just typed. This is replaceable such that if the
JavaScript wishes to substitute certain characters, it may. The change may take the form of
an individual keystroke or a string of characters (for example if a paste into the field is
performed).

Type: String Access: R/W.

Example

Change all keystrokes to upper case.

// Custom Keystroke for text field
event.change = event.change.toUpperCase();

media.doc The document, same as target.doc

media.events The events object, same as target.events

media.id A copy of event.name with spaces removed

3.01

Acrobat JavaScript Scripting Reference 337

Acrobat JavaScript Scripting Reference
Event Properties

changeEx

Contains the export value of the change and is available only during a Field/Keystroke
event for listbox and combobox.

For the listbox , the keystroke script, if any, is entered under the Selection Change tab in
the properties dialog.

For the combobox, changeEx is only available if the pop-up part of the combo is used,
that is, a selection (with the mouse or the keyboard) is being made from the pop-up. If the
combo is editable and the user types in an entry, the Field/Keystroke event behaves as for a
text field (that is, there are no changeEx or keyDown event properties).

Beginning with Acrobat 6.0, event.changeEx is defined for text fields. When
event.fieldFull is true, changeEx is set to the entire text string the user
attempted to enter and event.change is the text string cropped to what fits within the
field. Use event.richChangeEx (and event.richChange) to handle rich text fields.

Type: various Access: R.

Example 1

This example illustrates the combobox, event.changeEx and app.launchURL. The
example illustrates a simple html online help file system.

Here is a combobox, which is described programmatically.

var c = this.addField({
 cName: "myHelp",
 cFieldType: "combobox",
 nPageNum: 0,
 oCoords: [72,12+3*72, 3*72, 0+3*72]
})

Now set the items in the combobox.

c.setItems([
["Online Help", "http://www.myhelp.com/myhelp.html"],
["How to Print", "http://www.myhelp.com/myhelp.html#print"],
["How to eMail", "http://www.myhelp.com/myhelp.html#email"]

]);

Set the action.

c.setAction("Keystroke", "getHelp()");

This function is a defined at the document level.

function getHelp() {
 if (!event.willCommit && (event.changeEx != ""))

app.launchURL(event.changeEx);
}

5.0

Acrobat JavaScript Scripting Reference
Event Properties

338 Acrobat JavaScript Scripting Reference

Example 2

For an example of the use of changeEx with text fields, see the example following
fieldFull.

commitKey

Determines how a form field will lose focus. Values are:

0 : Value was not committed (for example, escape key was pressed).

1: Value was committed because of a click outside the field using the mouse.

2: Value was committed because of hitting the enter key.

3: Value was committed by tabbing to a new field.

Type: Number Access: R.

Example

To automatically display an alert dialog after a field has been committed add the following
to the field’s format script:

if (event.commitKey != 0)
app.alert("Thank you for your new field value.");

fieldFull

Only available in keystroke events for text fields. Set to true when the user attempts to
enter text which does not fit in the field due to either a space limitation (the property
Field.doNotScroll is set to true) or the maximum character limit (the property
Field.charLimit set to a positive value). When fieldFull is true,
event.changeEx is set to the entire text string the user attempted to enter and
event.change is the text string cropped to what fits within the field.

Type: Boolean Access: R Events: Keystroke.

Example 1

Below is custom keystroke script for a text field that has a character limit, for example. Then
the field gets filled, or if the user commits the data entered, the focus moves to another
field.

if (event.fieldFull || event.willCommit)
 this.getField("NextTabField").setFocus();

4.0

6.0

Acrobat JavaScript Scripting Reference 339

Acrobat JavaScript Scripting Reference
Event Properties

Example 2

Test whether user has overfilled the text field. Custom Keystroke script for a text field.
Initially, the field is set so that text does not scroll.

if (event.fieldFull)
{

app.alert("You've filled the given space with text,"
+ " and as a result, you've lost some text. I'll set the field to"
+ " scroll horizontally, and paste in the rest of your"
+ " missing text.");
this.resetForm([event.target.name]); // reset field to lose focus
event.target.doNotScroll = false; // make changes

 event.change = event.changeEx;
}

Field properties generally cannot be changed during a keystroke event, so it is necessary
for the field to lose focus as a way to commit the data. The user then has to reset the focus
and continue entering data.

keyDown

Available only during a keystroke event for listbox and combobox. For a listbox or
the pop-up part of a combobox, the value is true if the arrow keys were used to make a
selection, false otherwise.

For the combobox, keyDown is only available if the pop-up part of it is used, that is, a
selection (with the mouse or the keyboard) is being made from the pop-up. If the combo is
editable and the user types in an entry, the Field/Keystroke event behaves as for a text
field (that is, there are no changeEx or keyDown event properties).

Type: Boolean Access: R.

modifier

Whether the modifier key is down during a particular event. The modifier key on the
Microsoft Windows platform is Control and on the Macintosh platform is Option or
Command. The modifier is not supported on UNIX.

Type: Boolean Access: R.

5.0

3.01

Acrobat JavaScript Scripting Reference
Event Properties

340 Acrobat JavaScript Scripting Reference

name

The name of the current event as a text string. The type and name together uniquely
identify the event. Valid names are:

Keystroke Mouse Exit
Validate WillPrint
Focus DidPrint
Blur WillSave
Format DidSave
Calculate Init
Mouse Up Exec
Mouse Down Open
Mouse Enter Close

Type: String Access: R Events: all.

rc

Used for validation. Indicates whether a particular event in the event chain should succeed.
Set to false to prevent a change from occurring or a value from committing. By default
rc is true.

Type: Boolean Access: R/W Events: Keystroke, Validate,
Menu .

richChange

Specifies the change in value that the user has just typed. The richChange property is
only defined for rich text fields and mirrors the behavior of the event.change property.
The value of richChange is an array of Span Objects which specify both the text entered
into the field and the formatting. Keystrokes are represented as single member arrays, while
rich text pasted into a field is represented as an array of arbitrary length.

When event.fieldFull is true, richChangeEx is set to the entire rich formatted
text string the user attempted to enter and event.richChange is the rich formatted
text string cropped to what fits within the field. Use event.changeEx (and
event.change) to handle (plain) text fields.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

4.05

3.01

6.0

Acrobat JavaScript Scripting Reference 341

Acrobat JavaScript Scripting Reference
Event Properties

Related objects and properties are the Span Object, field.defaultStyle,
field.richText, field.richValue, event.richValue , and
annot.richContents.

Example

This example changes the keystroke to upper case, alternately colors the text blue and red,
and switches underlining off and on.

// Custom Keystroke event for text rich field.
var span = event.richChange;
for (var i=0; i<span.length; i++)
{
 span[i].text = span[i].text.toUpperCase();
 span[i].underline = !span[i].underline;
 span[i].textColor = (span[i].underline) ? color.blue : color.red;
}
event.richChange = span;

richChangeEx

The richChangeEx property is only defined for rich text fields and mirrors the behavior
of the event.changeEx property for text fields. The value of richChangeEx is an
array of Span Objects which specify both the text entered into the field and the formatting.
Keystrokes are represented as single member arrays, while rich text pasted into a field is
represented as an array of arbitrary length.

When event.fieldFull is true, richChangeEx is set to the entire rich formatted
text string the user attempted to enter and event.richChange is the rich formatted
text string cropped to what fits within the field. Use event.changeEx (and
event.change) to handle (plain) text fields.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

Related objects and properties are the Span Object, field.defaultStyle,
field.richText, field.richValue, event.richChange, event.richValue ,
and annot.richContents.

Example

If the text field is filled up by the user, allow additional text by setting the field to scroll.

if (event.fieldFull)
{

app.alert("You've filled the given space with text,"
+ " and as a result, you've lost some text. I'll set the field to"
+ " scroll horizontally, and paste in the rest of your"
+ " missing text.");
this.resetForm([event.target.name]); // reset field to lose focus
event.target.doNotScroll = false; // make changes

6.0

Acrobat JavaScript Scripting Reference
Event Properties

342 Acrobat JavaScript Scripting Reference

 if (event.target.richText)
 event.richChange = event.richChangeEx
 else
 event.change = event.changeEx;
}

See also event.fieldFull.

richValue

This property mirrors the field.richValue property of the field and the
event.value property for each event.

Type: Array of Span ObjectsAccess: R/W Events: Keystroke.

Related objects and properties are the Span Object, field.defaultStyle,
field.richText, field.richValue, event.richChange,
event.richChangeEx, and annot.richContents.

Example

This example turns all bold text into red underlined text.

// Custom Format event for a rich text field.
var spans = event.richValue;
for (var i = 0; i < spans.length; i++)
{

if(spans[i].fontWeight >= 700)
{

spans[i].textColor = color.red;
spans[i].fontWeight = 400; // change to default weight
spans[i].underline = true;

}
}
event.richValue = spans;

selEnd

The ending position of the current text selection during a keystroke event.

Type: Integer Access: R/W.

Example

This is the function AFMergChange taken from the file AForms.js in the application
JavaScripts folder. This function merges the last change (of a text field) with the
uncommitted change. This function uses bother selEnd and selStart.

6.0

3.01

Acrobat JavaScript Scripting Reference 343

Acrobat JavaScript Scripting Reference
Event Properties

function AFMergeChange(event)
{
 var prefix, postfix;
 var value = event.value;

 if(event.willCommit) return event.value;
 if(event.selStart >= 0)
 prefix = value.substring(0, event.selStart);
 else prefix = "";
 if(event.selEnd >= 0 && event.selEnd <= value.length)
 postfix = value.substring(event.selEnd, value.length);
 else postfix = "";
 return prefix + event.change + postfix;
}

selStart

The starting position of the current text selection during a keystroke event.

Type: Integer Access: R/W.

Example

See the example following selEnd.

shift

Whether the shift key is down during a particular event.

Type: Boolean Access: R.

Example

The following is a mouse up button action.

if (event.shift)
this.gotoNamedDest("dest2");

else
this.gotoNamedDest("dest1");

3.01

3.01

Acrobat JavaScript Scripting Reference
Event Properties

344 Acrobat JavaScript Scripting Reference

source

The Field Object that triggered the calculation event. This is usually different from the
target of the event, that is, the field that is being calculated.

Type: object Access: R.

target

The target object that triggered the event. In all mouse, focus, blur, calculate, validate, and
format events it is the Field Object that triggered the event. In other events, such as page
open and close, it is the Doc Object or this Object.

Type: object Access: R.

targetName

Tries to return the name of the JavaScript being executed. Can be used for debugging
purposes to help better identify the code causing exceptions to be thrown. Common
values of targetName include:

● the folder-level script file name for App/Init events;

● the Doc-level script name forDoc/Open events;

● the PDF file name being processed for Batch/Exec events;

● the Field name for Field/Blur, Field/Calculate, Field/Focus, Field/Format, Field/Keystroke,
Field/Mouse Down, Field/Mouse Enter, Field/Mouse Exit,Field/Mouse Up and
Field/Validate events.

● the Menu item name for Menu/Exec events.

If there is an identifiable name, Acrobat EScript reports targetName when an exception is
thrown.

Type: String Access: R.

Example

The first line of the folder level JavaScript file conserve.js has an error in it, when the
Acrobat Viewer started, an exception is thrown. The standard message reveals quite clearly
the source of the problem.

MissingArgError: Missing required argument.

5.0

3.01

5.0

Acrobat JavaScript Scripting Reference 345

Acrobat JavaScript Scripting Reference
Event Properties

App.alert:1:Folder-Level:App:conserve.js
 ===> Parameter cMsg.

type

The type of the current event as a text string. The type and name together uniquely identify
the event. Valid types are:

Batch External
Console Bookmark
App Link
Doc Field
Page Menu

Type: String Access: R.

value

This property has different meanings for different field events.

Field/Validate event

For the Field/Validate event, this is the value that the field contains when it is committed.
For a combobox, this is the face value, not the export value (see changeEx for
the export value).

Example

For example, the following JavaScript verifies that the field value is between zero and 100.

if (event.value < 0 || event.value > 100) {
app.beep(0);
app.alert("Invalid value for field " + event.target.name);
event.rc = false;

}

Field/Calculate event

For a Field/Calculate event, JavaScript should set this property. It is the value that the field
should take upon completion of the event.

Example

For example, the following JavaScript sets the calculated value of the field to the value of
the SubTotal field plus tax.

var f = this.getField("SubTotal");
event.value = f.value * 1.0725;

5.0

3.01

Acrobat JavaScript Scripting Reference
Event Properties

346 Acrobat JavaScript Scripting Reference

Field/Format event

For a Field/Format event, JavaScript should set this property. It is the value used when
generating the appearance for the field. By default, it contains the value that the user has
committed. For a combobox, this is the face value, not the export value (see
changeEx for the export value).

Example

For example, the following JavaScript formats the field as a currency type of field.

event.value = util.printf("$%.2f", event.value);

Field/Keystroke event

The current value of the field. If modifying a text field, for example, this is the text in the text
field before the keystroke is applied.

Field/Blur and Field/Focus events

The current value of the field. During these two events, event.value is read-only, that is,
the field value cannot be changed by setting event.value.

Beginning with Acrobat 5.0, for a listbox that allows multiple selections (see
field.multipleSelection), if the field value is an array (that is, there are multiple
selections currently selected), event.value returns an empty string when getting, and
does not accept setting.

Type: various Access: R/W.

willCommit

Verifies the current keystroke event before the data is committed. This is useful to check the
target form field values and for example verify if character data instead of numeric data was
entered. JavaScript sets this property to true after the last keystroke event and before
the field is validated.

Type: Boolean Access: R.

Example

This example is illustrates the structure of a keystroke event.

var value = event.value
if (event.willCommit)

// Final value checking.
else

// Keystroke level checking.

3.01

Acrobat JavaScript Scripting Reference 347

Acrobat JavaScript Scripting Reference
Events Object

Events Object

A multimedia Events object (whose constructor is app.media.Events) is a collection of
event listener objects. The events property of a MediaPlayer Object or a ScreenAnnot
Object is an Events object.

Example:

This following is executed as rendition action

console.println("Ready to play \"" + event.action.rendition.uiName
 +"\" from screen annot \"" + event.targetName + "\".");
// Create a simple app.media.Events object
var events = new app.media.Events({

// The Event object is passed as a parameter to all event
// listeners, this is a the parameter "e" below/
// Called immediately during a Play event:
onPlay: function(e) { console.println("onPlay: media.id = "

+ e.media.id); },
// Called during idle time after the Play event:
afterPlay: function() { console.println("afterPlay"); },

});
var player = app.media.openPlayer({ events: events });

Events Object Methods

add

Adds any number of EventListener Objects to the dispatch table for this Events Object. Any
previous listeners are preserved, and when an event is fired, all matching listener methods
are called.

The standard event dispatcher first calls any onEveryEvent methods in the order they
were added, then calls any “on” events (see the description of “on” and “after” events in the
introductory paragraphs to EventListener Object) for the specific event being dispatched,
also in the order they were added. Finally, it sets a very short timer (one millisecond) to call
any “after” events. When that timer fires, the “after” events are called in the same order
described for on events.

N O T E : If you try to add the same event listener twice, the second attempt is ignored.

If you add an event listener from inside an event method, the new listener’s methods
will be called as part of the dispatching for the current event.

Parameters

Any number of parameters, each one an EventListener Object

6.0

Acrobat JavaScript Scripting Reference
Events Object Methods

348 Acrobat JavaScript Scripting Reference

Returns

Nothing

Example:
// Add an event listener for the onPlay event, here, player is a
// MediaPlayer object.
player.events.add
({

onPlay: function() { console.println("onPlay"); }
});

See also Events.remove..

dispatch

When a MediaPlayer fires an event, the Multimedia plug-in creates an Event Object and
calls MediaPlayer.events.dispatch(event). Similarly, a ScreenAnnot calls
ScreenAnnot.events.dispatch(event).

The dispatch method is the only part of the event dispatching system that the Acrobat
Multimedia plugin calls directly. You can substitute your own, entirely different event
dispatching system by providing your own MediaPlayer.events object with its own
dispatch() method.

The dispatch() method is responsible for calling each of the event listeners associated
with the event, as identified by oMediaEvent.name. In most cases, a PDF file will not
provide its own dispatch() method but will use the standard event dispatching system.

Parameters

Returns

Nothing

If you write your own dispatch() method, note that oMediaEvent.name may contain
spaces. The standard dispatch() method makes a copy of oMediaEvent.name in
oMediaEvent.media.id with the spaces removed, to allow the name to be used
directly as part of a JavaScript event method name.

Also, note that if you write your own dispatch(), it will be called synchronously when
each event occurs, and any processing you do will be subject to the same limitations as
described for “on” event methods in the EventListener section (see EventListener Object). In
particular, it cannot make any calls to a MediaPlayer Object nor do anything that can
indirectly cause a MediaPlayer method to be called. See the source code for the standard
dispatch() in media.js for a way to work around this using a timer.

6.0

oMediaEvent A Event Object

Acrobat JavaScript Scripting Reference 349

Acrobat JavaScript Scripting Reference
Events Object Methods

The dispatch() method is not usually called directly from JavaScript code, although it
can be.

Example:
// Create a new media player with a custom event dispatcher.
// This is an advanced technique that would rarely be used in
// typical PDF JavaScript.
var player = doc.media.newPlayer(
{

events:
{

dispatch: function(e)
{

console.println('events.dispatch' + e.toSource());
}

}
});
// Synthesize and dispatch a Script event, as if one had been
// encountered while the media was playing. With the standard event
// dispatcher, this will call any and all event listeners that have been
// added for this event. With the custom dispatcher above, it will log a
// message to the console.
var event = new Event;
event.name = "Script";
event.media = { command: "test", param: "value" };
player.events.dispatch(event);

remove

The method removes one or more event listeners that were previously added with
Events.add(). If you use an object literal directly in Events.add(), you will not be
able to remove that listener using Media.remove() because there is no way to pass a
reference to the same object. If you want to be able to remove an event listener, pass it to
add() in a variable instead of an object literal, so that you can pass the same variable to
remove(), as in the example below.

The remove() method may be called from inside an event method to remove any event
listener, even the listener that the current event method is part of. The current event
method continues executing, but no other event methods in the same event listener object
will be called.

Parameters

Any number of parameters, each one an EventListener Object

Returns

Nothing

6.0

Acrobat JavaScript Scripting Reference
EventListener Object

350 Acrobat JavaScript Scripting Reference

Example:

Assume player is a MediaPlayer object.

var listener = { afterStop: function() { app.alert("Stopped!"); } }
player.events.add(listener); // add listener
.....
player.events.remove(listener); // later, remove it

EventListener Object

An EventListener object is a collection of event method functions along with optional local
data. Event method names begin with “on” or “after” followed by the event name, e.g.
onPause or afterPause. When an event is dispatched, matching “on” event methods
are called immediately, and matching “after” event methods are called a short while later, at
the next idle time.

There are severe restrictions on what an “on” event method can do. In particular, an “on”
event method for a MediaPlayer cannot call any of that MediaPlayer’s methods, nor can it
call any other Acrobat method that may indirectly cause a method of the MediaPlayer to be
called. For example, an “on” method must not close the document, save it, change the
active page, change the focus, or anything else that may eventually call a method of the
MediaPlayer.

An “after” event method does not have these restrictions. For most purposes, “after” event
method are more versatile. Use an “on” event method only when the event must be
processed synchronously at the time that it occurs, such as an onGetRect() method.

A note about reentrancy: “on” event methods are never reentered, but “after” event
methods may be reentered.

Inside an event method, this is the event listener object. The document is available in
event.media.doc , and the event target (MediaPlayer or ScreenAnnot) is in
event.target .

Events.add() installs EventListener objects for dispatching, Events.dispatch()
dispatches an event to the matching event methods, and Events.remove() removes
EventListener objects from the dispatch table.

Example:
// Create a simple MediaEvents object
var events = new app.media.Events
({

// Called immediately during a Play event:
onPlay: function() { console.println("onPlay"); },

// Called during idle time after the Play event:
afterPlay: function() { console.println("afterPlay"); },

});
var player = app.media.createPlayer({events: events});
player.events.add({

Acrobat JavaScript Scripting Reference 351

Acrobat JavaScript Scripting Reference
EventListener Object Methods

afterPlay: function(e) {
app.alert("Playback started, doc.URL = " + e.media.doc.URL);

}
});
player.open();

EventListener Object Methods

The events listed here are specific to multimedia. In addition to these events, a
ScreenAnnot may receive the standard events used elsewhere in Acrobat (Destroy, Mouse
Up, Mouse Down, Mouse Enter, Mouse Exit, Page Open, Page Close, Page Visible, Page
Invisible, Focus, and Blur). Please see the Events section of the main Acrobat JavaScript
documentation for details on those events.

afterBlur

The Blur event fires when a MediaPlayer or ScreenAnnot loses the keyboard focus after
having it.

Parameters

Returns

Nothing

See the onBlur and the explanation of the differences between an “on” event and an “after”
event in EventListener Object.

Example

The following script is executed as a Rendition action. The user clicks on the ScreenAnnot
to open, but not play the movie clip. Clicking outside the ScreenAnnot (a Blur event) plays
the movie. Clicking on the ScreenAnnot (a Focus event) while movie is playing pauses the
movie. To continue, the user clicks outside the ScreenAnnot again.

var playerEvents = new app.media.Events
({

afterBlur: function () { player.play(); },
afterFocus: function () { player.pause(); }

});
var settings = { autoPlay: false };
var args = { settings: settings, events: playerEvents};
var player = app.media.openPlayer(args);

See also afterFocus.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
EventListener Object Methods

352 Acrobat JavaScript Scripting Reference

afterClose

The Close event fires when a MediaPlayer is closed for any reason.

If you want to start another media player from the Close event, be sure to test
doc.media.canPlay first to make sure playback is allowed. For example, playback may
not be allowed because the document is closing.

The Event Object for a Close event includes these properties in addition to the standard
Event properties:

When a player closes while it has the focus, it first receives a Blur event and then the Close
event. In the Close event, media.hadFocus indicates whether the player had the focus
before closing.

When the afterClose event method is called, the MediaPlayer has already been deleted
and its JavaScript object is dead.

Parameters

Returns

Nothing

See the onClose and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

Example

See onClose for a representative example.

afterDestroy

The Destroy event fires when a ScreenAnnot is destroyed.

When the afterDestroy event method is called, the ScreenAnnot has already been deleted
from the document and its JavaScript object is dead.

6.0

media.closeReason Why the player was closed, from app.media.closeReason

media.hadFocus Did the player have the focus when it was closed?

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

Acrobat JavaScript Scripting Reference 353

Acrobat JavaScript Scripting Reference
EventListener Object Methods

Parameters

Returns

Nothing

See the onDestroy and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

afterDone

The Done event fires when media playback reaches the end of media.

Parameters

Returns

Nothing

See the onDone and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

afterError

The Error event fires when an error occurs in a MediaPlayer.

The Event object for an Error event includes these properties in addition to the standard
Event properties:

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

media.code Status code value

media.serious True for serious errors, false for warnings

media.text Error message text

Acrobat JavaScript Scripting Reference
EventListener Object Methods

354 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

See the onError and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

afterEscape

The Escape event fires when the user presses the Escape key while a MediaPlayer is open
and has the keyboard focus. A MediaPlayer may receive an Escape event before it receives
the Ready event.

Parameters

Returns

Nothing

See the onEscape and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

afterEveryEvent

If an Events Object contains an onEveryEvent or afterEveryEvent property, its
event listener function(s) are called for every event, not just a specific one.

The event listener function(s) in an onEveryEvent or afterEveryEvent property are called
before any listener functions that name the specific event.

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

Acrobat JavaScript Scripting Reference 355

Acrobat JavaScript Scripting Reference
EventListener Object Methods

Parameters

Returns

Nothing

See the onEveryEvent and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

Example:
var events = new app.media.Events(
{

// This is called immediately during every event:
onEveryEvent: function(e)
{ console.println('onEveryEvent, event = ' + e.name); },

// This is called during a Play event, after onEveryEvent is
// called:
onPlay: function() { console.println("onPlay"); },

// This is called for every event, but later during idle time:
afterEveryEvent: function(e)
{ console.println("afterEveryEvent, event = " + e.name); },

// This is called during idle time after a Play event,
// and after afterEveryEvent is called:
afterPlay: function() { console.println("afterPlay"); },

});

afterFocus

The Focus event fires when a MediaPlayer or ScreenAnnot gets the keyboard focus.

Parameters

Returns

Nothing

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
EventListener Object Methods

356 Acrobat JavaScript Scripting Reference

See the onFocus and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

Example

See afterBlur for an example of usage.

afterPause

The Pause event fires when media playback pauses, either because of user interaction or
when the pause() method is called.

Parameters

Returns

Nothing

See the onPause and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

afterPlay

The Play event fires when media playback starts or resumes, either because of user
interaction or when the play() method is called.

Parameters

Returns

Nothing

See the onPlay and the explanation of the differences between an “on” event and an “after”
event in EventListener Object.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference 357

Acrobat JavaScript Scripting Reference
EventListener Object Methods

afterReady

The Ready event fires when a newly-created MediaPlayer is ready for use. Most methods of
a MediaPlayer Object cannot be called until the Ready event fires.

Parameters

Returns

Nothing

See the onReady and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

See afterScript, below, Markers.get and the MediaOffset Object.

Example

This (document level) script plays multiple media clips. For each ScreenAnnot, a media
(OpenPlayer) player is opened. When it is ready, the afterReady script signals this fact to
Multiplayer.

// Parameters: doc, page, rendition/annot name, mulitPlayer instance
function OnePlayer(doc, page, name, multiPlayer)
{
 var player = app.media.openPlayer({

annot: doc.media.getAnnot(
 { nPage: page, cAnnotTitle: name }),
 rendition: doc.media.getRendition(name),
 settings: { autoPlay: false },
 events: {
 afterReady: function(e) {
 multiPlayer.afterReady(player);

},
}

 });
 return player;
}
// Parameters: doc, page, list of rendition/annot names
function MultiPlayer(doc, page)
{

var nPlayersCueing = 0; // number of players cueing up
var players = []; // the SinglePlayers

this.afterReady = function(player) {
if(! player.didAfterReady) {

 player.didAfterReady = true;

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
EventListener Object Methods

358 Acrobat JavaScript Scripting Reference

 nPlayersCueing--;
 if(nPlayersCueing == 0) this.play();

}
 }
 this.play = function() {
 for(var i = 0; i < players.length; i++) players[i].play();

}
 for(var i = 2; i < arguments.length; i++) {

 players[i-2] = new OnePlayer(doc,page,arguments[i],this);
 nPlayersCueing++;

 }
}

Playing multiple media clips is accomplished by executing the code

var myMultiPlayer = new MultiPlayer(this, 0, "Clip1", "Clip2");

from, for example, a mouse up action of a form button.

See afterScript for another example of afterReady.

afterScript

The Script event fires when a script trigger is encountered in the media during playback.

The Event Object for a Script event includes these properties in addition to the standard
Event properties:

These two strings can contain any values that the media clip provides. They do not
necessarily contain executable JavaScript code it is up to the onScript or afterScript event
listener to interpet them.

Parameters

Returns

Nothing

See the onScript and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

6.0

media.command Command name

media.param Command parameter string

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference 359

Acrobat JavaScript Scripting Reference
EventListener Object Methods

Example

The following is part of a complete example presented after MediaPlayer.seek(). The
media is an audio clip (.wma), which does support markers and scripts, of (famous)
quotations. The afterReady listener counts the number of markers, one at the
beginning of each quotation. At the end of each quotation, there is also a embedded
command script, the afterScript listener watches for these commands, and if it is a
“pause” command, it pauses the player.

var nMarkers=0;
var events = new app.media.Events;
events.add({
 // count the number of quotes in this audio clip, save as nMarkers
 afterReady: function() {
 var g = player.markers;
 while ((index = g.get({ index: nMarkers })) != null)

nMarkers++;
 },
 // Each quote should be followed by a script, if the command is to
 // pause, then pause the player.
 afterScript: function(e) {
 if (e.media.command == "pause") player.pause();
 }
});
var player = app.media.openPlayer({

rendition: this.media.getRendition("myQuotes"),
settings: { autoPlay: false },
events: events

});

afterSeek

The Seek event fires when a MediaPlayer is finished seeking to a playback offset as a result
of a seek() call. Note that not all media players fire Seek events.

Parameters

Returns

Nothing

See the onSeek and the explanation of the differences between an “on” event and an “after”
event in EventListener Object.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
EventListener Object Methods

360 Acrobat JavaScript Scripting Reference

afterStatus

The Status event fires on various changes of status that a MediaPlayer reports.

The Event Object for a Status event includes these properties in addition to the standard
Event properties:

The following values are used only by some media players, and only when
media.code == app.media.status.buffering. They are zero otherwise.

Parameters

Returns

Nothing

See the onStatus and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

Example

The following code would monitor the status of the player, as executed from a Rendition
event associated with a ScreenAnnot.

var events = new app.media.Events
events.add({

afterStatus: function (e) {
 console.println("Status code " + e.media.code +

 ", description: " + e.media.text);
 }
});
app.media.openPlayer({ events: events });

6.0

media.code Status code value, defined in app.media.status

media.text Status message text

media.progress Progress value from 0 to media.total

media.total Maximum progress value

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference 361

Acrobat JavaScript Scripting Reference
EventListener Object Methods

afterStop

The Stop event fires when media playback stops, either because of user interaction or when
the stop() method is called.

Parameters

Returns

Nothing

See the onStop and the explanation of the differences between an “on” event and an “after”
event in EventListener Object.

onBlur

The Blur event fires when a MediaPlayer or ScreenAnnot loses the keyboard focus after
having it.

Parameters

Returns

Nothing

See the afterBlur and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onClose

The Close event fires when a MediaPlayer is closed for any reason.

If you want to start another media player from the Close event, be sure to test
doc.media.canPlay first to make sure playback is allowed. For example, playback may
not be allowed because the document is closing.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

Acrobat JavaScript Scripting Reference
EventListener Object Methods

362 Acrobat JavaScript Scripting Reference

The Event object for a Close event includes these properties in addition to the standard
Event properties:

When a player closes while it has the focus, it first receives a Blur event and then the Close
event. In the Close event, media.hadFocus indicates whether the player had the the focus
before closing.

When the afterClose event method is called, the MediaPlayer has already been deleted and
its JavaScript object is dead.

Parameters

Returns

Nothing

See the afterClose and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

Example

This script gets information about why the media clip closed, executed from a Rendition
action. See app.media.closeReason,

var playerEvents = new app.media.Events({
onClose: function (e) {

var eReason, r = app.media.closeReason;
switch (e.media.closeReason)
{

 case r.general: eReason = "general"; break;
 case r.error: eReason = "error"; break;
 case r.done: eReason = "done"; break;
 case r.stop: eReason = "stop"; break;
 case r.play: eReason = "play"; break;
 case r.uiGeneral: eReason = "uiGeneral"; break;
 case r.uiScreen: eReason = "uiScreen"; break;
 case r.uiEdit: eReason = "uiEdit"; break;
 case r.docClose: eReason = "Close"; break;
 case r.docSave: eReason = "docSave"; break;
 case r.docChange: eReason = "docChange"; break;

}
console.println("Closing...The reason is " + eReason);

}
});
app.media.openPlayer({ events: playerEvents });

media.closeReason Why the player was closed, from app.media.closeReason

media.hadFocus Did the player have the focus when it was closed?

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference 363

Acrobat JavaScript Scripting Reference
EventListener Object Methods

onDestroy

The Destroy event fires when a ScreenAnnot is destroyed.

Parameters

Returns

Nothing

See the afterDestroy and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onDone

The Done event fires when media playback reaches the end of media.

Parameters

Returns

Nothing

See the afterDone and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onError

The Error event fires when an error occurs in a MediaPlayer.

The Event object for an Error event includes these properties in addition to the standard
Event properties:

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

media.code Status code value

media.serious true for serious errors, false for warnings

Acrobat JavaScript Scripting Reference
EventListener Object Methods

364 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

See the afterError and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onEscape

The Escape event fires when the user presses the Escape key while a MediaPlayer is open
and has the keyboard focus. A MediaPlayer may receive an Escape event before it receives
the Ready event.

Parameters

Returns

Nothing

See the afterEscape and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onEveryEvent

If an Events Object contains an onEveryEvent or afterEveryEvent property, its event listener
function(s) are called for every event, not just a specific one.

The event listener function(s) in an onEveryEvent or afterEveryEvent property are called
before any listener functions that name the specific event.

media.text Error message text

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

Acrobat JavaScript Scripting Reference 365

Acrobat JavaScript Scripting Reference
EventListener Object Methods

Parameters

Returns

Nothing

See the afterEveryEvent and the explanation of the differences between an “on” event and
an “after” event in EventListener Object.

onFocus

The Focus event fires when a MediaPlayer or ScreenAnnot gets the keyboard focus.

Parameters

Returns

Nothing

See the afterFocus and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onGetRect

The GetRect event fires whenever the multimedia plug-in needs to get the display
rectangle for a docked MediaPlayer.

The Event object for an GetRect event includes this property in addition to the standard
Event properties:

The onGetRect() method must set this property in the oMediaEvent before
returning.

Although you can write an afterGetRect listener, there is no useful purpose for it if it
returns a rect property it will be ignored. The onGetRect listener is where the rect
property must be set.

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

media.rect Player rectangle, an array of four numbers in device space

Acrobat JavaScript Scripting Reference
EventListener Object Methods

366 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Page 0 has a series of (thumbnail-size) ScreenAnnots, and page 1 is a blank page. Put the
viewer into continuous facing mode so that both pages are seen side-by-side. Below is a
typical Rendition action or mouse up button JavaScript action.

var rendition = this.media.getRendition("Clip1");
var settings = rendition.getPlaySettings();
var annot = this.media.getAnnot({ nPage:0,cAnnotTitle:"ScreenClip1" });
var player = app.media.openPlayer({

rendition: rendition,
annot: annot,
settings: { windowType: app.media.windowType.docked },
events:
{

onGetRect: function (e) {
var width = e.media.rect[2] - e.media.rect[0];
var height = e.media.rect[3] - e.media.rect[1];
width *= 3; // triple width and height
height *= 3;
e.media.rect[0] = 36; // move left,upper to
e.media.rect[1] = 36; // upper left-hand corner
e.media.rect[2] = e.media.rect[0]+width;
e.media.rect[3] = e.media.rect[1]+height;
return e.media.rect; // return this

}
}

});
player.page = 1; // show on page 1, this triggers an onGetRect event.

See MediaPlayer.page and MediaPlayer.triggerGetRect for a variation on
this same example.

onPause

The Pause event fires when media playback pauses, either because of user interaction or
when the play() method is called.

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

Acrobat JavaScript Scripting Reference 367

Acrobat JavaScript Scripting Reference
EventListener Object Methods

Parameters

Returns

Nothing

See the afterPause and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onPlay

The Play event fires when media playback starts or resumes, either because of user
interaction or when the pause() method is called.

Parameters

Returns

Nothing

See the afterPlay and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onReady

The Ready event fires when a newly-created MediaPlayer is ready for use. Most methods of
a MediaPlayer Object cannot be called until the Ready event fires.

Parameters

Returns

Nothing

See the afterReady and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
EventListener Object Methods

368 Acrobat JavaScript Scripting Reference

onScript

The Script event fires when a script trigger is encountered in the media during playback.

The Event object for a Script event includes these properties in addition to the standard
Event properties:

These two strings can contain any values that the media clip provides. They do not
necessarily contain executable JavaScript code it is up to the onScript or afterScript event
listener to interpet them.

Parameters

Returns

Nothing

See the afterScript and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onSeek

The Seek event fires when a MediaPlayer is finished seeking to a playback offset as a result
of a seek() call. Note that not all media players fire Seek events.

Parameters

Returns

Nothing

See the afterSeek and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

6.0

media.command Command name

media.param Command parameter string

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference 369

Acrobat JavaScript Scripting Reference
EventListener Object Methods

onStatus

The Status event fires on various changes of status that a MediaPlayer reports.

The Event Object for a Status event includes these properties in addition to the standard
Event properties:

The following values are used only by some media players, and only when
media.code == app.media.status.buffering. They are zero otherwise.

Parameters

Returns

Nothing

See the afterStatus and the explanation of the differences between an “on” event and an
“after” event in EventListener Object.

onStop

The Stop event fires when media playback stops, either because of user interaction or when
the stop() method is called.

Parameters

Returns

Nothing

6.0

media.code Status code value, defined in app.media.status

media.text Status message text

media.progress Progress value from 0 to media.total

media.total Maximum progress value

oMediaEvent An Event Object which is automatically passed to this event
listener.

6.0

oMediaEvent An Event Object which is automatically passed to this event
listener.

Acrobat JavaScript Scripting Reference
FDF Object

370 Acrobat JavaScript Scripting Reference

See the afterStop and the explanation of the differences between an “on” event and an
“after” event in EventListener Object

FDF Object

This object corresponds to a PDF-encoded data exchange file. The most familiar use of FDF
files is to contain forms data that is exported from a PDF file. FDF files can also be used as
general purpose data files. It is for this later purpose that the FDF object exists.

(Security �): All methods and properties marked with � in its quickbar are available only
during batch, console, application initialization and menu events.

N O T E : Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

FDF Properties

deleteOption

Indicates whether the FDF file should be automatically deleted after it is processed. This is a
generic value that may or may not be used, depending on the content of the FDF file and
how it is processed. It is used for embedded files beginning in Acrobat 6.0. Allowed values
are

0 (default): Acrobat will automatically delete the FDF file after processing

1: Acrobat will not delete the FDF file after processing (however a web or email browser
may still delete the file).

2: Acrobat will prompt the user to determine whether to delete the FDF file after
processing (however a web or email browser may still delete the file).

Type: Integer Access: R/W.

isSigned

Returns true if the FDF data file is signed.

Type: Boolean Access: R.

6.0 �

6.0 � � �

6.0 � �

Acrobat JavaScript Scripting Reference 371

Acrobat JavaScript Scripting Reference
FDF Methods

Example

See if the fdf is signed.

var fdf = app.openFDF("/C/temp/myDoc.fdf");
console.println("It is "+ fdf.isSigned + " that this FDF is signed");
fdf.close();

See a more complete example following fdf.signatureSign

numEmbeddedFiles

The number of files embedded in the FDF file. If the FDF object is a valid FDF file, no
exceptions will be thrown.

A file may be embedded in an FDF file with the fdf.addEmbeddedFile method.

Type: Integer Access: R.

Example

Create a new FDF object, embed a PDF doc, save the FDF, open the FDF again, and count
the number of embedded files.

var fdf = app.newFDF();
fdf.addEmbeddedFile("/C/myPDFs/myDoc.pdf");
fdf.save("/c/temp/myDocWrapper.fdf");
fdf = app.openFDF("/c/temp/myDocWrapper.fdf");
console.println("The number of embedded files = "

+ fdf.numEmbeddedFiles);
fdf.close();

FDF Methods

addContact

Adds a contact to the FDF file.

Parameters

6.0 � �

6.0 � � �

oUserEntity This is a UserEntity Generic Object which list the contact to be added
to the FDF file.

Acrobat JavaScript Scripting Reference
FDF Methods

372 Acrobat JavaScript Scripting Reference

Returns

Throws an exception on failure.

Example
var oEntity={firstName:"Fred", lastName:"Smith", fullName:"Fred Smith"};
var f = app.newFDF();
f.addContact(oEntity);
f.save("/c/temp/FredCert.fdf");

addEmbeddedFile

Add the specified file to the end of the array of embedded files in the FDF file. Anyone
opening the FDF file will be instructed to save the embedded file or files according to
nSaveOption. If the embedded file is a PDF file, the file will be opened and displayed in
the viewer. If the embedded file is an FDF file, the file will be opened by the viewer for
processing. FDF files containing embedded files were supported beginning with Acrobat
4.05. An example use for embedding PDF files is when these files are hosted on an HTTP
server and it is desired that the user clicks to download and save the PDF file, rather then
viewing the file in the browser. There is no relationship between these embedded files and
files that are associated with forms data that is stored in an FDF file.

Parameters

6.0 � � �

cDIPath (optional) A device-independent absolute path to a file on the
user’s hard drive. If not specified, the user is prompted to locate a
file. See File Specification Strings in the PDF Reference for the exact
syntax of the path.

nSaveOption (optional) How the embedded file will be presented to the person
opening this FDF file, where the file will be saved, and whether the
file will be deleted after it is saved. Values are:
● 0: The file will be automatically saved to the Acrobat document

folder.
● 1 (the default): The user will be prompted for a filename to

which to save the embedded file.
● 2: Should not be used.
● 3: The file will be automatically saved as a temporary file and

deleted during cleanup (when Acrobat is closed).
In Acrobat 4.05 through 5.05, for values of 0 and 3, the user is
prompted for the location of the save folder if they have not
already set this value.
For all values of nSaveOption, if the file is a PDF or FDF file it is
automatically opened by Acrobat once it is saved.

Acrobat JavaScript Scripting Reference 373

Acrobat JavaScript Scripting Reference
FDF Methods

Returns

Throws an exception if this operation could not be completed, otherwise returns the
number of embedded files that are now in the FDF file.

Example

Create a new FDF, embed a PDF doc, then save.

var fdf = app.newFDF();
fdf.addEmbeddedFile("/C/myPDFs/myDoc.pdf");
fdf.save("/c/temp/myDocs.fdf");

addRequest

Adds a request to the FDF file. There can be only one request in an FDF file. If the FDF file
already contains a request, it is replaced with this new request.

Parameters

Returns

Throws an exception if there is an error.

Example
var f = app.newFDF();
f.addRequest("CMS", "http://www.acme.com/cgi.pl", "Acme Corp");
f.save("/c/tmp/request.fdf");

close

Immediately closes the FDF file.

6.0 � � �

cType What is being requested. Currently the only valid value is the
string “CMS”, which is a request for contact information.

cReturnAddress The return address string for the request. This must begin with
mailto:, http: or https: and be of the form
"http://www.acme.com/cgi.pl" or
"mailto:jdoe@adobe.com".

cName (optional) The name of the person or organization that has
generated the request.

6.0 � �

Acrobat JavaScript Scripting Reference
FDF Methods

374 Acrobat JavaScript Scripting Reference

Parameters

None

Returns

Throws an exception if there is an error.

See the fdf.save method, which also closes an FDF file.

Example

The example following addEmbeddedFile illustrates fdf.close.

mail

This method saves the FDF Object as a temporary FDF file and mails this file as an
attachment to all recipients, with or without user interaction. The temporary file is deleted
once it is no longer needed.

See also app.mailGetAddrs, app.mailMsg, doc.mailDoc, doc.mailForm and
report.mail.

N O T E : On Windows, the client machine must have its default mail program configured to
be MAPI enabled in order to use this method.

Parameters

Returns

Throws an exception if there is an error.

Example
var fdf = app.openFDF("/c/temp/myDoc.fdf");

6.0 � �

bUI (optional) Whether to display a user interface. If true (the default)
the rest of the parameters are used to seed a compose-new-message
window that is displayed to the user. If false, the cTo parameter is
required and all others are optional.

cTo (optional) A semicolon-separated list of recipients for the message.

cCc (optional) A semicolon-separated list of CC recipents for the message.

cBcc (optional) A semicolon-separated list of BCC recipents for the
message.

cSubject (optional) The subject of the message. The length limit is 64k bytes.

cMsg (optional) The content of the message. The length limit is 64k bytes.

Acrobat JavaScript Scripting Reference 375

Acrobat JavaScript Scripting Reference
FDF Methods

/* This will pop up the compose new message window */
fdf.mail();

/* This will send out the mail with the attached FDF file to
fun1@fun.com and fun2@fun.com */
fdf.mail(false, "fun1@fun.com", "fun2@fun.com", "",

"This is the subject", "This is the body.");

save

Save the FDF Object as a file. A save will always occur. The file is closed when it is saved, and
the FDF object no longer contains a valid object reference.

See the fdf.close method, which also closes a FDF file.

Parameters

Returns

Throws an exception if there is an error.

Example

Create a new FDF, embed a PDF doc, then save.

var fdf = app.newFDF()
fdf.addEmbeddedFile("/C/myPDFs/myDoc.pdf");
fdf.save("/c/temp/myDocs.fdf");

signatureClear

If the FDF Object is signed, clears the signature and returns true if successful. Does
nothing if the FDF object is not signed. Does not save the file.

Parameters

None

Returns

true on success.

6.0 � � �

cDIPath The device-independent path of the file to be saved.

N O T E : (Security �): cDIPath must be a Safe Path and must have an
extension of .fdf.

6.0 � � �

Acrobat JavaScript Scripting Reference
FDF Methods

376 Acrobat JavaScript Scripting Reference

signatureSign

Sign the FDF Object with the specified security object. FDF objects can be signed only
once. The FDF object is signed in memory and is not automatically saved as a file to disk.
Call save to save the FDF object after it is signed. Call signatureClear to clear FDF
signatures.

Parameters

Returns

true if the signature was applied successfully, false otherwise.

Example

Open existing FDF data file and sign.

var eng = security.getHandler("Adobe.PPKLite");
eng.login("myPassword" ,"/c/test/Acme.pfx");
var myFDF = app.openFDF("/c/temp/myData.fdf");
if(!myFDF.isSigned) {

myFDF.signatureSign({
oSig: eng,

6.0 � � �

oSig The SecurityHandler Object that is to be used to sign. Security objects
normally require initialization before they can be used for signing.
Check the documentation for your security handler to see if it is able
to sign FDF files. The signFDF property of the SecurityHandler
Object will indicate whether a particular security object is capable of
signing FDF files.

oInfo (optional) A SignatureInfo Object containing the writable properties
of the signature.

nUI (optional) The type of dialog to show when signing. Values are:
0: Show no dialog.
1: Show a simplified dialog with no editable fields (fields can be
provided in oInfo).
2: Show a more elaborate dialog that includes editable fields for
reason, location and contact information.

The default is 0.

cUISignTitle (optional) The title to use for the sign dialog. This is only used if nUI is
non-zero.

cUISelectMsg (optional) A message to display when a user is required to select a
resource for signing, such as selecting a credential. It is used only
when nUI is non-zero.

Acrobat JavaScript Scripting Reference 377

Acrobat JavaScript Scripting Reference
FDF Methods

nUI: 1,
cUISignTitle: "Sign Embedded File FDF",

 cUISelectMsg: "Please select a Digital ID to use to "
+ "sign your embedded file FDF."

});
myFDF.save("/c/temp/myData.fdf");

};

signatureValidate

Validate the signature of an FDF Object and return a SignatureInfo Object specifying the
properties of the signature.

Parameters

Returns

A SignatureInfo Object. The signature status is described in status property.

Example
fdf = app.openFDF("/c/temp/myDoc.fdf");
eng = security.getHandler("Adobe.PPKLite");
if (fdf.isSigned)
{

var oSigInfo = fdf.signatureValidate({
 oSig: eng,
 bUI: true

});

6.0 �

oSig (optional) The security handler to be used to validate the signature. Can
be either a SecurityHandler Object or a generic object with the following
properties:
● oSecHdlr: The SecurityHandler Object to use to validate this

signature.
● bAltSecHdlr: A boolean. If true, an alternate security handler,

selected based on user preference settings, may be used to validate
the signature. The default is false, meaning that the security handler
returned by the signature’s handlerName property is used to validate
the signature. This parameter is not used if oSecHdlr is provided.

If oSig not supplied, the security handler returned by the signature’s
handlerName property is used to validate the signature.

bUI (optional) When true, allow UI to be shown, if necessary, when validating
the data file. UI may be used to select a validation handler if none is
specified.

Acrobat JavaScript Scripting Reference
Field Object

378 Acrobat JavaScript Scripting Reference

console.println("Signature Status: " + oSigInfo.status);
console.println("Description: " + oSigInfo.statusText);

} else {
console.println("FDF not signed");

}

Field Object

The field object represents an Acrobat form field (that is, a field created using the
Acrobat form tool or doc.addField). In the same manner that an author might want to
modify an existing field’s properties like the border color or font, the field object gives
the JavaScript user the ability to perform the same modifications.

Field Access from JavaScript

Before a field can be accessed, it must be “bound” to a JavaScript variable through a
method provided by the Doc Object method interface. More than one variable may be
bound to a field by modifying the field’s object properties or accessing its methods. This
affects all variables bound to that field.

var f = this.getField("Total");

This example allows the script to now manipulate the form field Total by using the
variable f.

Fields can be arranged hierarchically within a document. For example, form fields can have
names like “FirstName” and “LastName”. These are called flat names, there is no
association between these fields. By changing the field names slightly, a hierarchy of fields
within the document can be created. For example, if "FirstName" and "LastName" are
changed to "Name.First” and “Name.Last”, a tree of fields is formed. The period (‘.’) separator
in Acrobat Forms is used to denote a hierarchy shift. The “Name” portion of these fields is
the parent, and “First” and “Last” are the children. There is no limit to the depth of a
hierarchy that can be constructed but it is important that the hierarchy remain
manageable. It is also important to clarify some terminology: the field “Name” is known as
an internal field (that is, it has no visible manifestation) and the fields “First” and “Last”
are terminal fields (and show up on the page).

A useful property about Acrobat Form fields is that fields that share the same name also
share the same value. Terminal fields can have different presentations of that data; they can
appear on different pages, be rotated differently, have a different font or background color,
and so on, but they have the same value. This means that if the value of one presentation of
a terminal field is modified, all others with the same name get updated automatically. We
refer to each presentation of a terminal field as a widget.

Individual widgets do not have names. Each individual widget is identified by index (0-
based) within its terminal field. The index is determined by the order in which the
individual widgets of this field were created (and is unaffected by tab-order). You can easily
determine what the index is for a specific widget by looking at the “Fields” panel in Acrobat.

Acrobat JavaScript Scripting Reference 379

Acrobat JavaScript Scripting Reference
Field Object

It is the number that follows the ‘#’ sign in the field name shown (in Acrobat 6 or later, the
widget index is only displayed if the field has more than one widget). You can double-click
an entry in the “Fields” panel to go to the corresponding widget in the document.
Alternatively, if you select a field in the document, the corresponding entry in the “Fields”
panel is highlighted.

Doc.getField() Extended to Widgets

A new notation is available when calling getField which can be used to retrieve the Field
object of one individual widget of a field. This new notation consists of appending a '.' (a
dot) followed by the widget index to the field name passed. When this approach is used,
the field object returned by getField encapsulates only one individual widget. You
can use the field objects returned this way in any place you would use a field object
returned by simply passing the unaltered field name. However, the set of nodes that are
affected may vary, as shown in the following table..

Field versus Widget Attributes

Some of the properties of the field object in JavaScript truly live at the field level, and
apply to all widgets that are children of that field. A good example is value. Other

Action
Field Object that Represents
All Widgets

Field Object that Represents
One Specific Widget

Get a widget property Gets property of widget # 0 Gets property of that widget

Set a widget property Sets property of all widgets that
are children of that fielda

a. Except for the rect property and the setFocus method. For these cases it applies to widget # 0.

The following example changes the rect property of the second radio button (the first
would have index 0) of the field "my radio".

var f = this.getField("my radio.1");
f.rect = [360, 677, 392, 646];

Sets property of that widget

Get a field property Gets property of that field Gets property of parent field

Set a field property Sets property of that field Sets property of parent field

Acrobat JavaScript Scripting Reference
Field Properties

380 Acrobat JavaScript Scripting Reference

properties are, in fact, widget-specific. A good example is rect. The following table shows
which attributes live at the field level and which at the widget level.

Field Properties

N O T E : Some property values are stored in the PDF document as names (see section 3.2.4
on name objects in the PDF Reference), while others are stored as strings (see
section 3.2.3 on string objects in the PDF Reference). For a property that is stored as
a name, there is a 127 character limit on the length of the string.

Examples of properties that have a 127 character limit include Field.value and
Field.defaultValue for a checkbox and radiobutton. The PDF Reference
documents all Annotation properties as well as how they are stored.

alignment

Controls how the text is laid out within the text field. Values are

left
center
right

Type: String Access: R/W Fields: text.

Field Object Properties and Methods that
Affect Widget-Level Attributes

Field Object Properties and Methods that
Affect Field-Level Attributes

alignment, borderStyle, buttonAlignX,
buttonAlignY, buttonPosition,
buttonScaleHow, buttonScaleWhen, display,
fillColor, hidden, highlight,lineWidth,
print,rect,strokeColor, style, textColor,
textFont, textSize, buttonGetCaption,
buttonGetIcon, buttonImportIcon,
buttonSetCaption, buttonSetIcon,
checkThisBoxa, defaultIsCheckeda,
isBoxCheckeda, isDefaultCheckeda,
setActionb, setFocus

a. These methods take a widget index, nWidget, as parameter. If you invoke these methods on a Field object "f"
that represents one specific widget, then the nWidget parameter is optional (and is ignored if passed), and the
method acts on the specific widget encapsulated by "f".

calcOrderIndex, charLimit, comb,
currentValueIndices,defaultValue,
doNotScroll, doNotSpellCheck, delay, doc,
editable, exportValues,fileSelect,
multiline, multipleSelection, name,
numItems,page, password, readonly,
required,submitName, type, userName,
value, valueAsString,clearItems,
browseForFileToSubmit, deleteItemAt,
getItemAt, insertItemAt, setActionb,
setItems,signatureInfo, signatureSign,
signatureValidate

b. Some actions live at the field level, and some at the widget level. The former includes "Keystroke",
"Validate", "Calculate", "Format". The latter includes "MouseUp", "MouseDown", "MouseEnter",
"MouseExit", "OnFocus", "OnBlur".

3.01 �

Acrobat JavaScript Scripting Reference 381

Acrobat JavaScript Scripting Reference
Field Properties

Example
var f = this.getField("MyText");
f.alignment = "center";

borderStyle

The border style for a field. Valid border styles are

solid
dashed
beveled
inset
underline

The border style determines how the border for the rectangle is drawn. The border object
is a static convenience constant that defines all the border styles of a field, as shown in the
following table:

Type: String Access: R/W Fields: all.

Example

The following example illustrates how to set the border style of a field to solid:

var f = this.getField("MyField");
f.borderStyle = border.s; /* border.s evaluates to "solid" */

3.01 �

Type Keyword Description

solid border.s Strokes the entire perimeter of the rectangle with
a solid line.

beveled border.b Equivalent to the solid style with an additional
beveled (pushed-out appearance) border
applied inside the solid border.

dashed border.d Strokes the perimeter with a dashed line

inset border.i Equivalent to the solid style with an additional
inset (pushed-in appearance) border applied
inside the solid border.

underline border.u Strokes the bottom portion of the rectangle’s
perimeter.

Acrobat JavaScript Scripting Reference
Field Properties

382 Acrobat JavaScript Scripting Reference

buttonAlignX

Controls how space is distributed from the left of the button face with respect to the icon. It
is expressed as a percentage between 0 and 100, inclusive. The default value is 50.

If the icon is scaled anamorphically (which results in no space differences) then this
property is not used.

Type: Integer Access: R/W Fields: button.

buttonAlignY

Controls how unused space is distributed from the bottom of the button face with respect
to the icon. It is expressed as a percentage between 0 and 100 inclusive. The default value is
50.

If the icon is scaled anamorphically (which results in no space differences) then this
property is not used.

Type: Integer Access: R/W Fields: button.

Example

This is an elevator animation. The field "myElevator" is a button form field that has small
width and large height. An icon is imported as the appearance face.

function MoveIt()
{
 if (f.buttonAlignY == 0) {
 f.buttonAlignY++;
 run.dir = true;
 return;
 }
 if (f.buttonAlignY == 100) {
 f.buttonAlignY--;
 run.dir = false;
 return;
 }
 if (run.dir) f.buttonAlignY++;
 else f.buttonAlignY--;
}
var f = this.getField("myElevator");
f.buttonAlignY=0;
run = app.setInterval("MoveIt()", 100);
run.dir=true;
toprun = app.setTimeOut(

5.0 �

5.0 �

Acrobat JavaScript Scripting Reference 383

Acrobat JavaScript Scripting Reference
Field Properties

"app.clearInterval(run); app.clearTimeOut(toprun)", 2*20000+100);

buttonFitBounds

When true, the extent to which the icon may be scaled is set to the bounds of the button
field; the additional icon placement properties are still used to scale/position the icon
within the button face.

In previous versions of Acrobat, the width of the field border was always taken into
consideration when scaling an icon to fit a button face, even when no border color was
specified. Setting this property to true when a border color has been specified for the
button will cause an exception to be raised.

Type: Boolean Access: R/W Fields: button.

buttonPosition

Controls how the text and the icon of the button are positioned with respect to each other
within the button face. The convenience position object defines all of the valid
alternatives:

Type: Integer Access: R/W Fields: button.

6.0 �

5.0 �

Icon/Text Placement Keyword

Text Only position.textOnly

Icon Only position.iconOnly

Icon top, Text bottom position.iconTextV

Text top, Icon bottom position.textIconV

Icon left, Text right position.iconTextH

Text left, Icon right position.textIconH

Text in Icon (overlaid) position.overlay

Acrobat JavaScript Scripting Reference
Field Properties

384 Acrobat JavaScript Scripting Reference

buttonScaleHow

Controls how the icon is scaled (if necessary) to fit inside the button face. The convenience
scaleHow object defines all of the valid alternatives:

Type: Integer Access: R/W Fields: button.

buttonScaleWhen

Controls when an icon is scaled to fit inside the button face. The convenience scaleWhen
object defines all of the valid alternatives:

Type: Integer Access: R/W Fields: button.

calcOrderIndex

Changes the calculation order of fields in the document. When a computable text or
combobox field is added to a document, the field’s name is appended to the calculation
order array. The calculation order array determines the order fields are calculated in the
document. The calcOrderIndex property works similarly to the Calculate tab used by
the Acrobat Form tool.

Type: Integer Access: R/W Fields: combobox, text.

5.0 �

How is Icon Scaled Keyword

Proportionally scaleHow.proportional

Non-proportionally scaleHow.anamorphic

5.0 �

When is Icon Scaled Keyword

Always scaleWhen.always

Never scaleWhen.never

If icon is too big scaleWhen.tooBig

If icon is too small scaleWhen.tooSmall

3.01 �

Acrobat JavaScript Scripting Reference 385

Acrobat JavaScript Scripting Reference
Field Properties

Example
var a = this.getField("newItem");
var b = this.getField("oldItem");
a.calcOrderIndex = b.calcOrderIndex + 1;

In this example, getField gets the "newItem" field that was added after "oldItem" field. It
then changes the calcOrderIndex of the "oldItem" field so that it is calculated before
"newItem" field.

charLimit

Limits the number of characters that a user can type into a text field.

See event.fieldFull to detect when the maximum number of characters is reached.

Type: Integer Access: R/W Fields: text.

Example

Set a limit on the number of characters that can be typed into a field.

var f = this.getField("myText");
f.charLimit = 20;

comb

If set to true, the field background is drawn as series of boxes (one for each character in
the value of the field) and the each character of the content is drawn within those boxes.
The number of boxes drawn is determined from the field.charLimit property.

It applies only to text fields. The setter will also raise if any of the following field properties
are also set multiline, password, and fileSelect. A side-effect of setting this
property is that the doNotScroll property is also set.

Type: Boolean Access: R/W Fields: text.

Example

Create a comb field in the upper left corner of a newly created document.

var myDoc = app.newDoc(); // create a blank doc
var Bbox = myDoc.getPageBox("Crop"); // get crop box
var inch = 72;

// add a text field at the top of the document
var f = myDoc.addField("Name.Last", "text", 0,

[inch, Bbox[1]-inch, 3*inch, Bbox[1]- inch - 14]);

3.01 �

6.0 �

Acrobat JavaScript Scripting Reference
Field Properties

386 Acrobat JavaScript Scripting Reference

// add some attributes to this text field
f.strokeColor = color.black;
f.textColor = color.blue;
f.fillColor = ["RGB",1,0.66,0.75];

f.comb = true; // declare this is a comb field
f.charLimit = 10; // Max number of characters

commitOnSelChange

Controls whether a field value is committed after a selection change. When true, the field
value is committed immediately when the selection is made. When false, the user can
change the selection multiple times without committing the field value; the value is
committed only when the field loses focus, that is, when the user clicks outside the field.

Type: Boolean Access: R/W Fields: combobox, listbox.

currentValueIndices

Reads and writes single or multiple values of a listbox or combobox.

Read

Returns the options-array indices of the strings that are the value of a listbox or
combobox field. These indices are 0-based. If the value of the field is a single string then it
returns an integer. Otherwise, it returns an array of integers sorted in ascending order. If the
current value of the field is not a member of the set of offered choices (as could happen in
the case of an editable combobox) it returns -1.

Write

Sets the value of a listbox or combobox. It accepts either a single integer, or an array of
integers, as an argument. To set a single string as the value, pass an integer which is the 0-
based index of that string in the options array. Note that in the case of an editable
combobox, if the desired value is not a member of the set of offered choices, then you
must set the value instead. Except for this case, currentValueIndices is the
preferred way to set the value of a listbox or combobox.

To set a multiple selection for a listbox that allows it, pass an array as argument to this
property, containing the indices (sorted in ascending order) of those strings in the options
array. This is the only way to invoke multiple selection for a listbox from JavaScript. The
ability for a listbox to support multiple section can be set through
multipleSelection.

6.0 �

5.0 �

Acrobat JavaScript Scripting Reference 387

Acrobat JavaScript Scripting Reference
Field Properties

Related Field methods and properties include numItems, getItemAt, insertItemAt,
deleteItemAt and setItems.

Type: Integer | Array Access: R/W Fields: combobox, listbox.

Example (Read)

The script below is a mouse up action of a button. The script gets the current value of a list
box.

var f = this.getField("myList");
var a = f.currentValueIndices;
if (typeof a == "number") // a single selection

console.println("Selection: " + f.getItemAt(a, false));
else { // multiple selections

console.println("Selection:");
for (var i = 0; i < a.length; i ++)

console.println(" " + f.getItemAt(a[i], false));
}

Example (Write)

The following code, selects the second and fourth (0-based index values, 1 and 3,
respectively) in a listbox.

var f = this.getField("myList");
f.currentValueIndices = [1,3];

defaultStyle

This property defines the default style attributes for the form field. If the user clicks into an
empty field and begins entering text without changing properties using the property
toolbar, these are the properties that will be used. This property is a single Span Object
without a text property. Some of the properties in the default style span mirror the
properties of the field object. Changing these properties also modifies the
defaultStyle property for the field and vice versa.

The following table details the properties of the field object that are also in the default style
and any differences between their values.

6.0

Field Properties defaultStyle (Span Properties) Description

alignment alignment The alignment property has the same
values for both the default style and the field
object.

Acrobat JavaScript Scripting Reference
Field Properties

388 Acrobat JavaScript Scripting Reference

N O T E S : When a field is empty, defaultStyle is the style used for newly entered text. If a
field already contains text when when the defaultStyle is changed the text will
not pick up any changes to defaultStyle ; newly entered text will use the
attributes of the text it is inserted into (or specified with the toolbar).

When pasting rich text into a field any unspecified attributes in the pasted rich text
will be filled with those from the defaultStyle.

Superscript and Subscript are ignored in the defaultStyle.

Type: Span Object Access: R/W Fields: rich text.

Example

Change the default style for a text field.

var style = this.getField("Text1").defaultStyle;
style.textColor = color.red;
style.textSize = 18;

// if Courier Std is not found on the user’s system, use a monospace
style.fontFamily = ["Courier Std", "monospace"];

this.getField("Text1").defaultStyle = style;

defaultValue

Exposes the default value of a field. This is the value that the field is set to when the form is
reset. For comboboxes and listboxes either an export or a user value can be used to
set the default. In the case of a conflict (for example, the field has an export value and a user

textFont fontFamily
fontStyle
fontWeight

The value of this field property is a complete
font name which represents the font family,
weight and style. In the default style property
each property is represented separately. If an
exact match for the font properties specified
in the default style cannot be found a similar
font will be used or synthesized.

textColor textColor The textColor property has the same
values for both the default style and the field
objec.

textSize textSize The textSize property has the same values
for both the default style and the field object.

3.01 �

Field Properties defaultStyle (Span Properties) Description

Acrobat JavaScript Scripting Reference 389

Acrobat JavaScript Scripting Reference
Field Properties

value with the same string but these apply to different items in the list of choices), the
export value is matched against first.

Type: String Access: R/W Fields: all except button,
signature.

Example
var f = this.getField("Name");
f.defaultValue = "Enter your name here.";

doNotScroll

When true, the text field does not scroll and the user, therefore, is limited by the
rectangular region designed for the field. Setting this property to true or false
corresponds to checking or unchecking the “Scroll long text” field in the Options tab of the
field.

Type: Boolean Access: R/W Fields: text.

doNotSpellCheck

When true, spell checking is not performed on this editable text field. Setting this
property to true or false corresponds to unchecking or checking the "Check spelling"
attribute in the Options tab of the Field Properties dialog.

Type: Boolean Access: R/W Fields: combobox (editable), text.

delay

Delays the redrawing of a field’s appearance. It is generally used to buffer a series of
changes to the properties of the field before requesting that the field regenerate its
appearance. Setting the property to true forces the field to wait until delay is set to
false. The update of its appearance then takes place, redrawing the field with its latest
settings.

There is a corresponding doc.delay flag if changes are being made to many fields at
once.

Type: Boolean Access: R/W Fields: all.

5.0 �

5.0 �

3.01

Acrobat JavaScript Scripting Reference
Field Properties

390 Acrobat JavaScript Scripting Reference

Example

This example changes the appearance of a checkbox; it sets the delay to true, makes
changes, and sets delay to false.

// Get the myCheckBox field
var f = this.getField("myCheckBox");
// set the delay and change the fields properties
// to beveled edge and medium thickness line.
f.delay = true;
f.borderStyle = border.b;
... // a number of other changes
f.strokeWidth = 2;
f.delay = false; // force the changes now

display

Controls whether the field is hidden or visible on screen and in print. Values are:

This property supersedes the older hidden and print properties.

Type: Integer Access: R/W Fields: all.

Example
// Set the display property
var f = getField("myField");
f.display = display.noPrint;

// Test whether field is hidden on screen and in print
if (f.display == display.hidden) console.println("hidden");

doc

Returns the Doc Object of the document to which the field belongs.

4.0 �

Effect Keyword

Field is visible on screen and in print display.visible

Field is hidden on screen and in print display.hidden

Field is visible on screen but does not print display.noPrint

Field is hidden on screen but prints display.noView

3.01

Acrobat JavaScript Scripting Reference 391

Acrobat JavaScript Scripting Reference
Field Properties

Type: object Access: R/W Fields: all.

editable

Controls whether a combobox is editable. When true, the user can type in a selection.
When false, the user must choose one of the provided selections.

Type: Boolean Access: R/W Fields: combobox.

Example
var f = this.getField("myComboBox");
f.editable = true;

exportValues

The array of export values defined for the field. For radio button fields, this is necessary to
make the field work properly as a group with the one button checked at any given time
giving its value to the field as a whole. For checkbox fields, unless an export value is
specified, the default used when the field is checked is "Yes" (or the corresponding localized
string). When it is unchecked, its value is "Off" (this is also true for a radio button field when
none of its buttons are checked). This property contains an array of strings with as many
elements as there are annotations in the field. The elements of the array are mapped to the
individual annotations comprising the field in the order of creation (unaffected by tab-
order).

Type: Array Access: R/W Fields: checkbox, radiobutton.

Example

This example creates a radio button field and sets its export values.

var d = 40;
var f = this.addField("myRadio","radiobutton",0, [200, 510, 210, 500]);
this.addField("myRadio","radiobutton",0, [200+d, 510-d, 210+d, 500-d]);
this.addField("myRadio","radiobutton",0,[200, 510-2*d, 210, 500-2*d]);
this.addField("myRadio","radiobutton",0,[200-d, 510-d, 210-d, 500-d]);
f.strokeColor = color.black;
// now give each radio field an export value
f.exportValues = ["North", "East", "South", "West"];

3.01 �

5.0 �

Acrobat JavaScript Scripting Reference
Field Properties

392 Acrobat JavaScript Scripting Reference

fileSelect

When true, sets the file-select flag in the Options tab of the text field (“Field is Used for
File Selection”). This indicates that the value of the field represents a pathname of a file
whose contents may be submitted with the form.

The pathname may be entered directly into the field by the user, or the user can browse for
the file. (See the browseForFileToSubmit.)

N O T E S : The file select flag is mutually exclusive with the multiline, charLimit,
password, and defaultValue. Also, on the Macintosh platform, when setting
the file select flag, the field gets treated as read-only; hence, the user must browse
for the file to enter into the field. (See the browseForFileToSubmit.)

(Security�): This property can only be set during batch, menu, or console events.
See also Privileged versus Non-privileged Context. The Event Object contains a
discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Type: Boolean Access: R/W Fields: text.

fillColor

Specifies the background color for a field. The background color is used to fill the rectangle
of the field. Values are defined by using transparent, gray, RGB or CMYK color. See
Color Arrays for information on defining color arrays and how values are used with this
property.

In older versions of this specification, this property was named bgColor. The use of
bgColor is now discouraged but for backwards compatibility is still valid.

Type: Array Access: R/W Fields: all.

Example

This code changes the background color of a text field: If the current color is red, change
color to blue, otherwise, change color to yellow.

var f = this.getField("myField");
if (color.equal(f.fillColor, color.red))

f.fillColor = color.blue;
else

f.fillColor = color.yellow;

5.0 � �

4.0 �

Acrobat JavaScript Scripting Reference 393

Acrobat JavaScript Scripting Reference
Field Properties

hidden

Controls whether the field is hidden or visible to the user. If the value is false the field is
visible, true the field is invisible. The default value for hidden is false.

See also the display which supersedes this property in later versions.

Type: Boolean Access: R/W Fields: all.

Example
var f = this.getField("myField");
f.hidden = true; // Set the field to hidden

highlight

Defines how a button reacts when a user clicks it. The four highlight modes supported are:

none: No visual indication that the button has been clicked.

invert: Click causes the region encompassing the button’s rectangle to invert
momentarily.

push: Click displays the down face for the button (if any) momentarily.

outline: Click causes the border of the rectangle to invert momentarily.

The convenience highlight object defines each state, as follows:

Type: String Access: R/W Fields: button.

Example

The following example sets the highlight property of a button to "invert".

// set the highlight mode on button to invert
var f = this.getField("myButton");
f.highlight = highlight.i;

� �

3.01 �

Type Keyword

none highlight.n

invert highlight.i

push highlight.p

outline highlight.o

Acrobat JavaScript Scripting Reference
Field Properties

394 Acrobat JavaScript Scripting Reference

lineWidth

Specifies the thickness of the border when stroking the perimeter of a field’s rectangle. If
the stroke color is transparent, this parameter has no effect except in the case of a beveled
border. Values are:

0: none

1: thin

2: medium

3: thick

In older versions of this specification, this property was borderWidth. The use of
borderWidth is now discouraged but for backwards compatibility is still valid.

Type: Integer Access: R/W Fields: all.

Example
// Change the border width of the Text Box to medium thickness
f.lineWidth = 2

The default value for lineWidth is 1 (thin). Any integer value can be used; however,
values beyond 5 may distort the field’s appearance.

multiline

Controls how the text is wrapped within the field. When false, the default, the text field
can be a single line only. When true, multiple lines are allowed and wrap to field
boundaries.

Type: Boolean Access: R/W Fields: text.

Example

See the Example 1 following doc.getField.

multipleSelection

If true, indicates that a listbox allows multiple selection of the items.

See also type, value, and currentValueIndices.

Type: Boolean Access: R/W Fields: listbox.

4.0 �

3.01 �

5.0 �

Acrobat JavaScript Scripting Reference 395

Acrobat JavaScript Scripting Reference
Field Properties

name

This property returns the fully qualified field name of the field as a string object.

Beginning with Acrobat 6.0, if the Field Object represents one individual widget, then the
returned name includes an appended '.' followed by the widget index.

Type: String Access: R Fields: all.

Example

Get a field object, and write the name of the field to the console.

var f = this.getField("myField");

// displays "myField" in console window
console.println(f.name);

numItems

The number of items in a combobox or listbox.

Type: Integer Access: R Fields: combobox, listbox.

Example

Get the number of items in a list box.

var f = this.getField("myList");
console.println("There are " + f.numItems + " in this listbox");

Face names and values of a combobox or listbox can be access through the getItemAt
method. See that method for an additional example of numItems.

page

Returns the page number or an array of page numbers of a field. If the field has only one
appearance in the document, the page property will return an integer representing the (0
based) page number of the page on which the field appears. If the field has multiple
appearances, it will return an array of integers, each member of which is a (0 based) page
number of an appearance of the field. The order in which the page numbers appear in the
array is determined by the order in which the individual widgets of this field were created
(and is unaffected by tab-order). If an appearance of the field is on a hidden template page,
page returns a value of -1 for that appearance.

3.01

3.01

5.0

Acrobat JavaScript Scripting Reference
Field Properties

396 Acrobat JavaScript Scripting Reference

Type: Integer | Array Access: R Fields: all.

Example 1
var f = this.getField("myField");
if (typeof f.page == "number")

console.println("This field only occurs once on page " + f.page);
else

console.println("This field occurs " + f.page.length + " times);

Example 2 (Version 6.0)

The page property is one way of discovering the number of widgets associated with a field
name. For example, programmatically discover the number of radio buttons in a radio
button field.

var f = this.getField("myRadio");
if (typeof f.page == "object")

console.println("There are " + f.page.length
+ " radios in this field.");

password

Causes the field to display asterisks for the data entered into the field. Upon submission, the
actual data entered is sent. Fields that have the password attribute set will not have the
data in the field saved when the document is saved to disk.

Type: Boolean Access: R/W Fields: text.

print

Determines whether a given field prints or not. Set the print property to true to allow
the field to appear when the user prints the document, set it to false to prevent printing.
This property can be used to hide control buttons and other fields that are not useful on the
printed page.

This property has been superseded by the display and its use is discouraged.

Type: Boolean Access: R/W Fields: all.

Example

Set a field so that it does not print.

var f = this.getField("myField");
f.print = false;

3.01 �

� �

Acrobat JavaScript Scripting Reference 397

Acrobat JavaScript Scripting Reference
Field Properties

radiosInUnison

When false, even if a group of radio buttons have the same name and export value, they
behave in a mutually exclusive fashion, like HTML radio buttons. The default for new radio
buttons is false.

When true, if a group of radio buttons have the same name and export value, they turn on
and off in unison, as in Acrobat 4.0.

Type: Boolean Access: R/W Fields: radiobutton.

readonly

Sets or gets the read-only characteristic of a field. If a field is read-only, the user can see the
field but cannot change it.

Type: Boolean Access: R/W Fields: all.

Example

Get a field and make it read-only.

var f = this.getField("myTextField");
f.value = "You can’t change this message!";
f.readonly = true;

rect

Sets or gets an array of four numbers in Rotated User Space that specifies the size and
placement of the form field. These four numbers are the coordinates of the bounding
rectangle and are listed in the following order: upper-left x, upper-left y, lower-right x and
lower-right y.

N O T E : Annot Object also has a rect, but: 1) the coordinates are not in Rotated User
Space, and 2) they are in different order than in field.rect.

Type: Array Access: R/W Fields: all.

Example 1

Lay out a 2-inch-wide text field just to the right of the field "myText".

var f = this.getField("myText"); // get the field object

6.0 �

3.01 �

5.0 �

Acrobat JavaScript Scripting Reference
Field Properties

398 Acrobat JavaScript Scripting Reference

var myRect = f.rect; // and get it’s rectangle

// make needed coordinate adjustments for new field
myRect[0] = f.rect[2]; // the ulx for new = lrx for old
myRect[2] += 2 * 72; // move over two inches for lry
f = this.addField("myNextText", "text", this.pageNum, myRect);
f.strokeColor = color.black;

Example 2

Move a button field that already exists over 10 points to the right.

var b = this.getField("myButton");
var aRect = b.rect; // make a copy of b.rect
aRect[0] += 10; // increment first x-coordinate by 10
aRect[2] += 10; // increment second x-coordinate by 10
b.rect = aRect; // update the value of b.rect

required

Sets or gets the required characteristic of a field. When true, the field’s value must be non-
null when the user clicks a submit button that causes the value of the field to be posted. If
the field value is null, the user receives a warning message and the submit does not
occur.

Type: Boolean Access: R/W Fields: all except button.

Example

Make "myField" into a required field.

var f = this.getField("myField");
f.required = true;

richText

Gets and sets the rich text property of the text field. If true, the field will allow rich text
formatting. The default is false.

Type: Boolean Access: R/W Fields: text.

Related objects and properties are the Span Object, field.richValue,
field.defaultStyle, event.richValue , event.richChange,
event.richChangeEx, and annot.richContents.

3.01 �

6.0 �

Acrobat JavaScript Scripting Reference 399

Acrobat JavaScript Scripting Reference
Field Properties

Example 1

Get a field object, and set it for rich text formatting.

var f = this.getField("Text1");
f.richText = true;

See Example 2 following richValue for a more complete example.

Example 2

Count the number of rich text fields in the document.

var count = 0;
for (var i = 0; i < this.numFields; i++)
{

var fname = this.getNthFieldName(i);
var f = this.getField(fname);
if (f.type == "text" && f.richText) count++

}
console.println("There are a total of "+ count + " rich text fields.");

richValue

This property gets the text contents and formatting of a rich text field. For field types other
than rich text this property is undefined. The rich text contents are represented as an
array of Span Objects containing the text contents and formatting of the field.

Type: Array of Span ObjectsAccess: R/W Fields: rich text.

Related objects and properties are the Span Object, field.richText,
field.defaultStyle, event.richValue , event.richChange,
event.richChangeEx, and annot.richContents.

Example 1

This example turns all bold text into red underlined text.

var f = this.getField("Text1");
var spans = f.richValue;
for (var i = 0; i < spans.length; i++)
{

if(spans[i].fontWeight >= 700)
{

spans[i].textColor = color.red;
spans[i].underline = true;

}
}
f.richValue = spans;

Example 2

This example creates a text field, marks it for rich text formatting, and inserts rich text.

6.0

Acrobat JavaScript Scripting Reference
Field Properties

400 Acrobat JavaScript Scripting Reference

var myDoc = app.newDoc(); // create a blank doc
var Bbox = myDoc.getPageBox("Crop"); // get crop box
var inch = 72;

// add a text field at the top of the document
var f = myDoc.addField("Text1", "text", 0,

[72, Bbox[1]-inch, Bbox[2]-inch, Bbox[1]-2*inch]);
// add some attributes to this text field
f.strokeColor = color.black;
f.richText = true; // rich text
f.multiline = true; // multiline

// now build up an array of Span Objects
var spans = new Array();
spans[0] = new Object();
spans[0].text = "Attention:\r";
spans[0].textColor = color.blue;
spans[0].textSize = 18;

spans[1] = new Object();
spans[1].text = "Adobe Acrobat 6.0\r";
spans[1].textColor = color.red;
spans[1].textSize = 20;
spans[1].alignment = "center";

spans[2] = new Object();
spans[2].text = "will soon be here!";
spans[2].textColor = color.green;
spans[2].fontStyle = "italic";
spans[2].underline = true;
spans[2].alignment = "right";

// now give the rich field a rich value
f.richValue = spans;

rotation

Determines the rotation of a widget in 90 degree counter-clockwise increments. Valid
values are 0, 90, 180, 270.

Type: Integer Access: R/W Fields: all.

Example

Create a rotated text field on each page and fill it with text.

for (var i=0; i < this.numPages; i++) {
var f = this.addField("myRotatedText"+i,"text",i,[6, 6+72, 18, 6]);

6.0 � �

Acrobat JavaScript Scripting Reference 401

Acrobat JavaScript Scripting Reference
Field Properties

f.rotation = 90; f.value = "Confidential";
f.textColor = color.red; f.readonly = true;

}

strokeColor

Specifies the stroke color for a field which is used to stroke the rectangle of the field with a
line as large as the line width. Values are defined by using transparent, gray, RGB or
CMYK color. See Color Arrays for information on defining color arrays and how values are
used with this property.

In older versions of this specification, this property was borderColor. The use of
borderColor is now discouraged but for backwards compatibility is still valid.

Type: Array Access: R/W Fields: all.

Example

Change the stroke color of each text field in the document to red.

for (var i=0; i < this.numFields; i++) {
var fname = this.getNthFieldName(i);
var f = this.getField(fname);
if (f.type == "text") f.strokeColor = color.red;

}

style

Allows the user to set the glyph style of a checkbox or radiobutton. The glyph style is
the graphic used to indicate that the item has been selected.

The style values are associated wtih keywords as follows:

4.0 �

3.01 �

Style Keyword

check style.ch

cross style.cr

diamond style.di

circle style.ci

star style.st

square style.sq

Acrobat JavaScript Scripting Reference
Field Properties

402 Acrobat JavaScript Scripting Reference

Type: String Access: R/W Fields: checkbox, radiobutton.

Example

The following example illustrates the use of this property and the style object, it sets the
glyph style to circle.

var f = this.getField("myCheckbox");
f.style = style.ci;

submitName

If nonempty, used during form submission instead of name. Only applicable if submitting
in HTML format (that is, URLencoded).

Type: String Access: R/W Fields: all.

textColor

This property determines the foreground color of a field. It represents the text color for
text, button, or listbox fields and the check color for checkbox or radio button
fields. Values are defined the same as the fillColor. See Color Arrays for information on
defining color arrays and how values are set and used with this property.

In older versions of this specification, this property was fgColor. The use of fgColor is
now discouraged but for backwards compatibility is still valid.

N O T E : An exception is thrown if a transparent color space is used to set textColor.

Type: Array Access: R/W Fields: all.

Example

This example sets the foreground color to red.

var f = this.getField("myField");
f.textColor = color.red;

textFont

Determines the font that is used when laying out text in a text field, combobox,
listbox or button. Valid fonts are defined as properties of the font Object. Beginning

5.0 �

4.0 �

3.01 �

Acrobat JavaScript Scripting Reference 403

Acrobat JavaScript Scripting Reference
Field Properties

with Acrobat 5.0, arbitrary fonts can also be used, see the paragraph on the Use of arbitrary
fonts.

Type: String Access: R/W Fields: button, combobox,
listbox, text.

font Object

Use of arbitrary fonts

Beginning with Acrobat 5.0, an arbitrary font can be used when laying out a text field,
combobox, listbox or button by setting the value of textFont to the PDSysFont
font name, as returned by PDSysFontGetName, see the Acrobat and PDF Library API
Reference.

How to find the PDSysFont font name of a font:

1. Create a text field in a PDF document. Using the UI, set the text font for this field to the
desired font.

2. Open the JavaScript Debugger Console and execute the script
this.getField("Text1").textFont

The above code assumes the name of the field is Text1.

Text Font Keyword

Times-Roman font.Times

Times-Bold font.TimesB

Times-Italic font.TimesI

Times-BoldItalic font.TimesBI

Helvetica font.Helv

Helvetica-Bold font.HelvB

Helvetica-Oblique font.HelvI

Helvetica-BoldOblique font.HelvBI

Courier font.Cour

Courier-Bold font.CourB

Courier-Oblique font.CourI

Courier-BoldOblique font.CourBI

Symbol font.Symbol

ZapfDingbats font.ZapfD

Acrobat JavaScript Scripting Reference
Field Properties

404 Acrobat JavaScript Scripting Reference

3. The string returned to the console is the font name needed to programmatically set the
text font.

N O T E : Use of arbitrary fonts as opposed to those listed in the font Object creates
compatibility problems with older versions of the Viewer.

Example

The following example illustrates the use of this property and the font object, it sets the
font to Helvetica.

var f = this.getField("myField");
f.textFont = font.Helv;

Example (Acrobat 5.0)

Set the font of "myField" to Viva-Regular.

var f = this.getField("myField");
f.textFont = "Viva-Regular";

textSize

Controls the text size (in points) to be used in all controls. In checkbox and
radiobutton fields, the text size determines the size of the check. Valid text sizes range
from 0 to 32767 inclusive. A text size of zero means to use the largest point size that will
allow all text data to fit in the field’s rectangle.

Type: Number Access: R/W Fields: all.

Example

Set the text size of "myField" to 28 points.

this.getField("myField").textSize = 28;

type

Returns the type of the field as a string. Valid types are:

button
checkbox
combobox
listbox
radiobutton
signature
text

3.01 �

3.01

Acrobat JavaScript Scripting Reference 405

Acrobat JavaScript Scripting Reference
Field Properties

Type: String Access: R Fields: all.

Example

Count the number of text field in the document.

var count = 0;
for (var i=0; i<this.numFields; i++) {

var fname = this.getNthFieldName(i);
if (this.getField(fname).type == "text") count++;

}
console.println("There are " + count + " text fields.");

userName

Gets or sets the user name (short description string) of the field. The user name is intended
to be used as tooltip text whenever the mouse cursor enters a field. It can also be used as a
user-friendly name when generating error messages instead of the field name.

Type: String Access: R/W Fields: all.

Example

Add a tooltip to a button field.

var f = this.getField("mySubmit");
f.userName = "Press this button to submit your data.";

value

Gets the value of the field data that the user has entered. Depending on the type of the
field, may be a String, Date, or Number. Typically, the value is used to create calculated
fields.

Beginning with Acrobat 6.0, if a field contains rich text formatting, modifying this property
will discard the formatting and regenerate the field value and appearance using the
defaultStyle and plain text value. To modify the field value and maintain formatting
use the richValue property.

3.01 �

3.01 �

Acrobat JavaScript Scripting Reference
Field Methods

406 Acrobat JavaScript Scripting Reference

N O T E S : For signature fields, if the field has been signed then a non-null string is
returned as the value.

For Acrobat 5.0 or later, if the field is a listbox that accepts multiple selection (see
multipleSelection), you can pass an array to set the value of the field, and
value returns an array for a listbox with multiple values currently selected.

The currentValueIndices of a listbox that has multiple selections is the
preferred and most efficient way to get and set the value of this type of field.

See also field.valueAsString, and event.type .

Type: various Access: R/W Fields: all except button.

Example

In this example, the value of the field being calculated is set to the sum of the "oil" and
"filter" fields and multiplied by the state sales tax.

var oil = this.getField("Oil");
var filter = this.getField("Filter");
event.value = (oil.value + filter.value) * 1.0825;

valueAsString

Returns the value of a field as a JavaScript string.

This differs from value, which attempts to convert the contents of a field contents to an
accepted format. For example, for a field with a value of "020" , value returns the integer
20, while valueAsString returns the string "020".

Type: String Access: R Fields: all except button.

Field Methods

browseForFileToSubmit

When invoked on a text field for which the fileSelect flag is set (checked), opens a
standard file-selection dialog. The path entered through the dialog is automatically
assigned as the value of the text field.

If invoked on a text field in which the fileSelect flag is clear (unchecked), an exception
is thrown.

5.0 �

5.0 �

Acrobat JavaScript Scripting Reference 407

Acrobat JavaScript Scripting Reference
Field Methods

Parameter

None

Returns

Nothing

Example

The following code references a text field with the file select flag checked. This is a mouse
up action of a button field.

var f = this.getField("resumeField");
f.browseForFileToSubmit();

buttonGetCaption

Gets the caption associated with a button.

Use field.buttonSetCaption to set the caption.

Parameter

Returns

The caption string associated with the button.

Example

This example places pointing arrows to the left and right of the caption on a button field
with icon and text.

// a mouse enter event
event.target.buttonSetCaption("=> "+ event.target.buttonGetCaption()

+" <=");

// a mouse exit event
var str = event.target.buttonGetCaption();
str = str.replace(/=> | <=/g, "");
event.target.buttonSetCaption(str);

The same effect can be created by having the same icon for rollover, and have the same
text, with the arrows inserted, for the rollover caption. This approach would be slower and
cause the icon to flicker. The above code gives a very fast and smooth rollover effect
because only the caption is changed, not the icon.

5.0

nFace (optional) If specified, gets a caption of the given type:
0: (default) normal caption
1: down caption
2: rollover caption

Acrobat JavaScript Scripting Reference
Field Methods

408 Acrobat JavaScript Scripting Reference

buttonGetIcon

Gets the Icon Generic Object of a specified type associated with a button.

See also the buttonSetIcon method for assigning an icon to a button.

Parameter

Returns

The Icon Generic Object.

Example
// Swap two button icons.
var f = this.getField("Button1");
var g = this.getField("Button2");
var temp = f.buttonGetIcon();
f.buttonSetIcon(g.buttonGetIcon());
g.buttonSetIcon(temp);

See also buttonSetIcon and buttonImportIcon.

5.0

nFace (optional) If specified, gets an icon of the given type:
0: (default) normal icon
1: down icon
2: rollover icon

Acrobat JavaScript Scripting Reference 409

Acrobat JavaScript Scripting Reference
Field Methods

buttonImportIcon

Imports the appearance of a button from another PDF file. If neither of the optional
parameters are passed, the method prompts the user to select a file available on the
system.

See also buttonGetIcon, buttonSetIcon, addIcon, getIcon, importIcon, and
removeIcon.

Parameter

Returns

An integer, as follows:

 1: The user cancelled the dialog

 0: No error

-1: The selected file couldn’t be opened

-2: The selected page was invalid

Example (Acrobat 5.0)

It is assumed that we are connected to an employee information database. We
communicate with the database using the ADBC Object and related objects. An employee’s
record is requested and three columns are utilized, FirstName, SecondName and Picture. The
Picture column, from the database, contains a device-independent path to the employee’s
picture, stored in PDF format. The script might look like this:

var f = this.getField("myPicture");
f.buttonSetCaption(row.FirstName.value + " " + row.LastName.value);
if (f.buttonImportIcon(row.Picture.value) != 0)

f.buttonImportIcon("/F/employee/pdfs/NoPicture.pdf");

The button field "myPicture" has been set to display both icon and caption. The employee’s
first and last names are concatenated to form the caption for the picture. Note that if there
is an error in retrieving the icon, a substitute icon could be imported.

3.01 �

cPath (optional, version 5.0) The device-independent pathname for the file.
See Section 3.10.1 of the PDF Reference for a description of the
device-independent pathname format.
Beginning with version 6.0, Acrobat will first attempt to open cPath
as a PDF. On failure, Acrobat will try to convert cPath to PDF from
one of the known graphics formats (BMP, GIF, JPEG, PCX, PNG, TIFF)
and then import the converted file as a button icon.

nPage (optional, version 5.0) The 0-based page number from the file to turn
into an icon. The default is 0.

Acrobat JavaScript Scripting Reference
Field Methods

410 Acrobat JavaScript Scripting Reference

buttonSetCaption

Sets the caption associated with a button.

Use buttonGetCaption to get the current caption.

See buttonAlignX , buttonAlignY, buttonFitBounds, buttonPosition,
buttonScaleHow, buttonScaleWhen on for details on how the icon and caption are
placed on the button face.

Parameter

Returns

Nothing

Example
var f = this.getField("myButton");
f.buttonSetCaption("Hello");

buttonSetIcon

Sets the icon associated with a button.

See buttonAlignX , buttonAlignY, buttonFitBounds, buttonPosition,
buttonScaleHow, buttonScaleWhen on for details on how the icon and caption are
placed on the button face.

Use either field.buttonGetIcon or doc.getIcon to get an Icon Generic Object
that can be use for the oIcon parameter of this method.

Parameter

5.0 �

cCaption The caption associated with the button.

nFace (optional) If specified, sets a caption of the given type:
0: (default) normal caption
1: down caption
2: rollover caption

5.0 �

oIcon The Icon Generic Object associated with the button.

Acrobat JavaScript Scripting Reference 411

Acrobat JavaScript Scripting Reference
Field Methods

Returns

Nothing

Example

This example takes every named icon in the document and creates a listbox using the
names. Selecting an item in the listbox sets the icon with that name as the button face of
the field "myPictures". What follows is the mouse up action of the button field "myButton".

var f = this.getField("myButton")
var aRect = f.rect;
aRect[0] = f.rect[2]; // place listbox relative to the
aRect[2] = f.rect[2] + 144; // position of "myButton"
var myIcons = new Array();
var l = addField("myIconList", "combobox", 0, aRect);
l.textSize = 14;
l.strokeColor = color.black;
for (var i = 0; i < this.icons.length; i++)
 myIcons[i] = this.icons[i].name;
l.setItems(myIcons);
l.setAction("Keystroke",

'if (!event.willCommit) {\r\t'
+ 'var f = this.getField("myPictures");\r\t'
+ 'var i = this.getIcon(event.change);\r\t'
+ 'f.buttonSetIcon(i);\r'
+ '}');

The named icons themselves can be imported into the document through an interactive
scheme, such as the example given in addIcon or through a batch sequence.

See also buttonGetCaption for a more extensive example.

checkThisBox

Checks or unchecks the specified widget. Only checkboxes can be unchecked. A
radiobutton cannot be unchecked using this method, but if its default state is
unchecked (see defaultIsChecked) it can be reset to the unchecked state using
doc.resetForm.

N O T E : For a set of radiobuttons that do not have duplicate export values, you can set
the value to the export value of the individual widget that should be checked (or
pass an empty string if none should be).

nFace (optional) If specified, sets an icon of the given type:
0: (default) normal icon
1: down icon
2: rollover icon

5.0

Acrobat JavaScript Scripting Reference
Field Methods

412 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Check a checkbox.

// check the box "ChkBox"
var f = this.getField("ChkBox");
f.checkThisBox(0,true);

clearItems

Clears all the values in a listbox or combobox.

Related methods and properties include numItems, getItemAt, deleteItemAt,
currentValueIndices, insertItemAt and setItems.

Parameters

None

Returns

Nothing

Example

Clear the field "myList" of all items.

this.getField("myList").clearItems();

nWidget The 0-based index of an individual checkbox or radiobutton
widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).
Every entry in the Fields panel has a suffix giving this index; for
example, MyField #0.

bCheckIt (optional) Whether the widget should be checked. The default is
true.

4.0 �

Acrobat JavaScript Scripting Reference 413

Acrobat JavaScript Scripting Reference
Field Methods

defaultIsChecked

Sets the specified widget to be checked or unchecked by default.

N O T E : For a set of radio buttons that do not have duplicate export values, you can set the
defaultValue to the export value of the individual widget that should be
checked by default (or pass an empty string if none should be).

Parameters

Returns

true on success.

Example

Change the default of "ChkBox" to checked, then reset the field to reflect the default value.

var f = this.getField("ChkBox");
f.defaultIsChecked(0,true);
this.resetForm(["ChkBox"]);

deleteItemAt

Deletes an item in a combobox or a listbox.

For a listbox, if the current selection is deleted the field no longer has a current
selection. Having no current selection can an lead to unexpected behavior by this method
if is again invoked without parameters on this same field; there is no current selection to
delete. It is important, therefore, to make a new selection so that this method will behave as
documented. A new selection can be made by using the currentValueIndices.

5.0

nWidget The 0-based index of an individual radiobutton or
checkbox widget for this field. The index is determined by
the order in which the individual widgets of this field were
created (and is unaffected by tab-order).
Every entry in the Fields panel has a suffix giving this index
(for example, MyField #0).

bIsDefaultChecked (optional) When true (the default) the widget should be
checked by default (for example, when the field gets reset).
When false, it should be unchecked by default.

4.0 �

Acrobat JavaScript Scripting Reference
Field Methods

414 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example

Delete the current item in the list, then select the top item in the list.

var a = this.getField("MyListBox");
a.deleteItemAt(); // delete current item, and...
a.currentValueIndices = 0; // select top item in list

getArray

Gets the array of terminal child fields (that is, fields that can have a value) for this Field
Object, the parent field.

Parameters

None

Returns

An array of Field Objects

Example

This example makes a calculation of the values of the child fields of the parent field.

// f has 3 children: f.v1, f.v2, f.v3
var f = this.getField("f");
var a = f.getArray();
var v = 0.0;
for (j =0; j < a.length; j++) v += a[j].value;
// v contains the sum of all the children of field "f"

getItemAt

Gets the internal value of an item in a combobox or a listbox.

The number of items in a list can be obtained from field.numItems. See also
insertItemAt, deleteItemAt, clearItems, currentValueIndices and
setItems.

nIdx (optional) The 0-based index of the item in the list to delete. If not
specified, the currently selected item is deleted.

3.01

3.01

Acrobat JavaScript Scripting Reference 415

Acrobat JavaScript Scripting Reference
Field Methods

Parameters

Returns

The export value or name of the specified item.

Example

In the two examples that follow, assume there are three items on "myList": "First", with an
export value of 1; "Second", with an export value of 2; and "Third" with no export value.

// returns value of first item in list, which is 1
var f = this.getField("myList");
var v = f.getItemAt(0);

The following example illustrates the use of the second optional parameter.

for (var i=0; i < f.numItems; i++)
console.println(f.getItemAt(i,true) + ": " +

f.getItemAt(i,false));

The output to the console reads:

1: First
2: Second
Third: Third

Thus, by putting the second parameter to false the item name (face value) can be
obtained, even when there is an export value.

getLock

Gets a Lock Object, a generic object that contains the lock properties of a signature
field.

See also setLock of the Field Object.

Parameters

None

Returns

The Lock Object for the field.

nIdx The 0-based index of the item in the list to obtain, or -1 for the last
item in the list.

bExportValue (optional, version 5.0) Whether to return an export value.
● When true, (the default) if the requested item has an export

value, returns the export value. If there is no export value,
returns the item name.

● When false, the method returns the item name.

6.0

Acrobat JavaScript Scripting Reference
Field Methods

416 Acrobat JavaScript Scripting Reference

insertItemAt

Inserts a new item into a combobox or a listbox.

Related methods and properties include numItems, getItemAt, deleteItemAt,
clearItems, currentValueIndices and setItems.

Parameters

Returns

Nothing

Example
var l = this.getField("myList");
l.insertItemAt("sam", "s", 0); /* inserts sam to top of list l */

isBoxChecked

Determines whether the specified widget is checked.

N O T E : For a set of radiobuttons that do not have duplicate export values, you can get
the value, which is equal to the export value of the individual widget that is
currently checked (or returns an empty string, if none is).

Parameters

3.01 �

cName The item name that will appear in the form.

cExport (optional) The export value of the field when this item is selected. If
not provided, the cName is used as the export value.

nIdx (optional) The index in the list at which to insert the item. If 0 (the
default), the new item is inserted at the top of the list. If –1, the new
item is inserted at the end of the list.

5.0

nWidget The 0-based index of an individual radiobutton or checkbox
widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).
Every entry in the Fields panel has a suffix giving this index, for
example MyField #0.

Acrobat JavaScript Scripting Reference 417

Acrobat JavaScript Scripting Reference
Field Methods

Returns

true if the specified widget is currently checked, false otherwise.

Example
var f = this.getField("ChkBox");
if(f.isBoxChecked(0))
 app.alert("The Box is Checked");
else
 app.alert("The Box is not Checked");

isDefaultChecked

Determines whether the specified widget is checked by default (for example,when the field
gets reset).

N O T E : For a set of radio buttons that do not have duplicate export values, you can get the
defaultValue, which is equal to the export value of the individual widget that is
checked by default (or returns an empty string, if none is).

Parameters

Returns

true if the specified widget is checked by default, false otherwise.

Example
var f = this.getField("ChkBox");
if (f.isDefaultChecked(0))
 app.alert("The Default: Checked");
else
 app.alert("The Default: Unchecked");

setAction

Sets the JavaScript action of the field for a given trigger.

5.0

nWidget The 0-based index of an individual radiobutton or checkbox
widget for this field. The index is determined by the order in which
the individual widgets of this field were created (and is unaffected by
tab-order).
Every entry in the Fields panel has a suffix giving this index, for
example MyField #0.

5.0 � �

Acrobat JavaScript Scripting Reference
Field Methods

418 Acrobat JavaScript Scripting Reference

Related methods are bookmark.setAction, doc.setAction, doc.addScript,
doc.setPageAction.

N O T E : This method will overwrite any action already defined for the chosen trigger.

Parameters

Returns

Nothing

Example

This example sets up a button field with a mouse up action.

var f = this.addField("actionField", "button", 0 , [20, 100, 100, 20]);
f.setAction("MouseUp", "app.beep(0);");
f.delay = true;

f.fillColor = color.ltGray;
f.buttonSetCaption("Beep");
f.borderStyle = border.b;
f.lineWidth = 3;
f.strokeColor = color.red;
f.highlight = highlight.p;

f.delay = false;

setFocus

Sets the keyboard focus to this field. This can involve changing the page that the user is
currently on or causing the view to scroll to a new position in the document. This method
automatically brings the document that the field resides in to the front, if it is not already
there.

See also the bringToFront.

cTrigger A string that sets the trigger for the action. Values are:
MouseUp
MouseDown
MouseEnter
MouseExit
OnFocus
OnBlur
Keystroke
Validate
Calculate
Format

For a listbox, use the Keystroke trigger for the Selection Change
event.

cScript The JavaScript code to be executed when the trigger is activated.

4.05

Acrobat JavaScript Scripting Reference 419

Acrobat JavaScript Scripting Reference
Field Methods

Parameters

None

Returns

Nothing

Example

Search for a certain open doc, then focus in on the field of interest. This script uses
app.activeDocs, which requires the documents to be disclosed to be true, or the
script to be run during console, batch or menu events.

var d = app.activeDocs;
for (var i = 0; i < d.length; i++) {

if (d[i].info.Title == "Response Document") {
d[i].getField("name").value="Enter your name here: "
// also brings the doc to front.
d[i].getField("name").setFocus();
break;

}
}

setItems

Sets the list of items for a combobox or a listbox.

Related methods and properties include numItems, getItemAt, deleteItemAt,
currentValueIndices and clearItems.

Parameters

Returns

Nothing

Examples
var l = this.getField("ListBox");
l.setItems(["One", "Two", "Three"]);

4.0 �

oArray An array in which each element is either an object convertible to a string or
another array.
● For an element that can be converted to a string, the user and export

values for the list item are equal to the string.
● For an element that is an array, the array must have two sub-elements

convertible to strings, where the first is the user value, and the second is
the export value.

Acrobat JavaScript Scripting Reference
Field Methods

420 Acrobat JavaScript Scripting Reference

var c = this.getField("StateBox");
c.setItems([["California", "CA"],["Massachusetts", "MA"],

["Arizona", "AZ"]]);

var c = this.getField("NumberBox");
c.setItems(["1", 2, 3, ["PI", Math.PI]]);

setLock

Controls which fields are to be locked when a signature is applied to this signature field.
Once the fields are locked no modifications can be done to the fields. When the signature is
cleared, all the fields that were locked down are unlocked. The property settings can be
obtained using getLock.

N O T E S : (Security �): The method can be executed during a batch, application initialization,
console, or menu events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

This method cannot be applied to a field that is in a document that is already signed.

Not allowed in the Adobe Reader.

Parameters

Returns

true if succesful, false otherwise, or can throw an exception.

Lock Object

A generic JS object containing lock properties. This object is passed to field.setLock
and returned by field. getLock for a signature field. It contains the following
properties.

6.0 � � �

oLock A Lock Object containing the lock properties.

Property Type Access Description

action String R/W The language independent name of the action. Values are:
All: All fields in the document are to be locked.
Include: Only the fields specified in fields are to be locked.
Exclude: All fields except those specified in fields are to be
locked.

fields Array of
Strings

R/W An array of strings containing the field names. Required if the value
of action is Include or Exclude.

Acrobat JavaScript Scripting Reference 421

Acrobat JavaScript Scripting Reference
Field Methods

signatureGetModifications

This method returns an object containing information on the modifications that have been
made to the document after the signature field was signed. The modifications reports only
the difference between the current and signed state of the document. Transient objects, for
example objects added after the signature but then subsequently deleted, will not be
reported.

Parameters

None

Returns

An object containing modification information. The object has the following properties:

7.0

Property Type Description

formFieldsCreated Array of Field
Objects

Array of form fields created after signing.

formFieldsDeleted Array of Generic
Objects

Array of form fields deleted after signing.
Each generic object in the array is a string of
the form name : type.

formFieldsFilledIn Array of Field
Objects

Array of form fields filled in after signing.

formFieldsModified Array of Field
Objects

Array of form fields modified after signing. In
this context, form field fill-in does not
constitute modification.

annotsCreated Array of Annot
Objects

Array of annots created after signing. If the
annot is transient (e.g., a dynamically
created Popup) then the corresponding
element of the array is a string of the
form author : name : type.

annotsDeleted Array of Generic
Objects

Array of annots deleted after signing. Each
generic object in the array is of the form
author : name : type.

annotsModified Array of Annot
Objects

Array of annots modified after signing. If the
annot is transient (e.g., a dynamically
created Popup) then the corresponding
element of the array is a string of the
form author : name : type.

numPagesCreated Integer Number of pages added after signing.

numPagesDeleted Integer Number of pages deleted after signing.

Acrobat JavaScript Scripting Reference
Field Methods

422 Acrobat JavaScript Scripting Reference

Example

This example writes modification information back to the console.

var sigField = this.getField("mySignature");
var sigMods = sigField.signatureGetModifications();

var formFieldsCreated = sigMods.formFieldsCreated;
for(var i = 0; i < formFieldsCreated.length; i++)

console.println(formFieldsCreated[i].name);

var formFieldsDeleted = sigMods.formFieldsDeleted;
for(var i = 0; i < formFieldsDeleted.length; i++)

console.println(formFieldsDeleted[i].name);

var formFieldsFilledIn = sigMods.formFieldsFilledIn;
for(var i = 0; i < formFieldsFilledIn.length; i++)

console.println(formFieldsFilledIn[i].name);

var formFieldsModified = sigMods.formFieldsModified;
for(var i = 0; i < formFieldsModified.length; i++)

console.println(formFieldsModified[i].name);

var spawnedPages = sigMods.spawnedPagesCreated;
for(var i = 0; i < spawnedPages.length; i++)

console.println(spawnedPages[i]);

console.println(sigMods.numPagesDeleted);

numPagesModified Integer Number of pages whose content has been
modified after signing (add/delete/modify
of annots/form fields are not considered as
page modification for this purpose).

spawnedPagesCreated Array of Strings List of pages spawned after signing. For each
spawned page, the name of the source
template is provided.

spawnedPagesDeleted Array of Strings List of spawned pages deleted after signing.
For each spawned page, the name of the
source template is provided.

spawnedPagesModified Array of Strings List of spawned pages modified after
signing. For each spawned page, the name
of the source template is provided.

Property Type Description

Acrobat JavaScript Scripting Reference 423

Acrobat JavaScript Scripting Reference
Field Methods

signatureGetSeedValue

Returns a SeedValue Generic Object that contains the seed value properties of a signature
field. Seed values are used to control properties of the signature, including the signature
appearance, reasons for signing, and the person.

See signatureSetSeedValue .

Parameters

None

Returns

A SeedValue Generic Object.

Example

The following illustrates accessing the seed value for a signature field.

var f = this.getField("sig0");
var seedValue = f.signatureGetSeedValue();
// displays the seed value filter and flags
console.println("Filter name:" + seedValue.filter);
console.println("Flags:" + seedValue.flags);
// displays the certificate seed value constraints
var certSpec = seedValue.certspec;
console.println("Issuer:" + certspec.issuer);

signatureInfo

Returns a SignatureInfo Object that contains the properties of the signature. The object is a
snapshot of the signature that is taken at the time that this method is called. A security
handler may specify additional properties that are specific to the security handler.

N O T E S : (Security �): There are no restrictions on when this method can be called, however,
the specified security handler, oSig, may not always be available; see the method
security.getHandler for details.

Some properties of a signature handler, for example, certificates (a property of
the SignatureInfo Object), may return a null value until the signature is validated.
Therefore, signatureInfo should be called again after signatureValidate.

6.0

5.0 �

Acrobat JavaScript Scripting Reference
Field Methods

424 Acrobat JavaScript Scripting Reference

Parameters

Returns

A SignatureInfo Object that contains the properties of the signature. This type of object is
also used when signing signature fields, signing FDF objects, or with the
FDF.signatureValidate method.

Example

The following illustrates how to access signature info properties.

// get all info
var f = getField("Signature1");
f.signatureValidate();
var s = f.signatureInfo();
console.println("Signature Attributes:");
for(i in s) console.println(i + " = " + s[i]);

// get particular info
var f = this.getField("Signature1"); // uses the ppklite sig handler
var Info = f.signatureInfo();
// some standard signatureInfo properties
console.println("name = " + Info.name);
console.println("reason = " + Info.reason);
console.println("date = " + Info.date);

// additional signatureInfo properties from PPKLite
console.println("contact info = " + Info.contactInfo);

// get the certificate; first (and only) one
var certificate = Info.certificates[0];

// common name of the signer
console.println("subjectCN = " + certificate.subjectCN);
console.println("serialNumber = " + certificate.serialNumber);

// Display some information about this the distinguished name of signer
console.println("subjectDN.cn = " + certificate.subjectDN.cn);
console.println("subjectDN.o = " + certificate.subjectDN.o);

oSig (optional) The SecurityHandler Object to use to retrieve the signature
properties. If not specified, the security handler is determined by user
preferences: it is usually the handler that was used to create the
signature.

Acrobat JavaScript Scripting Reference 425

Acrobat JavaScript Scripting Reference
Field Methods

signatureSetSeedValue

Sets properties that are used when signing signature fields. The properties are stored in the
signature field and are not altered when the field is signed, the signature is cleared, or when
resetForm is called. Use signatureGetSeedValue to obtain the property settings.

N O T E S : (Security �): The method can be executed during a batch, application initialization,
console, or menu events. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Seed values cannot be set for author signatures. Author signatures are signatures
with a SignatureInfo Object mdp property value of allowNone, default, or
defaultAndComments.

Not allowed in the Adobe Reader.

Parameters

Returns

Nothing

SeedValue Generic Object

A generic JS object, passed to field.signatureSetSeedValue and returned by
field.signatureGetSeedValue, which represents a signature seed value. It has the
following properties:

6.0 � � �

oSigSeedValue A SeedValue Generic Object containing the signature seed value
properties.

Property Type Access Description

certspec object R/W A seed value CertificateSpecifier Generic Object.

filter String R/W The language independent name of the security
handler to be used when signing.

Acrobat JavaScript Scripting Reference
Field Methods

426 Acrobat JavaScript Scripting Reference

CertificateSpecifier Generic Object

This generic JS object contains the certificate specifier properties of a signature seed value.
Used in the certSpec property of the SeedValue Generic Object. This objects contains
the following properties:

flags Number R/W Flags controlling which properties in this object are
critical (1, required) and not critical (0, optional). The
value should be set to the logical or of the following
values:

1: if filter is critical,
2: if subFilter is critical,
4: if version is critical
8: if reasons field is critical.

If this field is not present, interpretation of all
attributes is optional.

legalAttestations Array of
Strings

R/W (version 7.0) A list of legal attestations that the user is
allowed to use when creating a MDP signature.

mdp String R/W (version 7.0) The Modification Detection and
Prevention (MDP) setting to use when signing the
field. Values are unique identifiers, described in the
table titled Modification Detection and Prevention
(MDP) Values.
Note that allowAll results in MDP not being used
for the signature, resulting in this not being an
author signature, but rather a user signature.

reasons Array of
Strings

R/W A list of reasons that the user is allowed to use when
signing.

subFilter Array of
Strings

R/W An array of acceptable formats to use for the
signature. Refer to the signature info object’s
subFilter property for a list of known formats.

timeStampspec Object R/W (version 7.0) A Seed Value timeStamp Specifier
Object.

version Number R/W The minimum version of the signature format
dictionary that is required when signing.

Property Type Access Description

subject Array of
Certificate
Object

R/W Array of Certificate Objects that are acceptable for signing.

N O T E : If specified, the signing certificate must be an exact
match with one of the certificates in this array.

Property Type Access Description

Acrobat JavaScript Scripting Reference 427

Acrobat JavaScript Scripting Reference
Field Methods

Seed Value timeStamp Specifier Object

The properties of the seed value timeStamp specifier object are as follows:

Example 1

Sets the signing handler as PPKMS and the format as "adbe.pkcs7.sha1".

var f = this.getField("sig0");

f.signatureSetSeedValue({
filter: "Adobe.PPKMS",
subFilter: ["adbe.pkcs7.sha1"],
flags: 0x03 });

issuer Array of
Certificate
Object

R/W Array of Certificate Objects that are acceptable for signing.

N O T E : If specified, the signing certificate must be issued by a
certificate that is an exact match with one of the
certificates in this array

oid Array of
Strings

R/W Array of strings that contain Policy OIDs that must be present in the
signing certificate. This property is only applicable of the issuer
property is present.

url String R/W A URL that can be used to enroll for a new credential if a matching
credential is not found.

flags Number R/W Bit flags controlling which properties in this object are
critical (1, required) and not critical (0, optional). The value
should be set to the logical or of the following values:

1 if sujbect is critical,
2 if issuer is critical,
4 if oid is critical.

If this field is not present, interpretation of all attributes is
optional.

Property Type Access Description

url String R/W URL of the timeStamp server providing RFC 3161 compliant
timeStamp.

flags Number R/W A bit flag controlling whether this property is critical (required)
or not critical (optional).

0 if not critical
1 if critical

The default is 0.

Property Type Access Description

Acrobat JavaScript Scripting Reference
Field Methods

428 Acrobat JavaScript Scripting Reference

Example 2

Sets the signing handler as PPKLite and the issuer of the signer’s certificate as caCert. Both
are mandatory seed values and signing will fail if either of constraint is not met.

var caCert = security.importFromFile("Certificate", "/C/CA.cer");
f.signatureSetSeedValue({

filter: "Adobe.PPKLite",
certspec: {

issuer: [caCert],
url: "http://www.ca.com/enroll.html",
flags : 0x02

},
flags: 0x01

});

signatureSign

Signs the field with the specified security handler. See also security.getHandler and
securityHandler.login .

N O T E S : (Security�) This method can only be executed during batch, console, menu, or
application initialization events. See also Privileged versus Non-privileged Context.
The Event Object contains a discussion of Acrobat JavaScript events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Signature fields cannot be signed if they are already signed. Use resetForm to
clear signature fields.

Not available in the Adobe Reader.

Parameters

5.0 � � � �

oSig Specifies the SecurityHandler Object to be used to sign. Throws an
exception if the specified handler does not support signing
operations. Some security handlers require that the user be logged in
before signing can occur. operations. Some security handlers require
that the user be logged in before signing can occur. If oSig is not
specified then this method will select a handler based on user
preferences or by prompting the user if bUI is true.

oInfo (optional) A SignatureInfo Object specifying the writable properties of
the signature. See also signatureInfo .

cDIPath (optional) The device-independent path to the file to save to
following the application of the signature. If not specified, the file is
saved back to its original location.

Acrobat JavaScript Scripting Reference 429

Acrobat JavaScript Scripting Reference
Field Methods

Returns

true if the signature was applied successfully, false otherwise.

Example 1

The following example signs the "Signature" field with the PPKLite signature handler:

var myEngine = security.getHandler("Adobe.PPKLite");
myEngine.login("dps017", "/c/profile/dps.pfx");
var f = this.getField("Signature");

// Sign the field
f.signatureSign(myEngine,

{ password: "dps017", // provide password
 location: "San Jose, CA", // ... see note below
 reason: "I am approving this document",
 contactInfo: "dpsmith@adobe.com",
 appearance: "Fancy"});

N O T E : In the above example, a password was provided. This may or may not have been
necessary depending whether the Password Timeout had expired. The
Password Timeout can be set programmatically by
securityHandler.setPasswordTimeout.

Example 2

The following example illustrates signing an author signature field

var myEngine = security.getHandler("Adobe.PPKLite");
myEngine.login("dps017", "/c/profile/dps.pfx");

var f = this.getField("AuthorSigFieldName");
var s = { reason: "I am the author of this document",
 mdp: "allowNone" };
f.signatureSign({

bUI (optional, version 6.0) Whether the security handler should show user
interface when signing. If true, oInfo and cDIPath are used as
default values in the signing dialogs. If false (the default), the
signing occurs without any user interface.

cLegalAttest (optional, version 6.0) A string that can be provided when creating an
author signature.
Author signatures are signatures where the mdp property of the
SignatureInfo Object has a value other then allowAll. When
creating an author signature, the document is scanned for legal
warnings and these warnings are embedded in the document. A
caller can determine what legal warnings are found by first calling
doc.getLegalWarnings. If warnings are to be embedded an
author may wish to provide an attestation as to why these warnings
are being applied to a document.

Acrobat JavaScript Scripting Reference
Field Methods

430 Acrobat JavaScript Scripting Reference

oSig: myEngine,
oInfo: s,
bUI: false,
cLegalAttest: "Fonts are not embedded to reduce file size"

});

signatureValidate

Validates and returns the validity status of the signature in a signature field. This routine
can be computationally expensive and take a significant amount of time depending on the
signature handler used to sign the signature.

N O T E : There are no restrictions on when this method can be called, however, the
parameter oSig will not always be available; see security.getHandler for
details.

Parameters

Returns

Returns the validity status of the signature. Validity values are:

-1: Not a signature field

 0: Signature is blank

 1: Unknown status

 2: Signature is invalid

 3: Signature of document is valid, identity of signer could not be verified

 4: Signature of document is valid and identity of signer is valid.

See the status and statusText properties of the SignatureInfo Object.

5.0 �

oSig (optional) The security handler to be used to validate the signature.
The value can be either a SecurityHandler Object or a
SignatureParameters Generic Object. If this handler is not specified,
the method uses the security handler returned by the signature’s
handlerName property.

bUI (optional, version 6.0) When true, allows UI to be shown, if
necessary, when validating the data file. UI may be used to select a
validation handler if none is specified. The default is false.

Acrobat JavaScript Scripting Reference 431

Acrobat JavaScript Scripting Reference
FullScreen Object

SignatureParameters Generic Object

A generic object with the following properties that specify security handlers to be used for
validation by field.signatureValidate:

Example
var f = this.getField("Signature1") // get signature field
var status = f.signatureValidate();
var sigInfo = f.signatureInfo();
if (status < 3)
 var msg = "Signature not valid! " + sigInfo.statusText;
else
 var msg = "Signature valid! " + sigInfo.statusText;
app.alert(msg);

FullScreen Object

The interface to fullscreen (presentation mode) preferences and properties. To acquire a
fullScreen object, use app.fs.

FullScreen Properties

backgroundColor

The background color of the screen in full screen mode. See Color Arrays for details.

Type: Color Array Access: R/W.

Example
app.fs.backgroundColor = color.ltGray;

Property Description

oSecHdlr The security handler object to use to validate this signature

bAltSecHdlr If true, an alternate security handler, selected based on user
preference settings, may be used to validate the signature. The
default is false, which means that the security handler returned
by the signature’s handlerName property is used to validate the
signature. This parameter is not used if oSecHdlr is provided.

5.0 �

Acrobat JavaScript Scripting Reference
FullScreen Properties

432 Acrobat JavaScript Scripting Reference

clickAdvances

Whether a mouse click anywhere on the page will cause the viewer to advance one page.

Type: Boolean Access: R/W.

cursor

Determines the behavior of the mouse pointer in full screen mode. The convenience
cursor object defines all the valid cursor behaviors:

Type: Number Access: R/W.

Example
app.fs.cursor = cursor.visible;

defaultTransition

The default transition to use when advancing pages in full screen mode. Use
transitions to obtain list of valid transition names supported by the viewer.

No Transition is equivalent to app.fs.defaultTransition = "";

Type: Number Access: R/W.

Example

Put document into presentation mode

app.fs.defaultTransition = "WipeDown";
app.fs.isFullScreen = true;

escapeExits

Whether the escape key can be used to exit full screen mode.

Type: Boolean Access: R/W.

Cursor Behavior Keyword

Always hidden cursor.hidden

Hidden after delay cursor.delay

Visible cursor.visible

Acrobat JavaScript Scripting Reference 433

Acrobat JavaScript Scripting Reference
FullScreen Properties

isFullScreen

Puts the Acrobat viewer in fullscreen mode rather than regular viewing mode. This only
works if there are documents open in the Acrobat viewer window.

N O T E : A PDF document being viewed from within a web browser cannot be put into
fullscreen mode.

Type: Boolean Access: R/W.

Example
app.fs.isFullScreen = true;

In the above example, the Adobe Acrobat viewer is set to fullscreen mode. If
isFullScreen was previously false , the default viewing mode would be set. The
default viewing mode is defined as the original mode the Acrobat application was in before
full screen mode was initiated.

loop

Whether the document will loop around to the beginning of the document in response to a
page advance (mouse click, keyboard, and/or timer generated) in full screen mode.

Type: Boolean Access: R/W.

timeDelay

The default number of seconds before the page automatically advances in full screen
mode. See useTimer to activate/deactivate automatic page turning.

Type: Number Access: R/W.

Example
app.fs.timeDelay = 5; // delay 5 seconds
app.fs.useTimer = true; // activate automatic page turning
app.fs.usePageTiming = true; // allow page override
app.fs.isFullScreen = true; // go into fullscreen

transitions

An array of strings representing valid transition names implemented in the viewer. No
Transition is equivalent to setting defaultTransition to the empty string:

app.fs.defaultTransition = "";

Type: Array Access: R.

Example

This script produces a listing of the currently supported transition names.

Acrobat JavaScript Scripting Reference
Global Object

434 Acrobat JavaScript Scripting Reference

console.println("[" + app.fs.transitions + "]");

usePageTiming

Whether automatic page turning will respect the values specified for individual pages in
full screen mode. Set transition properties of individual pages using
setPageTransitions.

Type: Boolean Access: R/W.

useTimer

Whether automatic page turning is enabled in full screen mode. Use timeDelay to set
the default time interval before proceeding to the next page.

Type: Boolean Access: R/W.

Global Object

This is a static JavaScript object that allows you to share data between documents and to
have data be persistent across sessions. Such data is called persistent global data. Global
data-sharing and notification across documents is done through a subscription mechanism,
which allows you to monitor global data variables and report their value changes across
documents.

Creating Global Properties

You can specify global data by adding properties to the global object. The property type
can be a String, a Boolean, or a Number.

For example, to add a variable called "radius" and to allow all document scripts to have
access to this variable, the script simply defines the property:

global.radius = 8;

The global variable "radius" is now known across documents throughout the current viewer
session. Suppose two files, A.pdf and B.pdf, are open in the viewer, and the global
declaration is made in A.pdf. From within either file (A.pdf or B.pdf) you can calculate
the volume of a sphere using global.radius:

var V = (4/3) * Math.PI * Math.pow(global.radius, 3);

In either file, you obtain the same result, 2144.66058. If the value of global.radius
changes and the script is executed again, the value of V changes accordingly.

Acrobat JavaScript Scripting Reference 435

Acrobat JavaScript Scripting Reference
Global Methods

Deleting Global Properties

To delete a variable or a property from the global object, use the delete operator to
remove the defined property. For information on the reserved JavaScript keyword delete,
see Core JavaScript 1.5 Documentation.

For example, to remove the global.radius property, call the following script:

delete global.radius

Global Methods

setPersistent

Controls whether a specified variable is persistent across invocations of Acrobat.

Persistent global data only applies to variables of type Boolean, Number, or String. Acrobat
6.0 places a 2-4k limit for the maximum size of the global persistent variables. Any data
added to the string after this limit is dropped.

The global variables that are persistent are stored upon application exit in the glob.js
file located in the user’s folder for Folder Level JavaScripts, and re-loaded at
application start. There is a 2-4k limit on the size of this file, for Acrobat 6.0 or later.

It is recommended that JavaScript developers building scripts for Acrobat, use a naming
convention when specifying persistent global variables. For example, you could name all
your variables "myCompany_name". This will prevent collisions with other persistent
global variable names throughout the documents.

Parameters

Returns

Nothing

Example

For example, to make the "radius" property persistent and accessible for other documents
you could use:

global.radius = 8; // declare radius to be global
global.setPersistent("radius", true);// now say it’s persistent

3.01 �

cVariable The variable (global property) for which to set persistence.

bPersist When true, the property will exist across Acrobat Viewer sessions.
When false (the default) the property will be accessible across
documents but not across the Acrobat Viewer sessions.

Acrobat JavaScript Scripting Reference
Global Methods

436 Acrobat JavaScript Scripting Reference

The volume calculation, defined above, will now yield the same result across viewer
sessions, or until the value of global.radius is changed.

subscribe

Allows you to automatically update one or more fields when the value of the subscribed
global variable changes. If the specified property is changed, even in another document,
the specified function is called. Multiple subscribers are allowed for a published property.

Parameters

Returns

Nothing

Example

Suppose there are two files, setRadius.pdf and calcVolume.pdf, open in Acrobat
or Reader.

● In setRadius.pdf there is a single button with the code:
global.radius = 2;

● In calcVolumne.pdf there is a Document Level JavaScript named subscribe:
// In the Advanced > JavaScripts > Document JavaScripts
global.subscribe("radius", RadiusChanged);
function RadiusChanged(x) // callback function
{

var V = (4/3) * Math.PI * Math.pow(x,3);
this.getField("MyVolume").value = V; // put value in text field

}

● Open both files in the Viewer, now, clicking on the button in setRadius.pdf file
immediately gives an update in the text field "MyVolume" in calcVolume.pdf of 33.51032
(as determined by global.radius = 2).

The syntax of the callback function is as follows:

function fCallback(newval) {
// newval is the new value of the global variable you
// have subscribed to.

< code to process the new value of the global variable >
}

5.0

cVariable The global property.

fCallback The function to call when the property is changed.

Acrobat JavaScript Scripting Reference 437

Acrobat JavaScript Scripting Reference
Icon Generic Object

Icon Generic Object

This generic JS object is an opaque representation of a Form XObject appearance stored in
doc.icons. It is used with Field Objects of type button. The icon object contains the
following property:

Icon Stream Generic Object

This generic JS object represents an icon stream. It is used by app.addToolButton and
collab.addStateModel. It has the following properties:

The util.iconStreamFromIcon method can be used to convert an Icon Generic
Object to an Icon Stream Generic Object.

Identity Object

This is a static object that identifies the current user of the application.

Property Type Access Description

name string R The name of the icon. An icon may or may not have a name
depending on whether it exists in the document level
named icons tree.

Property Description

read(nBytes) A function which takes the number of bytes to read and returns a
Hex encoded string. The data should be the icon representation as
a 32 bit per pixel with 4 channels (ARGB) 8 bits per channel with the
channels interleaved. If the icon has multiple layers, then the
function may return the pixels for the topmost layer, followed by
the next layer behind it, and so on.

width The icon width in pixels.

height The icon height in pixels.

5.0 �

Acrobat JavaScript Scripting Reference
Identity Properties

438 Acrobat JavaScript Scripting Reference

N O T E S : (Security�): Identity object properties are only accessible during batch,
console, menu, and application initialization events in order to protect the privacy
of the user. See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Identity Properties

corporation

The corporation name that the user has entered in the identity preferences panel.

Type: String Access: R/W.

email

The email address that the user has entered in the identity preferences panel.

Type: String Access: R/W.

loginName

The login name as registered by the operating system.

Type: String Access: R.

name

The user name that the user entered in the identity preferences panel.

Type: String Access: R/W.

Example

The following can be executed in the console, or, perhaps, a folder level JavaScript.

console.println("Your name is " + identity.name);
console.println("Your e-mail is " + identity.email);

Acrobat JavaScript Scripting Reference 439

Acrobat JavaScript Scripting Reference
Index Object

Index Object

This is a non-creatable object returned by various methods of the Search Object and
Catalog Object. The index object represents a Catalog-generated index. You use this
object to perform various indexing operations using Catalog. You can find the status of the
index with a search.

Index Properties

available

Whether the index is available for selection and searching. An index may be unavailable if a
network connection is down or a CD-ROM is not inserted, or if the index administrator has
brought the index down for maintenance purposes.

Type: Boolean Access: R.

name

The name of the index as specified by the index administrator at indexing time.

See search.indexes, which returns an array of the index objects currently accessed by
the search engine.

Type: String Access: R.

Example

This example enumerates all of the indexes and writes their names to the console.

for (var i = 0; i < search.indexes.length; i++) {
console.println("Index[" + i + "] = " + search.indexes[i].name);

}

path

The device-dependent path where the index resides. See Section 3.10.1, “File Specification
Strings”, in the PDF Reference for exact syntax of the path.

Type: String Access: R.

5.0

Acrobat JavaScript Scripting Reference
Index Methods

440 Acrobat JavaScript Scripting Reference

selected

Whether the index is to participate in the search. If true, the index will be searched as part
of the query, if false it will not be. Setting or unsetting this property is equivalent to
checking the selection status in the index list dialog.

Type: Boolean Access: R/W.

Index Methods

build

Builds the index associated with the index object using the Catalog plug-in. This method
does not build a new index.

The index is built at the same location as the index file. If the index already exists, the
included directories are re-scanned for changes and the index is updated. If the index does
not exist, the UI pops up, and new index can be defined and build through the UI.

The index build is started immediately if Catalog is idle. Otherwise, it gets queued with
Catalog.

N O T E : (Security�, version 7.0) This method can only be executed during batch or console
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Parameters

Returns

A CatalogJob Generic Object. The CatalogJob object can be used to check the job
parameters and status.

Example
/* Building an index */
if (typeof catalog != "undefined") {

var idx = catalog.getIndex("/c/mydocuments/index.pdx");
var job = idx.build("Done()", true);
console.println("Status : ", job.status);

6.0 � � � �

cExpr (optional) An expression to be evaluated once the build operation on
the index is complete. Default is no expression. See the PDF
Reference, “JavaScript Action” for more details.

bRebuildAll (optional) If true, a clean build is performed. The index is first
deleted and then built. The default is false.

Acrobat JavaScript Scripting Reference 441

Acrobat JavaScript Scripting Reference
Link Object

}

Link Object

This object is used to set and get the properties and to set the JavaScript action of a link.

A link object is obtained from doc.addLink or doc.getLinks. See also,
doc.removeLinks.

Link Properties

borderColor

The border color of a link object. See Color Arrays for information on defining color arrays
and how colors are used with this property.

Type: Array Access: R/W.

borderWidth

The border width of the link object.

Type: Integer Access: R/W.

highlightMode

The visual effect to be used when the mouse button is pressed or held down inside an
active area of a link. The valid values are:

None
Invert (the default)
Outline
Push

Type: String Access: R/W.

6.0 � �

6.0 � �

6.0 � �

Acrobat JavaScript Scripting Reference
Link Methods

442 Acrobat JavaScript Scripting Reference

rect

The rectangle in which the link is located on the page. Contains an array of four numbers,
the coordinates in rotated user space of the bounding rectangle, listed in the following
order: upper-left x, upper-left y, lower-right x and lower-right y.

Type: Array Access: R/W.

Link Methods

setAction

Sets the specified JavaScript action for the MouseUp trigger for the link object.

N O T E : This method will overwrite any action already defined for this link.

Parameters

Returns

Nothing

Marker Object

A Marker object represents a named location in a media clip that identifies a particular time
or frame number, similar to a track on an audio CD or a chapter on a DVD. Markers are
defined by the media clip itself.

A Marker object can be obtained from the Markers.get() method.

6.0 � �

6.0 �

cScript The JavaScript action to use.

Acrobat JavaScript Scripting Reference 443

Acrobat JavaScript Scripting Reference
Marker Object Properties

Marker Object Properties

frame

A frame number, where 0 represents the beginning of media. For most players, markers
have either a frame or a time value, but not both.

Type: Number Access: R.

index

An arbitrary index number assigned to this marker. Markers have sequential index numbers
beginning with 0, but these index numbers may not be in the same order that the markers
appear in the media.

Type: Number Access: R.

name

The name of this marker. Each marker in a media clip has a unique name.

Type: String Access: R.

Example

Get a marker by its index, then print the name of the marker to the console.

// assume player is a MediaPlayer object
var markers = player.markers;
// get marker with index of 2
var markers = g.get({ index: 2 });
console.println("The marker with index of " + markers.index

+", has a name of " + index.name);

time

A time in seconds, where 0 represents the beginning of media. For most players, markers
have either a frame or a time value, but not both.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Markers Object

444 Acrobat JavaScript Scripting Reference

Type: Number Access: R.

Example

Get a named marker, then print the time in seconds from the beginning of the media, of
that marker.

// assume player is a MediaPlayer object
var markers = player.markers;
// get marker with name of "Chapter 1"
var markers = g.get({ name: "Chapter 1" });
console.println("The named marker \"Chapter 1\”, occurs at time "

+ markers.time);

Markers Object

The markers property of a MediaPlayer is a Markers object which represents all of the
markers found in the media clip currently loaded into the player. A marker is a named
location in a media clip that identifies a particular time or frame number, similar to a track
on an audio CD or a chapter on a DVD. Markers are defined by the media clip itself.

The constructor is app.media.Markers.

Markers Object Properties

player

The MediaPlayer Object that this Markers object belongs to.

Type: MediaPlayer Object Access: R.

Markers Object Methods

get

The Markers.get() method looks up a marker by name, index number, time in seconds,
or frame number, and returns the Marker Object representing the requested marker. The

6.0

6.0

Acrobat JavaScript Scripting Reference 445

Acrobat JavaScript Scripting Reference
MediaOffset Object

object parameter should contain either a name, index, time, or frame property. A marker
name can also be passed in directly as a string.

If a time or frame is passed in, the nearest marker at or before that time or frame is returned.
If the time or frame is before any markers in the media, then null is returned.

Parameters

An object or string representing the name, index number, time in seconds, or the frame
number of the marker. The object parameter should contain either a name, index, time, or
frame property. A marker name can also be passed in directly as a string.

Returns

Marker Object or null

Marker index numbers are assigned sequentially starting with 0, and they are not
necessarily in order by time or frame. In particular, note that these are not the same values
that Windows Media Player uses for marker numbers. To find all of the available markers in
a media clip, call MediaPlayer.markers.get() in a loop starting with {index: 0}
and incrementing the number until get() returns null.

Example:

This example counts the number of markers on the media clip.

var index, i = 0;
// assume player is a MediaPlayer object.
var m = player.markers;
while ((index = m.get({ index: i })) != null) i++;
console.println("There are " + i + " markers.");

Example:
// Get a marker by name, two different ways
var marker = player.markers.get("My Marker");
var marker = player.markers.get({ name: "My Marker" });
// Get a marker by index
var marker = player.markers.get({ index: 1 });
// Get a marker by time
var marker = player.markers.get({ time: 17.5 });
// Get a marker by frame
var marker = player.markers.get({ frame: 43 });

MediaOffset Object

A MediaOffset represents a position in a MediaClip, either in terms of time or a frame count.

This position can either be relative to a named marker, or it can be an absolute position (i.e.
relative to the beginning of the media).

The MediaOffset can be specified either as an object with the properties named below, or it
can simply be a number, which is interpreted as {time: number}.

Acrobat JavaScript Scripting Reference
MediaOffset Object Properties

446 Acrobat JavaScript Scripting Reference

Some media formats (e.g. QuickTime) are time-based and others (e.g. Flash) are frame-
based. A MediaOffset that specifies a time or frame must match the media format in use. If
both time and frame are specified, the results are undefined: the incorrect one may be
ignored, or a JavaScript exception may be thrown.

The MediaOffset object is used by MediaPlayer.seek(), MediaPlayer.where(),
MediaSettings.endAt and MediaSettings.startAt.

MediaOffset Object Properties

frame

A frame number. If the marker property is also present, this frame number is relative to
the specified marker and may be positive, negative, or zero. Otherwise, it is relative to the
beginning of media and may not be negative. Note that {frame: 0} represents the
beginning of media.

Type: Number Access: R/W.

marker

The name of a specific marker in the media.

Type: String Access: R/W.

time

A time in seconds, or Infinity. If the marker property is also present, this time is
relative to the specified marker and is a nonnegative value, but not Infinity. Otherwise,
the time is relative to the beginning of media and must not be negative. Note that the
offset { time: 0 } represents the beginning of media.

Type: Number Access: R/W.

Example

Below are examples of absolute and relative offsets

{ time: 5.4 } // offset 5.4 seconds from the beginning of media
{ marker: "Chapter 1", time: 17 } // 17 seconds after "Chapter 1"

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 447

Acrobat JavaScript Scripting Reference
MediaPlayer Object

These offsets can be used by the MediaPlayer.seek() method:

// assume player is a MediaPlayer object
player.seek({ time: 5.4 });
player.seek({ marker: "Chapter 1", time: 17 });

MediaPlayer Object

A MediaPlayer object represents an instance of a multimedia player such as QuickTime,
Windows Media Player, or others. Its settings and events properties let you
manipulate the player from JavaScript code and handle events that the player fires.
MediaPlayer is not part of a PDF file; it is a transient object created in memory when
needed.

MediaPlayer Object Properties

annot

MediaPlayer.annot is a reference to the ScreenAnnot associated with a MediaPlayer.
This property exists only for a MediaPlayer object that is connected to a ScreenAnnot. The
property is set by app.media.addStockEvents() or by methods that call
addStockEvents() indirectly, such as app.media.openPlayer().

Type: ScreenAnnot Object Access: R/W.

defaultSize

The MediaPlayer.defaultSize property is a read-only object containing the width
and height of the MediaPlayer’s MediaClip:

{ width: number, height: number }

If the media player is unable to provide this value, then defaultSize is undefined.

Type: Object Access: R.

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaPlayer Object Properties

448 Acrobat JavaScript Scripting Reference

doc

MediaPlayer.doc is a reference to the Doc Object that owns the MediaPlayer.

Type: Object Access: R.

events

The MediaPlayer.events property is a Events Object containing the event listeners
that are attached to a MediaPlayer. See Events Object for details.

Type: Events Object Access: R/W.

Example

Create a media player, then modify the events of that player. The script is executed as a
Rendition action with an associated rendition.

var events = new app.media.Events;
var player = app.media.createPlayer();
player.events.add({

onReady: function() { console.println("The player is ready"); }
});
player.open();

hasFocus

The MediaPlayer.hasFocus property is true if the media player is open and has the
keyboard focus.

Type: Boolean Access: R.

id

The MediaPlayer.id property contains the player ID for the player software that this
player is using. It is undefined if the player has not been opened. This player ID is the
same value that is found in PlayerInfo.id for the media player software that
implements this player.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 449

Acrobat JavaScript Scripting Reference
MediaPlayer Object Properties

Type: Boolean Access: R.

Example

Print player id to the console

// assume args has been defined
var player = app.media.openPlayer(args)
console.println("player.id = " + player.id);
// in the console, this script could possibly print...
player.id = vnd.adobe.swname:ADBE_MCI

innerRect

The MediaPlayer.innerRect property is a rectangle array representing the player’s
inner rectangle on the screen. As with other such arrays in Acrobat JavaScript, the
coordinates are in the order [left, top, right, bottom]. The rectangle does not include any
window title, or other such gadgets around the edges of the player, but it does include the
player controller if a controller is present. It is undefined if the player is not open.

For a docked media player, this rectangle is in device space and is read-only: It will throw an
exception if you try to set it. Instead, use MediaPlayer.triggerGetRect() to cause
a docked player to be resized. For a floating media player, the rectangle is in screen
coordinates and is writable, but the user’s security settings may override a value you set
here. For example, if you try to move a floating media player offscreen, it may be forced
back on-screen. This will not throw an exception. You can read this property after writing it
to see if your value was overridden.

Type: Array Access: R or R/W.

See also, outerRect.

isOpen

MediaPlayer.isOpen, a boolean, is true if the media player is currently open. Use
MediaPlayer.open() and MediaPlayer.close() to open or close a player.

Type: Boolean Access: R.

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaPlayer Object Properties

450 Acrobat JavaScript Scripting Reference

isPlaying

The MediaPlayer.isPlaying property is true if the media is currently playing. It is
false if the player is not open, or if the media is paused, stopped, fast forwarding or
rewinding, or in any other state.

Type: Boolean Access: R.

markers

MediaPlayer.markers is a collection of all the markers available for the current media.

See Markers Object for details of this property.

Type: Markers Object Access: R.

Example

See Example 2 following MediaPlayer.seek() for an illustration of usage.

outerRect

MediaPlayer.outerRect is a rectangle Array representing the player’s outer rectangle
on the screen. As with other such arrays in Acrobat JavaScript, the coordinates are in the
order [left, top, right, bottom]. This rectangle includes any player controller, window title,
and other such gadgets around the edges of the player. It is undefined if the player is not
open.

For a docked media player, this rectangle is in device space and is read-only: It will throw an
exception if you try to set it. Instead, use MediaPlayer.triggerGetRect() to cause
a docked player to be resized. For a floating media player, the rectangle is in screen
coordinates and is writable, but the user’s security settings may override a value you set
here. For example, if you try to move a floating media player offscreen, it may be forced
back on-screen. This will not throw an exception. You can read this property after writing it
to see if your value was overridden.

Type: Array Access: R or R/W.

See also innerRect.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 451

Acrobat JavaScript Scripting Reference
MediaPlayer Object Properties

page

MediaPlayer.page is the page number in which a docked media player appears. It is
undefined for players that are not docked. A docked media player can be moved to
another page by changing its page property, and this triggers a GetRect (see onGetRect)
event.

Type: Number Access: R/W.

Example

Play a media clip on page 1 (base zero). The placement of the media player on page 1 is the
same the ScreenAnnot on page 0.

var player = app.media.openPlayer({
 rendition: this.media.getRendition("myClip"),
 annot: this.media.getAnnot({ nPage:0, cAnnotTitle:"myScreen" }),
 settings: { windowType: app.media.windowType.docked }
 });
player.page = 1;

See onGetRect and triggerGetRect for variations on this same example.

settings

MediaPlayer.settings includes all of the settings that are used to create a
MediaPlayer. See MediaSettings Object for a complete list.

N O T E : In Acrobat 6.0, changing a property in MediaPlayer.settings after the player
has been created has no effect. This may be changed in a future release to make
these settings live. For compatibility with both current and future releases, avoid
changing any settings properties while a player is open.

Type: MediaSettings Object Access: R/W.

uiSize

MediaPlayer.uiSize is an array containing the size of the controller of the player for
each edge of the player, in the same order as a window rectangle: [left, top, right, bottom].
Each of these values is normally a positive value or zero. These values do not include
window gadgets such as title bars, only the controller.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

452 Acrobat JavaScript Scripting Reference

This property is not available until the Ready event is fired (see onReady and afterReady).
Unlike most MediaPlayer properties, it is permissible to read it during an “on” event method
such as onReady.

Type: Array Access: R.

Example

Get the uiSize of the player. This code is executed as a Rendition action event.

var args = {
events: {

onReady: function () {
console.println("uiSize = " + player.uiSize);

}
}

};
var player = app.media.openPlayer(args);

visible

The MediaPlayer.visible property controls whether the player is visible. Unlike
MediaPlayer.settings.visible, this property takes effect immediately. If the
player is not open, reading this property returns undefined and setting it throws an
exception.

Setting this property may fire events. For example, if the player is visible and has the focus,
making it invisible fires a Blur event.

Type: Boolean Access: R/W.

Example

Play the audio only of a video clip

// assume a definition of args
var player = app.media.openPlayer(args);
player.visible = false;

MediaPlayer Object Methods

close

Closes the media player if it is open. Does nothing (and is not an error) if the player is
closed.

6.0

6.0

Acrobat JavaScript Scripting Reference 453

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

The eReason parameter should be a value from the app.media.closeReason
enumeration. This value is passed through to the event.media.closeReason
property for the Close event (see onClose and afterClose) that the close()
method fires.

If the player has the keyboard focus, a Blur event (onBlur/afterBlur) is fired before the
Close event. Other events, such as Status (onStatus/afterStatus) and Stop
(onStop/afterStop), may also be fired depending on the particular media player.

Parameters

Returns

Nothing

open

The MediaPlayer.open() method attempts to open the media player as specified by
MediaPlayer.settings. If the player is already open, an exception is thrown. If the
player was previously opened and then closed, open() may be called to open the player
again. This uses the same JavaScript object as before but opens a new instance of the
actual media player (e.g. the new player does not remember the playback position from the
old player).

For a docked player, a GetRect event (onGetRect) is fired when the player is opened.

If MediaPlayer.settings.autoPlay is true (which it is by default), then playback
begins and a Play event (onPlay/afterPlay) is fired.

The open() method may result in a security prompt dialog depending on the user’s
settings. This may also result in events being fired to other media players, screen annots, or
other objects. For example, if another media player has the keyboard focus, it will receive a
Blur event (onBlur/afterBlur).

If bAllowSecurityUI is false, then open() never displays a security prompt, but
returns a failure code instead.

For a media player in a floating window, additional security checks are made against the
user’s settings. For example, the user may specify that title bars are required on all floating
player windows. If MediaPlayer.settings.floating contains options that the user
does not allow, then bAllowFloatOptionsFallback controls what happens. If it is
false, playback is disallowed and an error code is returned. If it is true, then the options
in MediaPlayer.settings.floating are changed as needed to conform to the
user’s security settings, and then open() proceeds with those changed settings.

eReason eReason is a value from the app.media.closeReason
enumeration.

6.0

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

454 Acrobat JavaScript Scripting Reference

The return value is an object which currently contains one property, code, which is a result
code from the app.media.openCode enumeration. If your PDF is opened in a future
version of Acrobat, there may be additional properties in this object, or a code value added
in that future version. Be sure to handle any such values gracefully.

Parameters

Returns

An object with a code property

Example

See “Example 1” on page 152 for an example of usage.

pause

Pauses playback of the current media and fires a Pause event (onPause/afterPause).
The Pause event may occur during the pause() call or afterward, depending on the
player.

The pause() method has no effect if the media is already paused or stopped, or if
playback has not yet started or has completed. Not every media player supports pause(),
and not every media format supports it; in particular, most streaming formats do not
support pause(). Players may either throw an exception or silently ignore pause() in
these cases.

Parameters

None

Returns

Nothing

Example

See Example 2 following the seek() method below for an example of usage.

bAllowSecurityUI (optional) The default is true. See the
description of this parameter given above.

bAllowFloatOptionsFallback (optional) The default is true. See the
description of this parameter given above.

6.0

Acrobat JavaScript Scripting Reference 455

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

play

Starts playback of the current media and fires a Play event (onPlay/afterPlay). The
Play event may occur during the play() call or afterward, depending on the player.

If the media is already playing, it continues playing and no event is fired. If it is paused,
rewinding, or fast forwarding, it resumes playback at the current position. If it is stopped,
either at the beginning or end of media, playback starts from the beginning.

Parameters

None

Returns

Nothing

Example

See Example 2 following the seek() method below for an example of usage.

seek

Sets the current media’s playback location to the position described by the MediaOffset
Object contained in oMediaOffset.

If the media is playing, it continues playing at the new location. If the media is paused, it
moves to the new location and remains paused there. If the media is stopped, the result will
vary depending on the player.

Different media players handle seek errors in different ways: Some ignore the error and
others throw a JavaScript exception.

Most, but not all, media players fire a Seek event (onSeek/afterSeek) when a seek is
completed.

The seek operation may take place during the execution of the seek() method or later,
depending on the player. If seek() returns before the seek operation is completed and
you call another player method before the seek is completed, the results will vary
depending on the player.

Parameters

Returns

Nothing

6.0

6.0

oMediaOffset A MediaOffset Object, the properties of which indicate the
playback location to be set.

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

456 Acrobat JavaScript Scripting Reference

Example 1
// Rewind the media clip
player.seek({ time: 0 });

// Play starting from marker "First"
player.seek({ marker: "First" });

// Play starting five seconds after marker "One"
player.seek({ marker: "One", time: 5 });

Example 2

The following script randomly plays (famous) quotations. The media is an audio clip
(.wma), which does support markers and scripts, of (famous) quotations. The
afterReady listener counts the number of markers, one at the beginning of each
quotation. At the end of each quotation, there is also a embedded command script, the
afterScript listener watches for these commands, and if it is a “pause” command, it
pauses the player.

var nMarkers=0;
var events = new app.media.Events;
events.add({
 // count the number of quotes in this audio clip, save as nMarkers

afterReady: function()
 {

var g = player.markers;
while ((index = g.get({ index: nMarkers })) != null)

nMarkers++;
 },
 // Each quote should be followed by a script, if the command is to
 // pause, then pause the player.
 afterScript: function(e) {
 if (e.media.command == "pause") player.pause();
 }
});
var player = app.media.openPlayer({

rendition: this.media.getRendition("myQuotes"),
settings: { autoPlay: false },
events: events

});
// randomly choose a quotation
function randomQuote() {

var randomMarker, randomMarkerName;
 console.println("nMarkers = " + nMarkers);
 // randomly choose an integer between 1 and nMarkers, inclusive
 randomMarker = Math.floor(Math.random() * 100) % (nMarkers) + 1;
 // indicate what quotation we are playing

this.getField("Quote").value = "Playing quote " + randomMarker;
// The marker names are "quote 1", "quote 2", "quote 3", etc.

 randomMarkerName = "quote " + randomMarker;
// see the marker with the name randomMarkerName

Acrobat JavaScript Scripting Reference 457

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

 player.seek({ marker: randomMarkerName });
 player.play();
}

Action is initiated by the mouse up button action such as

try { randomQuote() } catch(e) {}

setFocus

Sets the keyboard focus to the media player and fires a Focus event
(onFocus/afterFocus). If another player or PDF object has the focus, that object
receives a Blur event (onBlur/afterBlur). If the media player already has the focus,
nothing happens. If the player is not open or not visible, an exception is thrown.

Parameters

None

Returns

Nothing

Example

See “Example 1” on page 152 for an example of usage.

stop

Stops playback of the current media, if it is playing or paused, and fires a Stop event
(onStop/afterStop). The Stop event may occur during execution of the stop()
method or afterward, depending on the player. Does nothing if the media is not playing or
paused.

Throws an exception if the player is not open.

After playback stops, the player sets the media position to either the beginning or end of
media, depending on the player. If MediaPlayer.play() is called after this, playback
starts at the beginning of media.

Parameters

None

Returns

Nothing

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaPlayer Object Methods

458 Acrobat JavaScript Scripting Reference

triggerGetRect

Fires a GetRect event (see onGetRect) to cause a docked media player to be resized.

Parameters

None

Returns

Nothing

Example

This example is similar to the one that follows onGetRect. Page 0 has a series of
(thumbnail-size) ScreenAnnots. Below is a typical Rendition action or mouse up button
JavaScript action, when the action is executed, the media clip is resized and played.

var rendition = this.media.getRendition("Clip1");
var annot = this.media.getAnnot({ nPage:0,cAnnotTitle:"ScreenClip1" });
var player = app.media.openPlayer({

rendition: rendition,
annot: annot,
settings: { windowType: app.media.windowType.docked },
events: {

onGetRect: function (e) {
var width = e.media.rect[2] - e.media.rect[0];
var height = e.media.rect[3] - e.media.rect[1];
width *= 3; // triple width and height
height *= 3;
e.media.rect[0] = 36; // move left,upper to
e.media.rect[1] = 36; // upper left-hand corner
e.media.rect[2] = e.media.rect[0]+width;
e.media.rect[3] = e.media.rect[1]+height;
return e.media.rect; // return this

}
}

});
player.triggerGetRect(); // trigger the onGetRec event

where

Reports the current media’s playback location in a MediaOffset Object. This object contains
either a time or frame property, depending on the media player and media type.

Throws an exception if the player is not open or if the player does not support where().

6.0

6.0

Acrobat JavaScript Scripting Reference 459

Acrobat JavaScript Scripting Reference
MediaReject Object

Parameters

None

Returns

MediaOffset Object

Example:
// What is the playback location in seconds?
// This code assumes that the player supports where() using time.
var where = player.where();
var seconds = where.time;
// What chapter (marker) are we in?
var marker = player.markers.get({ time: seconds });
var name = marker ? marker.name : "no marker";

MediaReject Object

A MediaReject provides information about a Rendition that was rejected by a
Rendition.select() call. It includes a reference to the original Rendition along with
the reason why it was rejected. In a MediaSelection Object returned by select(),
MediaSelection.rejects is an array of MediaReject objects.

MediaReject Object Properties

rendition

MediaSelection.rendition is a reference to the Rendition that was rejected in a
select() call.

Type: Rendition Object Access: R.

Example

Get a list of rejected renditions. The script is executed as a Rendition action.

selection = event.action.rendition.select(true);
for (var i=0; i<selection.rejects.length; i++)

console.println("Rejected Renditions: "
+ selection.rejects[i].rendition.uiName);

// now play the first available rendition.
console.println("Preparing to play " + selection.rendition.uiName);
var settings = selection.rendition.getPlaySettings();
var args = {

6.0

Acrobat JavaScript Scripting Reference
MediaSelection Object

460 Acrobat JavaScript Scripting Reference

 rendition: selection.rendition,
 annot: this.media.getAnnot({ nPage: 0, cAnnotTitle: "myScreen" }),
 settings: settings
};
app.media.openPlayer(args);

MediaSelection Object

Rendition.select() returns a MediaSelection, an object which can then be used to
create a MediaSettings Object for playback.

MediaSelection Object Properties

selectContext

MediaSelection.selectContext is a value that can be used to write a loop that
calls Rendition.select() repeatedly to do a customized selection based on any
criteria that you can test in JavaScript code.

Type: Object Access: R.

Example:
function MyTestSelection(selection)
{

// This function should test the selection as you wish and return
// true to use it or false to reject it and try another one.

}
function MyGetSelection(rendition)
{

var selection;
for(selection = rendition.select(); selection;

selection = rendition.select
({ oContext: selection.selectContext }))

{
if(MyTestSelection(selection))

break;
}
return selection;

}

6.0

Acrobat JavaScript Scripting Reference 461

Acrobat JavaScript Scripting Reference
MediaSelection Object Properties

players

MediaSelection.players is an array of strings identifying the media players that may
be used to play MediaSelection.rendition. Both the players and rendition
properties are null if no playable rendition is found.

Type: Array of String Access: R.

Example

Get a list of the players that will play the selected rendition. The code below assumes
execution as a Rendition action.

var selection = event.action.rendition.select();
for (var o in selection.players)

console.println(selection.players[o].id);

rejects

MediaSelection.rejects is an array of MediaReject Objects. These are the
Renditions that were rejected by the Rendition.select() call that returned this
MediaSelection. See MediaReject Object for details.

Type: Array of MediaReject Objects Access: R.

Example

See the Example following MediaReject.rendition for an example.

rendition

MediaSelection.rendition is the selected rendition, or null if none was playable.

Type: Rendition Object Access: R.

Example

Get the name of the selected rendition. This script is executed from a Rendition action
event.

var selection = event.action.rendition.select();
console.println("Preparing to play " + selection.rendition.uiName);

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaSettings Object

462 Acrobat JavaScript Scripting Reference

MediaSettings Object

A MediaSettings object, which appears in a MediaPlayer.settings property,
contains settings required to create and open a MediaPlayer. Many of these settings have
default values, but some are required depending on the type of player being opened and
depending on other settings. See the notes for each MediaSettings property for details.

Acrobat and the various media players will attempt to use these settings, but there is no
guarantee that they will all be honored. For example, very few players honor
MediaSettings.palindrome.

MediaSettings Object Properties

autoPlay

The MediaSettings.autoPlay property specifies whether the media clip should
begin playing automatically after the player is opened. If you set autoPlay to false, use
MediaPlayer.play() to begin playback. The default value is true.

Type: Boolean Access: R/W.

Example

See the examples following afterReady and players.

baseURL

MediaSettings.baseURL is the base URL to be used to resolve any relative URLs used
in the media clip, e.g. if the media opens a web page. There is no default value; if baseURL is
not specified, the interpretation of a relative URL will vary depending the media player, but
in most cases will not work.

Type: String Access: R/W.

bgColor

MediaSettings.bgColor specifies the background color for the media player
window. The array may be in any of the color array formats supported by Acrobat
JavaScript.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 463

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

If bgColor is not specified, the default value depends on the window type:

● Docked: White

● Floating: The window background color specified in the operating system control panel

● Full Screen: The full screen background color specified in the user’s Acrobat preferences

Type: Color Array Access: R/W.

Example
// Red background
settings.bgColor = ["RGB", 1, 0, 0];

bgOpacity

MediaSettings.bgOpacity specifies the background opacity for the media player
window. The value may range from 0.0 (fully transparent) to 1.0 (fully opaque). The default
value is 1.0.

Type: Number Access: R/W.

endAt

MediaSettings.endAt defines the ending time or frame for playback. This may be an
absolute time or frame value, or a marker name, or a marker plus a time or frame, as
described under MediaOffset Object. Playback ends at the specified time or frame, or as
close to that point as the media player is able to stop. If endAt is not specified, the default
value is the end of media.

See also startAt.

Type: MediaOffset Object Access: R/W.

Example

The following script plays an audio clip beginning 3 seconds into the media to 8 seconds
into the media.

var player = app.media.openPlayer({
 rendition: this.media.getRendition("myAudio"),
 doc: this,
 settings: {
 startAt: 3,
 endAt: 8
 }
 });

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

464 Acrobat JavaScript Scripting Reference

data

MediaSettings.data, often referred to as the MediaData object, is an object that
a media player can use to read its media clip data, whether from an external file or
embedded in the PDF. The contents of this object are not directly usable from JavaScript.

This data object is obtained in several ways, from app.media.getAltTextData(),
app.media.getURLData(), or indirectly via Rendition.getPlaySettings().
The data object may be bound to the rendition’s document, so it may become unavailable
if the document is closed.

Type: Object Access: R.

Example

See the examples that follow app.media.getURLData()

duration

MediaSettings.duration is the amount of time in seconds that playback will take. If
not specified, the default is to play the entire media, or the amount of time between the
startAt and endAt points if either of those is specified.

Note that the duration may be longer than the entire media length or the difference
between the startAt and endAt points. In that case, playback continues to the end of
media or to the endAt point, and then playback pauses at that location until the duration
elapses.

Type: Number Access: R/W.

Example

Play a floating window with infinite duration. The “Playback Location” (from the UI) of the
rendition is a floating window. The code below is executed from a form button. The floating
window will remain open after the player has reached the end of the media. We close the
player before opening it again to avoid stacked floating windows.

If this script is executed from a Rendition action, the rendition could be specified through
the UI, and closing the player would not be necessary.

var rendition = this.media.getRendition("Clip");
if (player && player.isOpen)

try { player.close(app.media.closeReason.done); } catch(e) {};
var player = app.media.openPlayer({
 rendition: rendition,
 settings: { duration: Infinity }
});

6.0

6.0

Acrobat JavaScript Scripting Reference 465

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

floating

MediaSettings.floating is an object containing properties that define the location
and style of a floating window.

This object is ignored unless MediaSettings.windowType has a value of
app.media.windowType.floating.

Type: Object Access: R.

Properties of floating

Defaults are used for all the floating settings if they are not specified.

6.0

Property Type Description

align Number Specifies how the floating window is to be
positioned relative to the window specified by
the over property. The value of align is one
of the values of app.media.align.

over Number Specifies what window the floating window is
to be aligned relative to. The value of over is
one of the values of app.media.over.

canResize Number Specifies whether the floating window may be
resized by the user. The value of canResize
is one of the values of
app.media.canResize.

hasClose Boolean If true, the floating window should have a
close window control button.

hasTitle Boolean If true, a title should be displayed in the title
bar.

title String This title to be displayed if hasTitle is
true.

ifOffScreen Number Specifies what action should be taken if the
floating window is positioned totally or
partially offscreen. The value of ifOffScreen is
one of the values of
app.media.ifOffScreen.

rect Array of four
Numbers

An array of screen coordinates specifying the
location and size of the floating window.
Required if width and height are not
given.

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

466 Acrobat JavaScript Scripting Reference

Example
var rendition = this.media.getRendition("myClip");
var floating = {

align: app.media.align.topCenter,
over: app.media.over.appWindow,
canResize: app.media.canResize.no,
hasClose: true,
hasTitle: true,
title: rendition.altText,
ifOffScreen: app.media.ifOffScreen.forceOnScreen,
width: 400,
height: 300

};
var player = app.media.openPlayer({

rendition: rendition,
settings: {

windowType: app.media.windowType.floating,
floating: floating

}
});

layout

MediaSettings.layout is a value chosen from the app.media.layout
enumeration, which defines whether and how the content should be resized to fit the
window. The default value varies with different media players.

Type: Number Access: R/W.

monitor

For a full screen media player, MediaSettings.monitor determines which display
monitor will be used for playback. This may be either a Monitor Object or a Monitors
Object. If it is an array, the first element (which is a Monitor object) is used.

width Number The width of the floating window. Required if
rect is not given.

height Number The height of the floating window. Required if
rect is not given.

6.0

6.0

Property Type Description

Acrobat JavaScript Scripting Reference 467

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

Type: Monitor or Monitors object Access: R/W.

N O T E : Only the rect property MediaSettings.monitor.rect (in the case of a
Monitor object) or MediaSettings.monitor[0].rect (for a Monitors object)
is used for playback.

See monitorType (below) for a discussion of the relationship between the monitor and
monitorType properties.

Example

Play a media clip in full screen from a form button.

var player = app.media.openPlayer({
rendition: this.media.getRendition("Clip"),

 settings: {
 monitor: app.monitors.primary(),

 windowType: app.media.windowType.fullScreen,
}

});

N O T E : The user trust manager settings must allow fullscreen play back.

monitorType

MediaSettings.monitorType is an app.media.monitorType value that
represents the type of monitor to be selected for playback for a floating or full screen
window.

Type: Number Access: R/W.

What is the difference between the monitor and monitorType properties? The
monitor property specifies a specific monitor on the current running system by defining
its rectangle. The monitorType specifies a general category of monitor such as primary,
secondary, best color depth, and so forth. A PDF file that does not use JavaScript cannot
specify a particular monitor, but it can specify a monitorType. When a monitorType is
specified in a call to app.media.createPlayer() or app.media.openPlayer(),
JavaScript code in media.js fetches the list of actual monitors available on the running
system and then uses the monitorType to select one of those monitors for playback. This
monitor rectangle is then used when MediaPlayer.open() is called to select the actual
monitor.

Example

Play a media clip in full screen on a monitor with the best color depth from a form button.

var player = app.media.openPlayer({
rendition: this.media.getRendition("Clip"),

 settings: {
 monitorType: app.media.monitorType.bestColor,

6.0

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

468 Acrobat JavaScript Scripting Reference

 windowType: app.media.windowType.fullScreen,
}

});

page

For a docked media player, MediaSettings.page is the document page number in
which the player should be docked. For other types of media players, this property is
ignored.

Type: Number Access: R/W.

See also MediaPlayer.page.

palindrome

If MediaSettings.palindrome is true, the media plays once normally and then
plays in reverse back to the beginning. If repeat is specified, then this forward-and-
reverse playback will repeat that many times. Each complete forward and reverse playback
counts as one repeat.

The default value is false.

Type: Boolean Access: R/W.

N O T E : Most media players do not support palindrome and ignore this setting.

Example

Use QuickTime, which supports palindrome, to view the media clip.

var playerList = app.media.getPlayers().select({ id: /quicktime/i });
var settings = { players: playerList, palindrome: true };
var player = app.media.openPlayer({ settings: settings });

The above code should be run within a Rendition action event with an associated rendition.

players

MediaSettings.players is an array of objects that represent the media players that
may be used to play this rendition. JavaScript code does not usually access this array
directly, but passes it through from Rendition.select() to the settings object for
app.media.createPlayer().

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 469

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

Type: Players or Array of String Access: R/W.

Example

List the available players that can play this rendition. This script is run as a Rendition action
with associated rendition.

var player = app.media.openPlayer({ settings: {autoPlay: false} });
console.println("players: " + player.settings.players.toSource());

// Sample output to the console:
players: [{id:"vnd.adobe.swname:ADBE_MCI", rank:0},
{id:"vnd.adobe.swname:AAPL_QuickTime", rank:0},
{id:"vnd.adobe.swname:RNWK_RealPlayer", rank:0},
{id:"vnd.adobe.swname:MSFT_WindowsMediaPlayer", rank:0}]

rate

MediaSettings.rate defines the playback rate, where 1 is normal playback, .5 is half-
speed, 2 is doublespeed, -1 is normal speed in reverse, and so on.

Many players and media types are limited in the values they support for rate and will
choose the closest playback rate that they support.

The default value is 1.

Type: Number Access: R/W.

Example

Play a media clip at doublespeed. This script is executed as a Rendition action.

var player = app.media.createPlayer();
player.settings.rate = 2;
player.open();

repeat

MediaSettings.repeat is the number of times the media playback should
automatically repeat. The default of value of 1 causes the media to be played once.

Many players support only integer values for repeat, but some allow non-integer values
such as 1.5. A value of Infinity plays the media clip continuously.

The default value is 1.

Type: Number Access: R/W.

6.0

6.0

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

470 Acrobat JavaScript Scripting Reference

Example

Play a media clip from a Rendition action continuously.

var player = app.media.openPlayer({settings: { repeat: Infinity } });

showUI

MediaSettings.showUI, a boolean, specifies whether the controls of the media player
should be visible or not.

The default value is false.

Type: Boolean Access: R/W.

Example

Show the controls of the media player. This script is executed as a Rendition action.

var player = app.media.createPlayer();
player.settings.showUI = true;
player.open();

or

app.media.openPlayer({settings: {showUI: true} });

startAt

MediaSettings.startAt defines the starting time or frame for playback. This may be
an absolute time or frame value, or a marker name, or a marker plus a time or frame, as
described under MediaOffset. Playback starts at the specified time or frame, or as close to
that point as the media player is able to stop. If startAt is not specified, the default value is
the beginning of media.

Type: MediaOffset Object Access: R/W.

See also endAt.

Example

See the example that follows endAt.

visible

MediaSettings.visible, a boolean, specifies whether the player should be visible.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 471

Acrobat JavaScript Scripting Reference
MediaSettings Object Properties

The default value is true.

Type: Boolean Access: R/W.

Example

Set a docked media clip to play audio only. Script is executed as a Rendition action.

var args = {
settings: {

visible: false,
 windowType: app.media.windowType.docked
 }
};
app.media.openPlayer(args);

See also MediaPlayer.visible.

volume

MediaSettings.volume specifies the playback volume. A value of 0 is muted, a value
of 100 is normal (full) volume; values in between are intermediate volumes. Future media
players may allow values greater than 100 to indicate louder than normal volume, but none
currently do.

The default value is 100.

Type: Number Access: R/W.

windowType

MediaSettings.windowType is a value chosen from the app.media.windowType
enumeration, which defines what type of window the MediaPlayer should be created in.

If you use the low-level function doc.media.newPlayer(), the default value for
windowType is app.media.windowType.docked.

If you use the higher-level createPlayer() or openPlayer() functions of the
App.media Object, the default value is determined as follows:

● If an annot is provided (see the description of the PlayerArgs Object), the default is
app.media.windowType.docked.

● If a settings.floating object is provided (see the description of the PlayerArgs Object),
the default is app.media.windowType.floating.

● Otherwise, the default is undefined.

6.0

6.0

Acrobat JavaScript Scripting Reference
Monitor Object

472 Acrobat JavaScript Scripting Reference

Type: Number Access: R/W.

Example

The script below creates media players with different window types. Script is executed as a
Rendition action, so the selection of the specification of the rendition is not needed.

// Docked player that will be played in the associated ScreenAnnot
app.media.openPlayer({

settings: { windowType: app.media.windowType.docked }
});
// Play in full screen mode, see also monitor and monitorType
app.media.openPlayer({

settings: { windowType: app.media.windowType.fullScreen }
});
// Show media clip in a floating window, also, see the floating property
var args = {
 settings: {
 windowType: app.media.windowType.floating,
 floating: {
 title: "A. C. Robat",
 width: 352,
 height: 240,
 }
 }
};

app.media.openPlayer(args);

Monitor Object

A Monitor object represents an individual display monitor. A Monitor object can be
obtained from app.media.monitors, which returns an array of all monitors connected
to the system. app.media.monitors is a Monitors Object so the methods of the
Monitors object can be used to select or filter out monitors from a multi-monitor system
based on different criteria. See the Monitors object for details.

The Monitor object and the Monitors object are used in MediaSettings.monitor.

Monitor Object Properties

colorDepth

Monitor.colorDepth is the color depth of the monitor, i.e. the number of bits per
pixel.

6.0

Acrobat JavaScript Scripting Reference 473

Acrobat JavaScript Scripting Reference
Monitor Object Properties

Type: Number Access: R.

Example

Get the primary monitor, and check its color depth. The Monitors.primary() method
is use to select the primary monitor.

var monitors = app.monitors.primary();
console.println("Color depth of primary monitor is "

+ monitors[0].colorDepth);

isPrimary

Monitor.primary, a boolean, is true for the primary monitor, false for all other
monitors.

Type: Boolean Access: R.

Example

Get the widest monitor, and see if its the primary monitor.

var monitors = app.monitors.widest();
var isIsNot = (monitors[0].isPrimary) ? "is" : "is not";
console.println("The widest monitor "+isIsNot+" the primary monitor.");

rect

Monitor.rect is a rectangle representing a boundaries of the monitor in virtual desktop
coordinates.

The origin of the virtual desktop origin is the top left corner of the primary monitor, so the
primary monitor’s bounds are always in the form [0, 0, right, bottom]. Secondary monitors
may have positive or negative values in their bounds arrays, depending on where they are
positioned relative to the primary monitor.

Type: Rectangle Access: R.

workRect

Monitor.workRect is a rectangle representing a monitor s workspace boundaries in virtual
desktop coordinates. See Monitor.rect for information about these coordinates.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Monitors Object

474 Acrobat JavaScript Scripting Reference

The workspace is the area of a monitor that is normally used for applications, omitting any
docked toolbars, taskbars, or the like. For example, running Windows on a single 800x600
display, Monitor.rect is [0, 0, 800, 600]. With a standard Windows taskbar 30 pixels
high and always visible at the bottom of the screen, Monitor.workRect is [0, 0, 800, 570].

Type: Rectangle Access: R.

Monitors Object

A Monitors object is a read-only array of Monitor Object, each one representing a display
monitor.

The app.monitors property returns a Monitors object that includes every monitor
connected to the user’s system. JavaScript code can loop through this array to get
information about the available monitors and select one for a full screen or popup media
player.

Monitors also has a number of filter methods that select one or more monitors based on
various criteria.

All of the monitor selection options provided in the PDF file format are implemented as
calls to these filter methods, which are written in JavaScript code in media.js.

None of the Monitors filter methods modify the original Monitors object. They each return
a new Monitors object which normally contains one or more Monitor objects. If a single
monitor matches the filtering criterion better than any other, the result Monitors object
contains that one monitor. If more than one monitor satisfies the filtering criterion equally
(e.g. for the bestColor() method, if more than one monitor has the same, greatest color
depth), then the result contains all of those monitors.

Several of the filter methods have an optional minimum or require parameter. If this
parameter is specified and no monitor meets that minimum requirement, then the result
Monitors object is empty. Otherwise, the result will always contain at least one monitor, if
the original Monitors object was not empty.

Wherever a filter method refers to height, width, or area, these are dimensions in pixels, not
physical size.

A Monitors object is not actually an Array type, but it can be used as if it were a read-only
array with numbered elements and a length property.

Monitors Object Properties

A Monitors object works like an Array, where each array element is a Monitor Object that
represents a single monitor. The Monitors object returned by app.monitors is unsorted
the monitors are not listed in any particular order. Elements of the Monitors object can be
accessed using the usual array notation.

Acrobat JavaScript Scripting Reference 475

Acrobat JavaScript Scripting Reference
Monitors Object Methods

Example.
var monitors = app.monitors;
for (var i = 0; i< monitors.length; i++)
console.println("monitors["+i+"].colorDepth = "+monitors[i].colorDepth);

Monitors.length contains the number of elements in the Monitors object. For the
Monitors object returned by app.monitors, this is the number of monitors in the user’s
system. For a Monitors object returned by one of the filter methods, this number may be
smaller.

Monitors Object Methods

bestColor

The Monitors.bestColor() method returns a copy of the Monitors Object, filtered to
include the monitor(s) with the greatest color depth.

If nMinColor is specified, returns an empty Monitors array if the best color depth is less
than nMinColor.

Parameters

Returns

A Monitors Object

Example
var monitors = app.monitors.bestColor(32);
if (monitors.length == 0)

console.println("Cannot find the required monitor.”);
else

console.println("Found at least one monitor.");

bestFit

The Monitors.bestFit() method returns a copy of the Monitors Object, filtered to
include only the smallest monitor(s) with at least the specified nWidth and nHeight in
pixels.

6.0

nMinColor (optional) The minimal color depth required of the
monitor.

6.0

Acrobat JavaScript Scripting Reference
Monitors Object Methods

476 Acrobat JavaScript Scripting Reference

Parameters

Returns

A Monitors Object

desktop

Monitors.desktop() creates a new Monitors Object containing one Monitor which
represents the entire virtual desktop. In this Monitor object, the rect property is the union
of every rect in the original Monitors object, the workRect property is the union of
every workRect in the original Monitors object, and colorDepth is the minimum
colorDepth value found in the original Monitors object.

Parameters

None

Returns

A Monitors Object

N O T E : The desktop() method is normally called directly on a Monitors object returned
by app.monitors. If that Monitors object is first filtered by any of its other
methods, then the desktop() method does the same calculations listed above
with that subset of the monitors.

document

The Monitors.document() method returns a copy of the Monitors Object, filtered to
include the monitor(s) that display the greatest amount of the document, as specified by
the document object parameter doc.

If the document does not appear on any of the monitors in the original Monitors object,
then returns an empty Monitors array if bRequire is true or a Monitors array containing
at least one arbitrarily chosen monitor from the original array if bRequire is false or
omitted.

nWidth Minimum width of the best fit monitor

nHeight Minimum height of the best fit monitor.

bRequire (optional) If no monitors have at least the specified
width and height, then returns an empty Monitors
array if bRequire is true, or a Monitors array
containing the largest monitor(s) if bRequire is
false or omitted.

6.0

Acrobat JavaScript Scripting Reference 477

Acrobat JavaScript Scripting Reference
Monitors Object Methods

Parameters

Returns

A Monitors Object

filter

Monitors.filter() returns a copy of the Monitors Object, filtered by calling a ranker
function for each monitor in the list. The ranker function takes a Monitor parameter and
returns a numeric rank. The return value from filter() is a Monitors array containing the
monitors which had the highest rank (either a single monitor, or more than one if there was
a tie).

Parameters

Returns

A Monitors Object

N O T E : Most of the other Monitors filtering functions are implemented as filter() calls.

Example:

This is the implementation of Monitors.bestColor(minColor) from media.js:
Returns a Monitors object containing the monitor(s) that have the greatest color depth. If
minColor is specified, returns an empty Monitors array if the best color depth is less than
minColor.

bestColor: function(minColor)
{

return this.filter(
function(m) { return m.colorDepth; }, minColor);

}

doc The document object of the document

bRequire (optional) A boolean. See the description above.

6.0

fnRanker A (ranker) function that takes a Monitor parameter and
and returns a numeric rank

nMinRank (optional) If nMinRank is undefined, filter() always
includes at least one monitor from the original list
(unless the original list was empty). If nMinRank is
specified, then filter() returns an empty Monitors
array if no monitors had at least that rank according to
the ranker function.

Acrobat JavaScript Scripting Reference
Monitors Object Methods

478 Acrobat JavaScript Scripting Reference

largest

Monitors.largest() returns a copy of the Monitors Object, filtered to include the
monitor(s) with the greatest area in pixels.

Parameters

Returns

A Monitors Object

leastOverlap

The Monitors.leastOverlap() method returns a copy of the Monitors Object,
filtered to include the monitor(s) that contain the smallest amount of the rectangle, as
specified by the rect parameter.

Parameters

Returns

A Monitors Object

6.0

nMinArea (optional) If the optional parameter nMinArea, a
number, is specified, largest() returns an empty
Monitors array if that greatest area is less than that
value.

6.0

rect A rectangle, an array of four numbers in screen
coordinates.

maxOverlapArea (optional) If maxOverlapArea is specified, the result
Monitors array contains only those monitors which
contain at least that much area of the rectangle, or an
empty Monitors array if no monitors contain that
much area of the rectangle.

Acrobat JavaScript Scripting Reference 479

Acrobat JavaScript Scripting Reference
Monitors Object Methods

mostOverlap

The Monitors.mostOverlap() method returns a copy of the Monitors Object, filtered
to include the monitor(s) that contain the largest amount of the rectangle, as specified by
the rect parameter.

Parameters

Returns

A Monitors Object

nonDocument

The Monitors.nonDocument() method returns a copy of the Monitors Object, filtered
to include the monitor(s) that display none of, or the least amount of the document.

Parameters

Returns

A Monitors Object

6.0

rect A rectangle, an array of four numbers in screen
coordinates.

minOverlapArea (optional) If there is no monitor with at least that much
overlapping area, then returns an empty Monitors array if
minOverlapArea is specified, or a Monitors array
containing at least one arbitrarily chosen monitor from
the original array if minOverlapArea is omitted.

6.0

doc The document object of the target document

bRequire (optional) bRequire is a boolean which determines the
return value when there is no monitor that is completely
clear of the document. If true, nonDocument() returns
an empty, or if false or omitted, nonDocument() returns
a Monitors array containing at least one arbitrarily chosen
monitor from the original Monitors array.

Acrobat JavaScript Scripting Reference
Monitors Object Methods

480 Acrobat JavaScript Scripting Reference

primary

Monitors.primary() returns a copy of the Monitors Object, filtered by removing all
secondary monitors, leaving only the primary monitor if it was present in the original list.

If the primary monitor was not present in the original list, returns a Monitors array
containing at least one arbitrarily chosen monitor from the original list.

Parameters

None

Returns

A Monitors Object

Example

Get the primary monitor, and check its color depth.

var monitors = app.monitors.primary();
// recall that each element in a monitors object is a monitor object,
// this code uses monitor.colorDepth
console.println("Color depth of primary monitor is "

+ monitors[0].colorDepth);

secondary

Monitors.secondary() returns a copy of the Monitors Object, filtered by removing
the primary monitor, returning only secondary monitors.

If the original Monitors object contained only the primary monitor and no secondary
monitors, returns the original list.

Parameters

None

Returns

A Monitors Object

select

Monitors.select() returns a copy of the Monitors Object, filtered according
nMonitor, a monitor selection value as used in PDF and enumerated in
app.media.monitorType.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 481

Acrobat JavaScript Scripting Reference
Monitors Object Methods

The doc is required when nMonitor is app.media.monitorType.document or
app.media.monitorType.nonDocument, and ignored for all other nMonitor
values.

These selection values correspond directly to the various Monitors filter methods.
select() calls the corresponding filter method, and then, in most cases, also filters with
primary() as a tie-breaker in case more than one monitor matches the main filter. See
the code in media.js for details.

Parameters

Returns

A Monitors Object

Example:
// These two calls are equivalent:
settings.monitor =
app.monitors().select(app.media.monitorType.document, doc);
settings.monitor = app.monitors().document(doc).primary();

tallest

Monitors.tallest() returns a copy of the Monitors Object, filtered to include only
the monitor(s) with the greatest height in pixels.

Parameters

Returns

A Monitors Object

nMonitor The monitor type, a number from
app.media.monitorType.

doc A document object. The parameter is required if
nMonitor is either app.media.monitorType.document
or app.media.monitorType.nonDocument, ignored
otherwise.

6.0

nMinHeight (optional) If nMinHeight is specified and no monitor has at
least that height, the return value is an empty Monitors array.

Acrobat JavaScript Scripting Reference
OCG Object

482 Acrobat JavaScript Scripting Reference

widest

Monitors.widest() returns a copy of the Monitors Object, filtered to include only the
monitor(s) with the greatest width in pixels.

Parameters

Returns

A Monitors Object

OCG Object

An OCG object represents an Optional Content Group in a PDF file. Content in the file can
“belong” to one or more Optional Content Groups. Content belonging to one or more OCGs
is referred to as “Optional Content” and its visibility is determined by the on/off states of the
OCGs to which it belongs. In the simplest case, optional content will belong to a single OCG
with the content being visible when the OCG is on and hidden when the OCG is off. More
advanced visibility behavior can be achieved by using multiple OCGs and different visibility
mappings.

Use doc.getOCGs to get an array of OCG objects for a PDF document.

The methods doc.addWatermarkFromFile and doc.addWatermarkFromText
add watermarks in an OCG.

See the PDF Reference, Section 4.10, for additional details on Optional Content Groups.

OCG Properties

constants

Each instance of an OCG object inherits this property, which is a wrapper object for holding
various constant values.

6.0

nMinWidth (optional) If nMinWidth is specified and no monitor has at least
that width, the return value is an empty Monitors array.

7.0

Acrobat JavaScript Scripting Reference 483

Acrobat JavaScript Scripting Reference
OCG Properties

intents Object

An OCG’s intent array can contain arbitrary strings, but those contained in this object are
the only ones recognized by Acrobat.

states Object

The states object is used to set the initial state of the OCG, see initState.

initState

This property is used to determine whether this OCG is on or off by default. See the states
Object for possible values.

Type: Boolean Access: R/W.

Example

Set an initial state of an OCG to off.

var ocgs = this.getOCGs();
ocgs[0].initState.constants.states.off;

locked

This property is used to determine whether this OCG is locked. If an OCG is locked then its
on/off state cannot be toggled through the UI.

Type: Boolean Access: R/W.

Property Description

design Designates a “Design” intent in an OCG object.

view Designates a “View” intent in an OCG object.

Property Description

on Designates an OCG state of "On".

off Designates an OCG state of "Off".

7.0 � � �

7.0 � � �

Acrobat JavaScript Scripting Reference
OCG Properties

484 Acrobat JavaScript Scripting Reference

name

The text string seen in the UI for this OCG. It can be used to identify OCGs, although it is not
necessarily unique.

N O T E : In Acrobat 6.0, the name is read-only; for Acrobat 7.0, it is read/write.

Type: String Access: R/W.

Example
/* Toggle the Watermark OCG */
function ToggleWatermark(doc)
{

var ocgArray = doc.getOCGs();
for (var i=0; i < ocgArray.length; i++) {

if (ocgArray[i].name == "Watermark") {
ocgArray[i].state = !ocgArray[i].state;

}
}

}

state

Represents the current on/off state of this OCG.

Type: Boolean Access: R/W.

Example

Turn on all the OCGs in the given document.

function TurnOnOCGsForDoc(doc)
{

var ocgArray = doc.getOCGs();
for (var i=0; i < ocgArray.length; i++)

ocgArray[i].state = true;
}

6.0 � � �

6.0

Acrobat JavaScript Scripting Reference 485

Acrobat JavaScript Scripting Reference
OCG Methods

OCG Methods

getIntent

Returns this OCG’s intent array.

An OCG will affect the visibility of content only if it has onstants.intents.view as an
intent.

See also setIntent and the intents Object.

Parameters

None

Returns

An array of strings. See constants.intents for possible values.

setAction

Registers a JavaScript expression to be evaluated after every state change for this OCG.

N O T E : This method will overwrite any action already defined for this OCG.

Parameters

Returns

Nothing

Example
/* Beep when the given ocg is changed */
function BeepOnChange(ocg)
{

ocg.setAction("app.beep()");
}

7.0

6.0

cExpr The expression to be evaluated after the OCG state changes.

Acrobat JavaScript Scripting Reference
PlayerInfo Object

486 Acrobat JavaScript Scripting Reference

setIntent

Sets this OCG’s intent array. An OCG should only affect the visibility of content if this array
contains constants.intents.view. See the intents Object for possible values.

See also getIntent and the intents Object.

Parameters

Returns

Nothing

Example

Set the intent of all OCGs in the document to both View and Design

var ocgs = this.getOCGs();
for (i=0; i < ocgs.length; i++) {

ocgs[i].setIntent([ocgs[i].constants.intents.view,
ocgs[i].constants.intents.design]);

}

PlayerInfo Object

A PlayerInfo object represents a media player that is available for media playback. The
app.media.getPlayers() function returns a PlayerInfoList Object, which is a
collection of PlayerInfo objects.

PlayerInfo Object Properties

id

PlayerInfo.id represents a media player plug-in and associated media player. This
string is not localized and is not intended for display to the user. This string may be used in
the MediaPlayer.settings.players array when creating a MediaPlayer, and it is
also found in the MediaPlayer.id property after opening a player.

Type: String Access: R.

7.0 � � �

aIntentArray An array of strings to be used as this OCG’s intent array.

6.0

Acrobat JavaScript Scripting Reference 487

Acrobat JavaScript Scripting Reference
PlayerInfo Object Properties

Example

List player info for all media players that play "video/mpeg".

var playerInfoList = app.media.getPlayers("video/mpeg");

for (var i=0; i < playerInfoList.length; i++) {
 console.println("id: " + playerInfoList[i].id)
 console.println("name: " + playerInfoList[i].name)
 console.println("version: " + playerInfoList[i].version)
}

mimeTypes

The PlayerInfo.mimeTypes property returns an array of strings listing the MIME types
that this media player supports.

Type: Array of String Access: R.

Example:
var qtinfo = app.media.getPlayers().select({id: /quicktime/i })[0];
console.println(qtinfo.mimeTypes);

name

PlayerInfo.name is the name of the media player. This string is localized according to
the current language as found in app.language. It is suitable for display in list boxes and the
like, but not for direct comparisons in JavaScript code.

Type: String Access: R.

version

PlayerInfo.version is a string containing the version number of the media player.
For most players, it is the version number of the underlying media player that is installed on
the user’s system. This string is in dotted decimal format, e.g. 7.4.030.1170 .

Type: String Access: R.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
PlayerInfo Object Methods

488 Acrobat JavaScript Scripting Reference

PlayerInfo Object Methods

canPlay

PlayerInfo.canPlay() checks to see if the media player can be used for playback,
taking the user’s security settings into account.

If the parameter bRejectPlayerPrompt is true, then the method returns false if
using this player would result in a security prompt. Otherwise the method returns true if
playback is allowed either with or without a security prompt. (This method itself never
triggers a security prompt, but a later attempt to create a media player may.)

Parameters

Returns

Boolean

honors

This method asks a player plugin if it can honor all of the settings, methods, and events
listed in the args parameter. The answer is not guaranteed to be correct, but is a best
guess of the player plugin without actually trying to open a media player. For example, if
args.URL is provided, the scheme (such as "http://") is checked, but
PlayerInfo.honors() does not try to actually open the URL.

N O T E : Acrobat 6.0 compatibility: PlayerInfo.honors() is supported only on Acrobat
7 and above. The Acrobat SDK provides JavaScript source code that can be copied
into a PDF to provide compatibility with both Acrobat 6 and Acrobat 7. This code
uses hard coded tests for Acrobat 6 and calls PlayerInfo.honors() on newer
versions of Acrobat. See the playerHonors Function for details.

PlayerInfo.honors and the HonorsArgs (see HonorsArgs Object) are similar to the
MH (“must honor”) entries in the PDF format, some of which can be set in the Playback
Requirements panel of the Rendition Settings for a multimedia rendition. The honors

6.0

oDoc A document object

bRejectPlayerPrompt A boolean, which if true, the method returns false
 if using this player would result in a security prompt,
and if false, returns true if playback is allowed
either with or without a security prompt. The default is
false.

7.0

Acrobat JavaScript Scripting Reference 489

Acrobat JavaScript Scripting Reference
PlayerInfo Object Methods

method provides a way to choose a player that meets playback requirements dynamically
in JavaScript code instead of statically in the PDF file.

Parameters

Returns

Boolean, true if the player plugin can honor everything in the args object.

Example

Play a media clip using a player that supports specific features.

function playWithRequirements(args)
{

var plugins = app.media.getPlayers(args.mimeType)
if(plugins)
{

for (var plugin in plugins)
{

if(plugin.honors(args))
{

args.players = [plugin];
return app.media.openPlayer(args);

}
}

}
}

Play using a media player that has these capabilities for an AVI file on an http URL: It can
turn off autoplay, supports the pause method, the seek method and startAt setting using a
marker+time offset, and supports the Ready and Close events.

playWithRequirements({
mimeType: 'video/avi',
URL: 'http://www.foo.com/bar.avi',
settings:
{

autoPlay: false,
startAt: { marker: 'test', time: 1 },

},
methods:
{

pause:[],
seek[{ marker: 'test', time: 1 }],

},

args The HonorsArgs Object to be tested. The HonorsArgs Object is
very similar to the parameter, PlayerArgs Object, used by the
app.media.openPlayer()method. In fact, any PlayerArgs
object can be used as an HonorsArgs. HonorsArgs also allows a
few other options that are used only with honors().

Acrobat JavaScript Scripting Reference
PlayerInfo Object Methods

490 Acrobat JavaScript Scripting Reference

events:
{

afterReady: doAfterReady(e),
onClose: doOnClose(e),

},
});

HonorsArgs Object

The HonorsArgs object lists settings, methods, and events that are used in a call to
PlayerInfo.honors (or playerHonors--in this discussion we will use
“PlayerInfo.honors” to refer to both).

Any PlayerArgs Object (as used in a call to app.media.openPlayer) may be used as an
HonorsArgs object, or an HonorsArgs object can be built from scratch to be used in a
PlayerInfo.honors call.

If the same object is used in app.media.openPlayer and PlayerInfo.honors, be
aware that the two functions interpret unknown args differently:
app.media.openPlayer ignores settings or events that it does not know about, but
PlayerInfo.honors returns false if there are any settings, methods, or events it does
not recognize.

For example, { settings: { upsideDown: true } } would be allowed in an
app.media.openPlayer call. There is no such setting as “upsideDown”, so the setting is
ignored. But in a PlayerInfo.honors call, this unknown setting would cause
PlayerInfo.honors to return false.

Below is a complete list of the properties allowed in the HonorsArgs object. This illustration
is loosely in the form of a JavaScript object literal, but it shows the type or description of
each property instead of an actual property value:

args =
{

mimeType: string,
URL: string,
settings:
{

autoPlay: boolean,
baseURL: string,
bgColor: Acrobat color array,
duration: number,
endAt: MediaOffset,
layout: number,
palindrome: boolean,
rate: number,
repeat: number,
showUI: boolean,
startAt: MediaOffset,
visible: boolean,
volume: number,

},
methods:

Acrobat JavaScript Scripting Reference 491

Acrobat JavaScript Scripting Reference
PlayerInfo Object Methods

{
pause: [],
play: [],
seek: [MediaOffset],
stop: [],
where: [],

},
events:
{

Done: anything, onDone: anything, afterDone: anything,
Error: anything, onError: anything, afterError: anything,
Escape: anything, onEscape: anything, afterEscape: anything,
Pause: anything, onPause: anything, afterPause: anything,
Play: anything, onPlay: anything, afterPlay: anything,
Ready: anything, onReady: anything, afterReady: anything,
Script: anything, onScript: anything, afterScript: anything,
Seek: anything, onSeek: anything, afterSeek: anything,
Status: anything, onStatus: anything, afterStatus: anything,
Stop: anything, onStop: anything, afterStop: anything,

},
}

Any PlayerArgs object (as used in a call to app.media.openPlayer) may be used as an
HonorsArgs object, or you can build an HonorsArgs object from scratch.

Additional comments on the above listing.

● The mimeType, URL, and settings properties are identical to the corresponding
properties in PlayerArgs. The mimeType property is required; playerInfo.honors
does not try to determine the MIME type from the URL’s file extension. URL can be a real
URL or a fictitious one as long as it’s in the correct URL format. See MediaSettings Object
for a description of these properties.

● The methods property lists the MediaPlayer methods that the player must support for
the given MIME type. The value of each methods property is an array containing the
arguments that would be passed into a call to that method. In Acrobat 7, the only player
method that has any arguments is seek, which takes a single MediaOffset argument.
See MediaPlayer Object for a description of these properties.

If you use the same object as a PlayerArgs and an HonorsArgs, it can have a methods
property, even though a PlayerArgs normally doesn’t have that property. Anywhere a
PlayerArgs is used, the unknown property is ignored.

● The events property lists the events that the player must support. As shown above,
each event can be named with the on or after prefix, or no prefix. All three mean the
same thing; if a player supports a particular “on” event, then it always supports the
corresonding “after” event (because the “after” events are generated in the same way for
all players). See EventListener Object for a description of these properties.

The notation anything means literally that: in the HonorsArgs, these values are just
placeholders. So, the events object from a PlayerArgs works in an HonorsArgs:
events:
{

Acrobat JavaScript Scripting Reference
PlayerInfo Object Methods

492 Acrobat JavaScript Scripting Reference

afterReady: doAfterReady(e),
onClose: doOnClose(e),

},

Or, if you are coding an HonorsArgs from scratch, you can simplify the notation if you
wish:
events: { Ready: true, Close: true },

playerHonors Function

This function is provided as JavaScript source code which can be copied into a PDF file as a
document script. It performs the same tests as the PlayerInfo.honors method in Acrobat 7,
but it works on Acrobat 6 as well.

When running on Acrobat 6, playerHonors uses hard coded tests that match the
capabilities of the media players shipped with Acrobat 6.

When running on Acrobat 7 and greater, playerHonors calls PlayerInfo.honors.

Parameters

Returns

Boolean, true if the player plugin can honor everything in the args object.

Example

This is the same Example as shown for PlayerInfo.honors, but using the
playerHonors() JavaScript function. This works on both Acrobat 6 and 7, provided a
copy of the playerHonors source code is placed into the target PDF.

function playWithRequirements(args) {
var plugins = app.media.getPlayers('video/avi')
if(plugins) {

for (var plugin in plugins) {
if(playerHonors(doc, plugin, args)) {

args.players = [plugin];
return app.media.openPlayer(args);

}
}

}
}

doc A Doc Object.

info A PlayerInfo Object.

args The HonorsArgs Object to be tested.

Acrobat JavaScript Scripting Reference 493

Acrobat JavaScript Scripting Reference
PlayerInfoList Object

canUseData

Tells whether the player can use the specified data, as passed by its parameter oData, for
playback. Returns true if the data can be used for playback, and false, otherwise.

Parameters

Returns

Boolean

PlayerInfoList Object

The app.media.getPlayers() method returns a PlayerInfoList, which is an array of
PlayerInfo Objects.

The PlayerInfoList has one method, select(), which can be used to filter the list using
any of the properties in a PlayerInfo.

When a media player is created using app.media.createPlayer(), the
settings.players property (see the PlayerArgs Object) may contain a PlayerInfoList,
to restrict the player creation to choose from only those players specified in the list.

PlayerInfoList Object Properties

The PlayerInfoList works like an array, the elements, which are PlayerInfo Objects, can be
accessed using the usual array notation. The number of elements in the PlayerInfoList array
can be obtain from the length property.

6.0

oData oData is a MediaData object (see MediaSettings.data for
a description of this object). This data object is obtained in
several ways, from app.media.getAltTextData(),
app.media.getURLData(), or indirectly via
Rendition.getPlaySettings().

Acrobat JavaScript Scripting Reference
PlayerInfoList Object Methods

494 Acrobat JavaScript Scripting Reference

PlayerInfoList Object Methods

select

PlayerInfoList.select() returns a copy of the PlayerInfoList, filtered to include
only the players that meet the selection criteria. This will be an empty array if no players
match.

The object parameter may contain any of the following properties. Any properties that are
specified are required to match; properties that are omitted match any player.

id: string or regular expression
name: string or regular expression
version: string or regular expression

The id, name, and version properties may be either strings for an exact match, or regular
expressions.

Parameters

Returns

PlayerInfoList Object

Example 1

Use QuickTime to view the media clip.

var playerList = app.media.getPlayers().select({ id: /quicktime/i });
// QuickTime supports palindrome, so let’s try it.
var settings = { players: playerList, palindrome: true };
var player = app.media.openPlayer({ settings: settings });

Example 2

Choose the Flash player by using a pattern match on its player ID.

var player = app.media.createPlayer();
player.settings.players = app.media.getPlayers().select({ id:/flash/i});

player.open();

6.0

object (optional) An object which contains any of the
properties id, name, or version. The values of these
properties may be a string or a regular expression.

Acrobat JavaScript Scripting Reference 495

Acrobat JavaScript Scripting Reference
PlugIn Object

PlugIn Object

This object gives access to information about the plug-in it represents. A plugIn object is
obtained using app.plugIns.

PlugIn Properties

certified

If true, the plug-in is certified by Adobe. Certified plug-ins have undergone extensive
testing to ensure that breaches in application and document security do not occur. The
user can configure the viewer to only load certified plug-ins.

Type: Boolean Access: R.

Example

Get the number of uncertified plugins.

var j=0; aPlugins = app.plugIns;
for (var i=0; i < aPlugins.length; i++)

if (!aPlugins[i].certified) j++;
console.println("Report: There are "+j+" uncertified plugins loaded.");

loaded

If true, the plug-in was loaded.

Type: Boolean Access: R.

name

The name of the plug-in.

Type: String Access: R.

Example
// get array of PlugIn Objects
var aPlugins = app.plugIns;
// get number of plugins
var nPlugins = aPlugins.length;
// enumerate names of all plugins
for (var i = 0; i < nPlugins; i++)

console.println("Plugin \#" + i + " is " + aPlugins[i].name);

5.0

Acrobat JavaScript Scripting Reference
printParams Object

496 Acrobat JavaScript Scripting Reference

path

The device-independent path to the plug-in. See File Specification Strings, Section 3.10.1, of
the PDF Reference for the exact syntax of the path.

Type: String Access: R.

version

The version number of the plug-in. The integral part of the version number indicates the
major version, the decimal part indicates the minor and update versions. For example, 5.11
would indicate that the plug-in is major version 5, minor version 1, and update version 1.

Type: Number Access: R.

printParams Object

This object controls printing parameters that affect any document printed via JavaScript.
Changing this object does not change the user preferences or make any permanent
changes to the document.

In Acrobat version 6.0, doc.print takes a printParams object as its argument. You can
obtain printParams object from doc.getPrintParams. The returned object can
then be modified.

Many of the printParams properties take integer constants as values, which you can
access using constants. For example:

// get the printParams object of the default printer
var pp = this.getPrintParams();
// set some properties
pp.interactive = pp.constants.interactionLevel.automatic;
pp.colorOverride = pp.colorOverrides.mono;
// print
this.print(pp);

The constants object properties are all Integers, and are all Read access.

PrintParams Properties

binaryOK

true if a binary channel to the printer is supported. The default is true.

6.0

Acrobat JavaScript Scripting Reference 497

Acrobat JavaScript Scripting Reference
PrintParams Properties

Type: Boolean Access: R/W.

bitmapDPI

The dots per inch (DPI) to use when producing bitmaps or rasterizing transparency. Valid
range is 1 to 9600. If the document protections specify a maximum printing resolution, the
lower of the two values is used. The default is 300. Illegal values are treated as 300. See also
gradientDPI.

Type: Integer Access: R/W.

colorOverride

Whether to use color override. Values are the properties of the constants colorOverrides
Object. Illegal values are treated as auto, the default value.

N O T E : This property is supported on Windows platforms only.

colorOverrides Object

Type: Integer constant Access: R/W.

Example
var pp = this.getPrintParams();
pp.colorOverride = pp.constants.colorOverrides.mono;
this.print(pp);

colorProfile

The color profile to use. A list of available color spaces can be obtained from the
printColorProfiles. The default is "Printer/PostScript Color Management"

6.0 �

6.0

Property Description

auto Let Acrobat decide color overrides. This is the default.

gray Force color to grayscale.

mono Force color to monochrome.

6.0 �

Acrobat JavaScript Scripting Reference
PrintParams Properties

498 Acrobat JavaScript Scripting Reference

Type: String Access: R/W.

constants

Each instance of a printParams object inherits this property, which is a wrapper object
for holding various constant values. The constants object property values are all
Integers, and are all Read access. The values are listed with the printParams properties
to which they apply.

The constants objects are used to specify option values of some of the other properties
of the printParams object, as shown in the following table:

Type: object Access: R.

downloadFarEastFonts

When true, send Far East fonts to the printer if needed. Set to false if printer has Far East
fonts but incorrectly reports it needs them. The default is true.

Type: Boolean Access: R/W.

6.0

constant object contains constant values for printParams property

colorOverrides colorOverride

fontPolicies fontPolicy

handling pageHandling

interactionLevel interactive

nUpPageOrders nUpPageOrder

printContents printContent

flagValues flags

rasterFlagValues rasterFlags

subsets pageSubset

tileMarks tileMark

usages usePrinterCRD
useT1Conversion.

6.0

Acrobat JavaScript Scripting Reference 499

Acrobat JavaScript Scripting Reference
PrintParams Properties

fileName

If not empty, the device-independent pathname for a filename to be used instead of
sending the print job to the printer (Print to File). The pathname may be relative to the
location of the current document. When printing to a file, if the interaction level (See
interactive) is set to full, it is lowered to automatic. The default value is the empty
string.

N O T E : Printing to a file produces output suitable for the printer, for example, Postscript or
GDI commands.

N O T E : When printerName is an empty string andfileName is nonempty the current
document is saved to disk as a PostScript file.

Type: String Access: R/W.

Example
var pp = this.getPrintParams();
pp.fileName = "/c/print/myDoc.prn";
this.print(pp);

Example 2

Save the current document as a PostScript file.

var pp = this.getPrintParams();
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";
this.print(pp);

firstPage

The first 0-based page number of the document to print. The first page of any document is
0, regardless of page number labels. Values out of the document page range are treated as
0. The default value is 0.

See also lastPage.

Type: Integer Access: R/W.

Example
var pp = this.getPrintParams();
pp.firstPage = 0;
pp.lastPage = 9;
this.print(pp);

6.0

6.0

Acrobat JavaScript Scripting Reference
PrintParams Properties

500 Acrobat JavaScript Scripting Reference

flags

A bit field of flags to control printing. These flags can be set or cleared using bitwise
operations through the constants flagValues Object.

Zero or more flags can be set; unsupported flags are ignored. The flags default to those set
by user preferences.

flagValues Object

Where � appears in the Reader column, the property is not available for any version of
the Adobe Reader.

6.0

Property Reader Description

applyOverPrint � Do overprint preview when printing, turn off if print
natively supports overprinting

applySoftProofSettings � Use the softProofing settings before doing color
management

applyWorkingColorSpaces � Apply working color spaces when printing

emitHalftones � Emit the halftones specified in the document

emitPostScriptXObjects � PostScript only, do include PostScript XObjects'
content in output

emitFormsAsPSForms � Converts Form XObjects to PS forms. The default is off.

maxJP2KRes � Use the maximum resolution of JPeg2000 images
instead of the best matching resolution.

setPageSize Enable setPageSize, choose paper tray by PDF page
size

suppressBG � Do not emit the BlackGeneration in the document

suppressCenter Do not center the page

suppressCJKFontSubst � Suppress CJK Font Substitution on Printer—does not
apply when kAVEmitFontAllFonts is used

suppressCropClip Do not emit the cropbox page clip

suppressRotate Do not rotate the page

suppressTransfer � Do not emit the transfer functions in the document

suppressUCR � Do not emit the UnderColorRemovals in the document

Acrobat JavaScript Scripting Reference 501

Acrobat JavaScript Scripting Reference
PrintParams Properties

Type: Integer Access: R/W.

Example 1

Check the “Apply Proof Settings” checkbox Output options in the Advanced Printing Setup
dialog.

pp = getPrintParams();
fv = pp.constants.flagValues;
// or pp.flags |= fv.applySoftProofSettings;;
pp.flags = pp.flags | fv.applySoftProofSettings;
this.print(pp);

Example 2

Uncheck “Auto-Rotate and Center” (checked by default) in the Print dialog.

pp = getPrintParams();
fv = pp.constants.flagValues;
pp.flags |= (fv.suppressCenter | fv.suppressRotate);
this.print(pp);

Example 3

Check “Emit Undercolor Removal/Black Generation” checkbox of the PostScript Options in
the Advanced Printing Setup dialog.

pp = getPrintParams();
fv = pp.constants.flagValues;
pp.flags &= ~(fv.suppressBG | fv.suppressUCR)
this.print(pp)

useTrapAnnots � Print TrapNet and PrinterMark annotations, even if
printing "document only".

usePrintersMarks � Print PrinterMark annotations, even if printing
"document only".

Property Reader Description

Acrobat JavaScript Scripting Reference
PrintParams Properties

502 Acrobat JavaScript Scripting Reference

fontPolicy

Sets the font policy. The value of the fontpolicy property is set through the
constants fontPolicies Object. The default is pageRange.

Type: Integer Access: R/W.

fontPolicies Object

gradientDPI

The dots per inch to use when rasterizing gradients. This value can generally be set lower
than bitmapDPI because it affects areas to which the eye is less sensitive. It must be set
from 1 to 9600. Illegal values are treated as 150. If the document protections specify a
maximum printing resolution, the lower of the two values will be used. The default value is
150.

Type: Integer Access: R/W.

6.0

Property Description

everyPage Emit needed fonts before every page, free all fonts after each page. This
produces the largest, slowest print jobs, but requires the least amount
of memory from the printer.

jobStart Emit all fonts used at the beginning of the print job, free them at the
end of the print job. This produces the smallest, fastest print jobs, but
requires the most memory from the printer.

pageRange (Default) Emit fonts before the first page that uses them, free them
after the last page that uses them. This also produces the smallest,
fastest print jobs, and can use less memory. However, the produced
print job must be printed as produced due to page ordering.

N O T E : pageRange can be a good compromise between speed and
memory, but do not use it if the postscript pages will be
programmatically reordered afterwards.

6.0 �

Acrobat JavaScript Scripting Reference 503

Acrobat JavaScript Scripting Reference
PrintParams Properties

interactive

Sets the level of interaction between the user and the print job. The value of the
interactive property is set through the constants InteractionLevel Object. The
default is full.

(Security �, version 7.0) Non-interactive printing can only be executed during batch
and console events. Printing is made non-interactive by setting bUI is to false or
by setting the interactive property to silent, e.g.,

var pp = this.getPrintParams();
pp.interactive = pp.constants.interactionLevel.silent;

Outside of batch and console events, the values of bUI and of interactive are
ignored, and a print dialog will always be presented.

N O T E :

See also Privileged versus Non-privileged Context.

Type: Integer Access: R/W.

InteractionLevel Object

Example
var pp = this.getPrintParams();
pp.interactive = pp.constants.interactionLevel.automatic;
pp.printerName = "Adobe PDF";
this.print(pp);

lastPage

The last 0-based page number of the document to print. The term “0-based” means the first
page of any document is 0, regardless of page number labels. If the value is less then

6.0

Property Description

automatic No print dialog is displayed. During printing a progress monitor and cancel
dialog is displayed and removed automatically when printing is complete.

full Displays the print dialog allowing the user to change print settings and requiring
the user to press OK to continue. During printing a progress monitor and cancel
dialog is displayed and removed automatically when printing is complete.

silent No print dialog is displayed. No progress or cancel dialog is displayed. Even error
messages are not displayed.

6.0

Acrobat JavaScript Scripting Reference
PrintParams Properties

504 Acrobat JavaScript Scripting Reference

firstPage or outside the legal range of the document, this reverts to the default value.
The default value is the number of pages in the document less one.

Type: Integer Access: R/W.

See firstPage for an example.

nUpAutoRotate

The nUpAutoRotate property is a boolean, if set to true, automatically rotates each
page to match the page orientation to the available paper area during Multiple Pages Per
Sheet printing. The default is false, but nUpAutoRotate obeys the print settings.

Multiple Pages Per Sheet is obtained by setting pageHandling to nUp.

Type: Boolean Access: R/W.

nUpNumPagesH

When printing Multiple Pages Per Sheet, nUpNumPagesH sets is the number of pages to
be layed out in the horizontal direction. The default is 2, but nUpNumPagesH obeys the
print settings.

Multiple Pages Per Sheet is obtained by setting pageHandling to nUp.

Type: Integer Access: R/W.

Example

Perform Multiple Pages Per Sheet printing on this document, set up desired parameters
and print.

pp = this.getPrintParams();
pp.pageHandling = pp.constants.handling.nUp;
pp.nUpPageOrders = pp.constants.nUpPageOrders.Vertical;
pp.nUpNumPagesH = 3;
pp.nUpNumPagesV = 3;
pp.nUpPageBorder=true;
pp.nUpAutoRotate=true;
this.print(pp);

7.0

7.0

Acrobat JavaScript Scripting Reference 505

Acrobat JavaScript Scripting Reference
PrintParams Properties

nUpNumPagesV

When printing Multiple Pages Per Sheet, nUpNumPagesV is the number of pages to be
layed out in the vertical direction. The default is 2, but nUpNumPagesV obeys the print
settings.

Multiple Pages Per Sheet is obtained by setting pageHandling to nUp.

Type: Integer Access: R/W.

See nUpNumPagesH for an example.

nUpPageBorder

The nUpPageBorder property is a boolean, if set to true, draws and prints a page
boundary around each of the page during Multiple Pages Per Sheet printing. The default is
false, but nUpPageBorder obeys the print settings.

Multiple Pages Per Sheet is obtained by setting pageHandling to nUp.

Type: Boolean Access: R/W.

See nUpNumPagesH for an example.

nUpPageOrder

When printing multiple pages per sheet, the nUpPageOrder property determines how
the multiple pages are layed out on the sheet. The value of the nUpPageOrder property
is set through the constants nUpPageOrders Object. The default is Horizontal, but
nUpPageOrder obeys the print settings.

Multiple Pages Per Sheet is obtained by setting pageHandling to nUp.

Type: Integer Access: R/W.

7.0

7.0

7.0

Acrobat JavaScript Scripting Reference
PrintParams Properties

506 Acrobat JavaScript Scripting Reference

nUpPageOrders Object

Example

Perform Multiple Pages Per Sheet printing on this document, set up desired parameters
and print.

pp = this.getPrintParams();
pp.pageHandling = pp.constants.handling.nUp;
pp.nUpPageOrders = pp.constants.nUpPageOrders.Horizontal;
pp.nUpNumPagesH = 2;
pp.nUpNumPagesV = 2;
pp.nUpPageBorder=true;
this.print(pp);

pageHandling

Takes one of four values. The value of the pageHandling property is set through the
constants handling Object. If set to an illegal value it is treated as shrink. The default is
shrink.

Type: Integer Access: R/W.

Property Description

Horizontal Pages are placed from left to right, from top to bottom.

HorizontalReversed Pages are placed from right to left, from top to bottom.

Vertical Pages are placed from top to bottom, from left to right.

VerticalReversed Pages are placed from top to bottom, from right to left.

6.0

Acrobat JavaScript Scripting Reference 507

Acrobat JavaScript Scripting Reference
PrintParams Properties

handling Object

Example 1
var pp = this.getPrintParams();
pp.pageHandling = pp.constants.handling.shrink;
this.print(pp);

Example 2

Perform Multiple Pages Per Sheet printing on this document, set up desired parameters
and print.

pp = this.getPrintParams();
pp.pageHandling = pp.constants.handling.nUp;
pp.nUpPageOrders = pp.constants.nUpPageOrders.Horizontal;
pp.nUpNumPagesH = 2;
pp.nUpNumPagesV = 2;
pp.nUpPageBorder=true;
this.print(pp);

pageSubset

Select even, odd, or all the pages to print. The value of pageSubset is set through the
constants subsets Object. The default is all.

Type: Integer Access: R/W.

Property Reader Description

none No page scaling is applied.

fit Pages are enlarged or shrunk to fit the printer’s paper.

shrink Small pages are printed small, large pages are shrunk to fit on
the printer’s paper.

tileAll � All pages are printed using tiling settings. One use of this is to
turn a normal sized page into a poster by setting tile zoom
greater than 1.

tileLarge � Small or normal pages are printed original size, large pages
are printed on multiple sheets of paper.

nUp (Version 7.0) Rescale pages to print multiple pages per printer
page.
Properties related to Multiple Pages Per Sheet printing are
nUpAutoRotate, nUpNumPagesH, nUpNumPagesV,
nUpPageBorder and nUpPageOrder.

6.0

Acrobat JavaScript Scripting Reference
PrintParams Properties

508 Acrobat JavaScript Scripting Reference

subsets Object

Example
var pp = this.getPrintParams();
pp.pageSubset = pp.constants.subsets.even;
this.print(pp);

printAsImage

Set to true to send pages as large bitmaps. This can be slow and more jagged looking but
can work around problems with a printer’s PostScript interpreter. Set bitmapDPI to
increase or decrease the resolution of the bitmap. If interaction (see interactive) is
full, the user’s printer preferences for printAsImage will be used. The default is
false.

Type: Boolean Access: R/W.

printContent

Sets the contents of the print job. The value of the printContent property is set through
the constants printContents Object. The default is doc.

Type: Integer Access: R/W.

printContents Object

Property Description

all Print all pages in page range.

even Print only the even pages. Page labels are ignored for this. The document
is treated as if it were numbered 1 through n, the number of pages.

odd Print only the odd pages.

6.0

6.0

Property Description

doc Emit the document contents. Document comments are not
printed

docAndComments Emit the document contents and comments.

Acrobat JavaScript Scripting Reference 509

Acrobat JavaScript Scripting Reference
PrintParams Properties

Example
var pp = this.getPrintParams();
pp.interactive = pp.constants.interactionLevel.silent;
pp.printContent = pp.constants.printContents.formFieldsOnly;
this.print(pp);

printerName

Set or get the name of destination printer. The printerName property is a Windows-only
feature; currently, the destination printer cannot be set through this property on the Mac.

By default, printerName is set to the name of the default printer. If set printerName
to an empty string the default printer will be used. When printerName is an empty
string and fileName is a nonempty string, the current document is saved to disk as a
PostScript file. See Example 2 below.

See also app.printerNames.

Type: String Access: R/W.

Example 1
var pp = this.getPrintParams();
pp.printerName = "hp officejet d series";
this.print(pp);

Example 2

Save the current document as a PostScript file.

var pp = this.getPrintParams();
pp.fileName = "/c/temp/myDoc.ps";
pp.printerName = "";
this.print(pp);

psLevel

Level of PostScript that is emitted to PostScript printers. Level 0 indicates to use the
PostScript level of the printer. Level 1 is not supported. In addition to 0, current legal values
of psLevel are 2 and 3. If the printer only supports PostScript level 1, printAsImage is
set to true. Illegal values are treated as 3. The default value for psLevel is 3.

formFieldsOnly Emit the contents of form fields only. Useful for printing onto pre-
preprinted forms.

6.0

6.0

Property Description

Acrobat JavaScript Scripting Reference
PrintParams Properties

510 Acrobat JavaScript Scripting Reference

Type: Integer Access: R/W.

rasterFlags

A bit field of flags. These flags can be set or cleared using bitwise operations through the
constants rasterFlagValues Object. The default is set by user preferences.

Type: Integer Access: R/W.

rasterFlagValues Object

6.0 �

Property Reader Description

textToOutline � Text converted to outlines can become thicker (especially
noticeable on small fonts). If text is mixed into artwork with
transparency it may be converted to outline during flattening,
resulting in inconsistency with text that is not mixed into
artwork. In this case turning on this option will ensure all text
looks consistent.

strokesToOutline � Strokes converted to outlines can become thicker (especially
noticeable on thin strokes). If strokes are mixed into artwork
with transparency they may be converted to outlines during
flattening, resulting in inconsistency with strokes that are not
mixed into artwork. In this case turning on this option will
ensure all strokes looks consistent.

allowComplexClip � Select this to ensure that the boundaries between vector
artwork and rasterized artwork fall closely along object paths.
Selecting this option reduces stitching artifacts that result
when part of an object is flattened while another part of the
object remains in vector form. However, selecting this option
may result in paths that are too complex for the printer to
handle.

preserveOverprint � Select this if you are printing separations and the document
contains overprinted objects. Selecting this option generally
preserves overprint for objects that are not involved in
transparency and therefore improves performance. This
option has no effect when printing composite. Turning this off
might result in more consistent output since all overprinting
will be flattened whether it is involved in transparency or not.

Acrobat JavaScript Scripting Reference 511

Acrobat JavaScript Scripting Reference
PrintParams Properties

Example 1

Check the “Convert All Text to Outlines” checkbox in the Transparency Flattening option of
the Advanced Print Setup.

pp = getPrintParams();
rf = pp.constants.rasterFlagValues;
pp.rasterFlags |= rf.textToOutline;
this.print(pp);

Example 2

Uncheck "Complex Clip Regions” (checked by default) in the Transparency Flattening
option of the Advanced Print Setup.

pp = getPrintParams();
rf = pp.constants.rasterFlagValues;
pp.rasterFlags = pp.rasterFlags & ~rf.allowComplexClip;
// or pp.rasterFlags &= ~rf.allowComplexClip;
this.print(pp);

reversePages

Set to true to print pages in reverse order (last to first). The default value is false.

Type: Boolean Access: R/W.

tileLabel

Label each page of tiled output. Labeled pages indicate row and column, filename, and
print date. The default is false.

Type: Boolean Access: R/W.

tileMark

Tile marks indicate where to cut the page and where overlap occurs. The value is set
through the constants tileMarks Object. If set to an illegal value it is treated as none.
The default is none.

Type: Integer Access: R/W.

6.0

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference
PrintParams Properties

512 Acrobat JavaScript Scripting Reference

tileMarks Object

tileOverlap

The number of points that tiled pages have in common. Value must be between 0 and 144.
Illegal values are treated as 0. The default value is 0.

Type: Integer Access: R/W.

tileScale

The amount that tiled pages are scaled. Pages that are not tiled are unaffected by this value.
Default is unscaled (1.0). Larger values increase the size of the printout (for example, 2.0 is
twice as large, a value of 0.5 is half as large). The value of tileScale must be between
0.01 and 99.99. Illegal values are treated as 1.0, which is the default value.

Type: Number Access: R/W.

transparencyLevel

An integer value from 1 to 100 indicates how hard Acrobat tries to preserve high level
drawing operators. A value of 1 indicates complete rasterization of the image which results
in poor image quality but high speeds. A value of 100 indicates as much should be
preserved as possible, but can result in slow print speeds. If set to an illegal value, 75 is
used. When rasterizing, the bitmapDPI and gradientDPI values are used. The default
value is 75.

Type: Integer Access: R/W.

Property Description

none No tile marks

west Western style tile marks

east Eastern style tile marks.

6.0 �

6.0 �

6.0 �

Acrobat JavaScript Scripting Reference 513

Acrobat JavaScript Scripting Reference
PrintParams Properties

usePrinterCRD

Takes one of three values. The value is set through the constants usages Object. See also
usePrinterCRD; the two properties use the same values, but the interpretations are
different.

Type: Integer Access: R/W.

usages Object

useT1Conversion

Takes one of three values. The value of the useT1Conversion property is set through
the constants usages Object. See also usePrinterCRD; the two properties use the
same values, but the interpretations are different.

N O T E : This property is supported on Windows platforms only.

Type: Integer Access: R/W.

This property uses the usages Object values as follows.

6.0

Property Description for usePrinterCRD

auto Let Acrobat decide if printer Color Rendering Dictionary should be used.
Acrobat maintains a list of a handful of printers that have incorrect CRDs.
Illegal values are treated as auto. The default is auto.

use Use printer’s Color Rendering Dictionary.

noUse Do not use printer’s Color Rendering Dictionary.

6.0

Property Description for useT1Conversion

auto Let Acrobat decide whether to disable converting Type 1 fonts to more
efficient printer representations (for example, TrueType). Acrobat maintains
a list of a handful of printers that have problems with these fonts.
Illegal values are treated as auto. The default is auto.

use Allow conversion of Type 1 fonts even if printer is known to have problems
with alternative font representations.

noUse Never convert Type 1 fonts to more efficient representations..

Acrobat JavaScript Scripting Reference
Rendition Object

514 Acrobat JavaScript Scripting Reference

Rendition Object

A Rendition contains information needed to play a media clip, including embedded media
data (or a URL) and playback settings. It corresponds to a Rendition in the Acrobat
authoring user interface.

A Rendition is a base type for either a MediaRendition or a MediaSelector. A function that
accepts a Rendition can take either of these two types. The properties and methods
described in this section are available for both MediaRendition and MediaSelector. Use
Rendition.type to distinguish between MediaRendition and MediaSelector.

Rendition Object Properties

altText

The rendition.altText property is the alternate text string for the rendition (an
empty string if no alternate text was specified). This property is available only if the type
 of the rendition is app.media.renditionType.media (a MediaRendition).

Type: String Access: R.

Example

Get the altText of a rendition.

this.media.getRendition("myClip").altText;

See the examples that follow app.media.getAltTextSettings()

doc

The Rendition.doc property is a reference to the document that contains the
Rendition.

Type: Doc Access: R.

6.0

6.0

Acrobat JavaScript Scripting Reference 515

Acrobat JavaScript Scripting Reference
Rendition Object Properties

fileName

The rendition.fileName property returns an empty string if the media is embedded,
and the filename or URL of the media if it’s not embedded. This property is available only if
the type of the rendition is app.media.renditionType.media.

Type: String Access: R.

type

The Rendition.type is an app.media.renditionType value indicating the type
of rendition.

Currently, there are two types: MediaRendition and RenditionList:

● When Rendition.type is equal to app.media.renditionType.media, the
Rendition is a MediaRendition. A MediaRendition is an individual Rendition, as it
appears in the Settings tab of the Multimedia Properties dialog of the UI.

● When Rendition.type is equal to app.media.renditionType.selector,
the Rendition is a RenditionList. A RenditionList is an array of MediaRendition. The list is
the one that appears in the Settings tab of he Multimedia Properties dialog of the UI.

Future versions of Acrobat may add more renditionType values, so JavaScript code
should not assume that only the existing app.media.renditionType values may be
encountered.

Type: Number Access: R.

uiName

Rendition.uiName contains the name of the Rendition as found in the N entry in its
dictionary in the PDF file.

Type: String Access: R.

Example

The following is executed as a Rendition action.

console.println("Preparing to play \""
+ event.action.rendition.uiName + "\"");

See the Event Object for a description of event.action.rendition.

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Rendition Object Methods

516 Acrobat JavaScript Scripting Reference

Rendition Object Methods

getPlaySettings

Creates and returns a MediaSettings Object that can be used to create a MediaPlayer
object.

This method is available only for a MediaRendition.

Parameters

Returns

A MediaSettings Object

N O T E : app.media.getAltTextSettings() calls getPlaySettings(false) to
obtain the correct settings to display alternate text, see the media.js.

This MediaSettings object includes these properties:

autoPlay
baseURL (if specified in rendition)
bgColor
bgOpacity
data (if bGetData is true)
duration
endAt
layout
monitorType
palindrome
showUI
rate
repeat
startAt
visible
volume
windowType

In the current version of Acrobat, all of these properties are present in the settings object
(except as noted above), and null is used when values such as startAt are unspecified.
This may change in the future to return only those values which are actually specified, with
defaults assumed for the rest.

Example:
// Get the MediaSettings for this Rendition

6.0

bGetData (optional) A boolean, which if true, the MediaSettings object
returns the MediaData (See MediaSettings.data).

Acrobat JavaScript Scripting Reference 517

Acrobat JavaScript Scripting Reference
Rendition Object Methods

var settings = myRendition.getPlaySettings();
if(settings.startAt !== null) // Do NOT use this strict comparison!
...
if(settings.startAt) // This is OK
...

See app.media.getAltTextSettings() and app.media.openPlayer() for
examples of usage.

select

Rendition.select() selects a media player to play a MediaRendition or a
RenditionSelector. If the Rendition is a RenditionSelector, select() examines every
MediaRenditon contained within and selects the most suitable one. (See type for a
description of RenditionSelector and MediaRendition.)

The return value is a MediaSelection Object that can be used to create a MediaSettings
Object. This object can then be used to create a MediaPlayer Object.

Parameters

Returns

A MediaSelection Object

Example 1

Get a usable MediaSelection for this Rendition

var selection = rendition.select();

Example 2

Get the name of the selected rendition. This script is executed from a Rendition action
event.

var selection = event.action.rendition.select();
console.println("Preparing to play " + selection.rendition.uiName);

6.0

 bWantRejects (optional) If bWantRejects is true, the rejects property
of the resulting MediaSelection will contain information about
media players that were rejected during the selection process.

oContext (optional) oContext is a MediaSelection.selectContext value
from a previous Rendition.select() call.
This parameter allows you to write a loop that calls
Rendition.select() repeatedly until you find a media
player that satisfies any selection criteria that you want to test in
JavaScript code.

Acrobat JavaScript Scripting Reference
RDN Generic Object

518 Acrobat JavaScript Scripting Reference

testCriteria

This method tests the Rendition against any criteria that are specified in the PDF file, such
as minimum bandwidth, and returns a boolean indicating whether the Rendition satisfied
all of those criteria.

Parameters

None

Returns

Boolean

RDN Generic Object

This generic object represents a Relative Distinguished Name. It is used by
securityHandler. newUser and the certificate.issuerDN and subjectDN
properties.

It has the following properties.

Report Object

The Report object allows the user to programmatically generate PDF documents suitable
for reporting with JavaScript. Use the Report constructor to create a Report object; for
example,

var rep = new Report();

The properties and methods can then be used to write and format a report.

6.0

Property Type Access Description

c String R Country or Region. Must be a two-character upper case
ISO 3166 standard string (for example, 'US')

cn String R Common name (for example, ‘John Smith’)

o String R Organization name (for example, ‘Adobe Systems Inc.’)

ou String R Organizational unit (for example, ‘Acrobat Engineering’)

e String R Email address (for example, ‘jsmith@adobe.com’)

Acrobat JavaScript Scripting Reference 519

Acrobat JavaScript Scripting Reference
Report Properties

Report Properties

absIndent

Controls the absolute indentation level. It is desirable to use indent/outdent only whenever
possible, as those calls correctly handle indentation overflows.

If a report is indented past the middle of the page, the effective indent is set to the middle.
Note that divide does a little squiggly bit to indicate that it's been indented too far.

Type: Number Access: R/W.

color

Controls the color of any text and any divisions written into the report.

Text is written to the report with writeText and divisions (horizontal rules) are written
using divide.

Type: Color Access: R/W.

Example
var rep = new Report();
rep.size = 1.2;
rep.color = color.blue;
rep.writeText("Hello World!");

size

Controls the size of any text created by writeText It is a multiplier. Text size is
determined by multiplying the size property by the default size for the given style.

Type: Number Access: R/W.

Example

Write a “Hello World!” document.

var rep = new Report();
rep.size = 1.2;
rep.writeText("Hello World!");

5.0 � � �

5.0 � � �

5.0 � � �

Acrobat JavaScript Scripting Reference
Report Methods

520 Acrobat JavaScript Scripting Reference

style

This property controls the style of the text font for the text created by writeText. Values
of style are

DefaultNoteText
NoteTitle

Example
var rep = new Report();
rep.size = 1.2;
rep.style = "DefaultNoteText";
rep.writeText("Hello World!");
rep.open("My Report");

Report Methods

breakPage

Ends the current page and begins a new one.

Parameters

None

Returns

Nothing

divide

Writes a horizontal rule across the page at the current location with the given width. The
rule goes from the current indent level to the rightmost edge of the bounding box. If the
indent level is past the middle of the bounding box, the rule has a squiggly bit to show this.

Parameters

6.0 � � �

5.0 � � �

5.0 � � �

nWidth (optional) The horizontal rule width to use.

Acrobat JavaScript Scripting Reference 521

Acrobat JavaScript Scripting Reference
Report Methods

Returns

Nothing

indent

Increments the current indentation mark by nPoints or the default amount. If a report is
indented past the middle of the page, the effective indent is set to the middle. Note that
divide makes a squiggly bit to indicate that it has been indented too far.

See writeText for an example of usage.

Parameters

Returns

Nothing

outdent

The opposite of indent; that is, decrements the current indentation mark by nPoints or
the default amount.

See writeText for an example of usage.

Parameters

Returns

Nothing

open

Ends report generation, opens the report in Acrobat and returns a Doc Object that can be
used to perform additional processing of the report.

5.0 � � �

nPoints (optional) The number of points to increment the indentation mark.

5.0 � � �

nPoints (optional) The number of points to decrement the indentation mark.

5.0 � � �

Acrobat JavaScript Scripting Reference
Report Methods

522 Acrobat JavaScript Scripting Reference

Parameters

Returns

A Doc Object.

Example
var docRep = rep.open("myreport.pdf");
docRep.info.Title = "End of the month report: August 2000";
docRep.info.Subject = "Summary of comments at the August meeting";

See writeText for a more complete example.

save

Ends report generation and saves the report to the specified path.

N O T E : (Security�): This method can only be executed during batch or console events. See
also Privileged versus Non-privileged Context. The Event Object contains a
discussion of Acrobat JavaScript events.

Parameters

Returns

Nothing

Example 1
rep.save("/c/myReports/myreport.pdf");

Example 2
rep.save({

cDIPath: "http://www.mycompany.com/reports/WebDAV/myreport.pdf",
cFS:"CHTTP"}

);

cTitle The report title.

5.0 � � � �

cDIPath The device-independent path.

cFS (optional) The file system. The only value for cFS is "CHTTP"; in this
case, the cDIPath parameter should be an URL. This parameter is
only relevant if the web server supports WebDAV.

Acrobat JavaScript Scripting Reference 523

Acrobat JavaScript Scripting Reference
Report Methods

mail

Ends report generation and mails the report.

See also mailGetAddrs, app.mailMsg, doc.mailForm, and fdf.mail.

Parameters

Returns

Nothing

Report

A constructor. Creates a new Report object with the given media and bounding boxes
(values are defined in points or 1/72 of an inch). Defaults to a 8.5 x 11 inch media box and a
bounding box that is indented .5 inches on all sides from the media box.

Parameters

Returns

Nothing

5.0 � � �

bUI (optional) Whether to display a user interface. If true (the default)
the rest of the parameters are used to seed the compose-new-
message window that is displayed to the user. If false, the cTo
parameter is required and all others are optional.

cTo (optional) A semicolon-separated list of recipients for the message.

cCc (optional) A semicolon-separated list of CC recipents for the message.

cBcc (optional) A semicolon-separated list of BCC recipents for the
message.

cSubject (optional) The subject of the message. The length limit is 64k bytes.

cMsg (optional) The content of the message. The length limit is 64k bytes.

5.0 � � �

aMedia (optional) The media type.

aBBox (optional) The bounding box size.

Acrobat JavaScript Scripting Reference
Report Methods

524 Acrobat JavaScript Scripting Reference

writeText

Writes out a block of text to the report. Every call is guaranteed to begin on a new line at
the current indentation mark. Correctly wraps Roman, CJK, and WGL4 text.

Parameters

Example
// Get the comments in this document, and sort by author
this.syncAnnotScan();
annots = this.getAnnots({nSortBy: ANSB_Author});

// open a new report
var rep = new Report();

rep.size = 1.2;
rep.color = color.blue;
rep.writeText("Summary of Comments: By Author");
rep.color = color.black;
rep.writeText(" ");
rep.writeText("Number of Comments: " + annots.length);
rep.writeText(" ");

var msg = "\200 page %s: \"%s\"";
var theAuthor = annots[0].author;
rep.writeText(theAuthor);
rep.indent(20);
for (var i=0; i < annots.length; i++) {

if (theAuthor != annots[i].author) {
theAuthor = annots[i].author;
rep.writeText(" ");
rep.outdent(20);
rep.writeText(theAuthor);
rep.indent(20);

}
rep.writeText(util.printf(msg, 1 + annots[i].page, annots[i].contents));
}

// now open the report
var docRep = rep.open("myreport.pdf");
docRep.info.Title = "End of the month report: August 2000";
docRep.info.Subject = "Summary of comments at the August meeting";

See the file Annots.js for additional examples of the Report object.

5.0 � � �

String The block of text to use.

Acrobat JavaScript Scripting Reference 525

Acrobat JavaScript Scripting Reference
Row Generic Object

Row Generic Object

This generic JS object contains the data from every column in a row. It is returned by
statement.getRow. It contains the following properties:

ScreenAnnot Object

A ScreenAnnot is a rectangular area within a PDF document viewed on the display screen.
A ScreenAnnot may have Renditions and RenditionActions associated with it for
multimedia playback.

ScreenAnnot Object Properties

altText

The annot.altText property is the alternate text string for annot (an empty string if no
alternate text was specified).

Type: String Access: R.

Example

Get an annot and write its altText to the debug console.

var annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
console.println("annot.altText = " + annot.altText);

Property Type Access Description

columnArray Array R An array of Column Generic Objects.
This is equivalent to what
statement.getColumnArray would return if
called on the same statement at the same time
that this row object was created.

column properties any R There is a property corresponding to each column
selected by the query, containing the data for that
row in that column.

6.0

Acrobat JavaScript Scripting Reference
ScreenAnnot Object Properties

526 Acrobat JavaScript Scripting Reference

alwaysShowFocus

Normally, a ScreenAnnot shows and hides a focus rectangle to indicate whether it has the
keyboard focus. If ScreenAnnot.alwaysShowFocus is true, the focus rectangle is
displayed by the ScreenAnnot even if it does not have the focus. This is used for docked
media playback, so that the focus rectangle of the annot can remain visible even though
the media player actually has the keyboard focus.

This property is not saved in the PDF file; if you change it, the change affects the current
session only.

Type: Boolean Access: R/W.

display

Same as Field.display, as documented in the Acrobat JavaScript Scripting Reference.

This property is not saved in the PDF file; if you change it, the change affects the current
session only.

Type: Integer Access: R/W.

Example

Hide the annot.

var annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
annot.display = display.hidden;

doc

ScreenAnnot.doc is a reference to the document that contains the ScreenAnnot.

Type: Doc object Access: R.

events

ScreenAnnot.events is an Events Object containing the event listeners that are
attached to a ScreenAnnot.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 527

Acrobat JavaScript Scripting Reference
ScreenAnnot Object Properties

This property is not saved in the PDF file; if you change it, the change affects the current
session only.

Type: Events Object Access: R/W.

Example

Create a simple focus event listener.

var annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
var myFocusEvent = {

onFocus: function () {
 console.println("Focusing...");
 }
};
annot.events.add(myFocusEvent);

This event listener can be removed at a later time by executing the following code.

annot.events.remove(myFocusEvent);

extFocusRect

When a ScreenAnnot draws a focus rectangle, the rectangle normally encloses only the
ScreenAnnot itself. If extFocusRect is specified, then the ScreenAnnot takes the union
of its normal rectangle and extFocusRect, and it uses the resulting rectangle to draw
the focus rectangle.

This property is not saved in the PDF file; if you change it, the change affects the current
session only.

Type: Array of Number of length 4 Access: R/W.

innerDeviceRect

ScreenAnnot.innerDeviceRect and ScreenAnnot.outerDeviceRect define
the interior and exterior rectangles of the ScreenAnnot as it appears in the current page
view.

Type: Array of Number of length 4 Access: R.

Example

Get the innerDeviceRect.

annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
console.println("annot.innerDeviceRect = "

+ annot.innerDeviceRect.toSource());

6.0

6.0

Acrobat JavaScript Scripting Reference
ScreenAnnot Object Properties

528 Acrobat JavaScript Scripting Reference

noTrigger

If ScreenAnnot.noTrigger is true, then the screen annot cannot be triggered
through the Acrobat user interface. Typically, clicking the mouse on a Screen Annot starts
playback of a media player; noTrigger suppresses this.

This property is not saved in the PDF file; if you change it, the change affects the current
session only.

Type: Boolean Access: R/W.

Example

Use form buttons to control the media clip, so turn off interaction with annot.

annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
annot.noTrigger = true;

outerDeviceRect

ScreenAnnot.innerDeviceRect and ScreenAnnot.outerDeviceRect define
the interior and exterior rectangles of the ScreenAnnot as it appears in the current page
view.

Type: Array of Number of length 4 Access: R.

page

ScreenAnnot.page is the page number of the PDF file in which the ScreenAnnot is
located.

Type: Number Access: R.

player

ScreenAnnot.player is a reference to the MediaPlayer associated with a ScreenAnnot.
This property exists only for a ScreenAnnot Object that is connected to a MediaPlayer. The
property is set by MediaPlayer.open() or by methods that call open() indirectly,
such as app.media.openPlayer().

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference 529

Acrobat JavaScript Scripting Reference
ScreenAnnot Object Methods

Type: ScreenAnnot Access: R/W.

rect

ScreenAnnot.rect is the rectangle of the ScreenAnnot in default user coordinates.
Changing this property dirties the PDF file, and the new setting will be saved if the PDF file
is saved. The innerDeviceRect and outerDeviceRect properties are also updated
to reflect the new rectangle.

Type: Array of Number of length 4 Access: R/W.

Example

Adjust the position of the annot slightly.

var annot = this.media.getAnnot({ nPage:0, cAnnotTitle: "myScreen" });
var aRect = annot.rect;
aRect[0] += 10;
aRect[2] += 10;
annot.rect = aRect;

ScreenAnnot Object Methods

hasFocus

ScreenAnnot.hasFocus() tells whether the screen annot currently has the keyboard
focus.

Parameters

None

Returns

Boolean

setFocus

ScreenAnnot.setFocus() sets the keyboard focus to the screen annot. The focus is
set synchronously (before setFocus returns) if it is safe to do so. If it is unsafe to set the focus
synchronously (e.g. when the property is changed within an on event method), then

6.0 �

6.0

6.0

Acrobat JavaScript Scripting Reference
Search Object

530 Acrobat JavaScript Scripting Reference

bAllowAsync determines what happens: If true, the focus will be set asynchronously
during idle time; if false or omitted, the focus remains unchanged.

The return value is true if the operation was performed synchronously, or false if it was
deferred to be performed asynchronously.

Parameters

Returns

Boolean

Search Object

The search object is a static object that accesses the functionality provided by the
Acrobat Search plug-in. This plug-in must be installed in order to interface with the
search object (see available).

See also the Index Object, which is returned by some of the methods of the search
object.

The results for query calls are displayed in the Find dialog of Acrobat.

N O T E S : Acrobat 7.0 indexes are incompatible with the search engines of Acrobat 5.0 and
prior versions.

In Acrobat 7.0, searching indexes created by versions of Acrobat 5.0 and prior is not
possible on the Mac platform.

Search Properties

attachments

Determines whether any PDF file attachments should be searched along with the base
document. The default is false.

bAllowAsync (optional) A boolean which determines the behavior of
setFocus() when it is not safe to set the focus
synchronously. If true, the focus will be set asynchronously
during idle time; if false or omitted, the focus remains
unchanged. The default is false.

5.0

7.0

Acrobat JavaScript Scripting Reference 531

Acrobat JavaScript Scripting Reference
Search Properties

This property is ignored on the Mac platform when searching a document from within the
Safari web browser. As a result, attachments are not searched inside Safari.

Type: Boolean Access: R/W.

available

Returns true if the Search plug-in is loaded and query capabilities are possible. A script
author should check this boolean before performing a query or other search object
manipulation.

Type: Boolean Access: R.

Example

Make sure the search object exists and is available.

if (typeof search != "undefined" && search.available) {
search.query("Cucumber");

}

docInfo

Whether the document Information is searched for the query. The default is false.

Type: Boolean Access: R/W.

docText

Whether the document text is searched for the query. The default is true.

Type: Boolean Access: R/W.

docXMP

Whether document level XMP metadata is searched for the query. The default is false.

Type: Boolean Access: R/W.

5.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Search Properties

532 Acrobat JavaScript Scripting Reference

bookmarks

Whether bookmarks are searched for the query. The default is false

Type: Boolean Access: R/W.

ignoreAccents

Whether accents and diactrics are ignored while searching the query term. The default is
false.

Type: Boolean Access: R/W.

ignoreAsianCharacterWidth

Whether the Kana characters in the document exactly match the search query. The default
is false.

Type: Boolean Access: R/W.

indexes

Returns an array of all of the Index Objects currently accessible by the search engine.

N O T E : (Security�, version 7.0) This property can only be accessed during batch or console
events. See also Privileged versus Non-privileged Context. The Event Object
contains a discussion of Acrobat JavaScript events.

Type: Array Access: R.

Example

Enumerate all of the indexes and dump their names.

for (var i = 0; i < search.indexes.length; i++) {
console.println("Index[" + i + "]=", search.indexes[i].name);

}

6.0

7.0

6.0

5.0 �

Acrobat JavaScript Scripting Reference 533

Acrobat JavaScript Scripting Reference
Search Properties

jpegExif

Whether EXIF data associated with JPEG images in the PDF is searched. The default is
false.

Type: Boolean Access: R/W.

legacySearch

Returns true if the Search5.api plug-in is loaded. Search5.api plug-in provides the
capability to search indexes generated by Acrobat Catalog in Acrobat 5.0 (or earlier
version). See the sections in the Acrobat Online Guide pertaining to searching such
indexes.

Type: Boolean Access: R.

markup

Whether markup (annotations) are searched for the query. The default is false.

Type: Boolean Access: R/W.

matchCase

Whether the search query is case sensitive. The default is false.

Type: Boolean Access: R/W.

matchWholeWord

Whether search finds only occurrences of complete words that are specified in the query.
For example, when this option is set to true, if you search for the word "stick", the words
"tick" and "sticky" will not be highlighted. The default is false.

Type: Boolean Access: R/W.

6.0

6.0

6.0

6.0

Acrobat JavaScript Scripting Reference
Search Properties

534 Acrobat JavaScript Scripting Reference

maxDocs

The maximum number of documents that will be returned as part of the search query. The
default is 100 documents.

Type: Integer Access: R/W.

objectMetadata

This property determines whether object-level metadata should be searched. This is the
same data which is visible by clicking Tools in the main menu of Acrobat 7.0 and selecting
Object Data -> Object Data Tool.

The default is false.

Type: Boolean Access: R/W.

proximity

Whether the search query will reflect the proximity of words in the results ranking when
performing the search that contains AND boolean clauses. The default is false. See the
sections in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of proximity.

Type: Boolean Access: R/W.

proximityRange

The range of proximity search in number of words. This property will be used only if the
property proximity is set to true. See the sections in the Acrobat Online Guide
pertaining to Search capabilities for a more thorough discussion of proximity.

The default is 900 words. The valid values of this parameter are any non-zero positive
integer.

Type: Integer Access: R/W.

5.0

7.0

5.0

7.0

Acrobat JavaScript Scripting Reference 535

Acrobat JavaScript Scripting Reference
Search Properties

refine

Whether the search query will take the results of the previous query and refine the results
based on the next query. The default is false. See the sections in the Acrobat Online
Guide pertaining to Search capabilities for a more thorough discussion of refining queries.

Type: Boolean Access: R/W.

soundex

Whether the search query will take the sound of words (for example, MacMillan, McMillan,
McMilon) into account when performing the search. The default is false. See the sections
in the Acrobat Online Guide pertaining to Search capabilities for a more thorough
discussion of soundex.

N O T E : Beginning with Acrobat 6.0, the use of this property is discouraged. This property
has a value of false and access is restricted to read only.

Type: Boolean Access: R.

stem

Whether the search query will take the stemming of words (for example, run, runs, running)
into account when performing the search. The default is false. See the sections in the
Acrobat Online Guide pertaining to Search capabilities for a more thorough discussion of
stemming.

Type: Boolean Access: R/W.

thesaurus

Whether the search query will find similar words. For example, searching for "embellish"
might yield "enhanced", "gracefully", or "beautiful". The default is false.

N O T E : Beginning with Acrobat 6.0, the use of this property is discouraged. This property
has a value of false and access is restricted to read only.

5.0

�

5.0

�

Acrobat JavaScript Scripting Reference
Search Methods

536 Acrobat JavaScript Scripting Reference

Type: Boolean Access: R.

wordMatching

How individual words in the query will be matched to words in the document. Values are:

MatchPhrase
MatchAllWords
MatchAnyWord
BooleanQuery (default)

This property is relevant only when a query has more than one word. The BooleanQuery
option is ignored when searching active document.

Type: String Access: R/W.

Search Methods

addIndex

Adds the specified index to the list of searchable indexes.

Parameters

Returns

An Index Object.

Example

Adds the standard help index for Acrobat to the index list:

search.addIndex("/c/program files/adobe/acrobat 5.0/help/exchhelp.pdx",
true);

6.0

5.0 �

cDIPath A device-independent path to an index file on the user’s hard drive.
See “File Specification Strings”, Section 3.10.1, in the PDF Reference for
the exact syntax of the path.

bSelect (optional) Whether the index should be selected for searching.

Acrobat JavaScript Scripting Reference 537

Acrobat JavaScript Scripting Reference
Search Methods

getIndexForPath

Searches the index list and returns the index object whose path corresponds to the
specified path.

Parameters

Returns

The Index Object whose path corresponds to the specified path.

query

Searches the specified document or index for the specified text. Properties associated with
the search object (such as matchCase, matchWholeWord, stem) may affect the
result.

Parameters

Returns

Nothing

5.0

cDIPath A device-independent path to an index file on the user’s hard drive.
See “File Specification Strings”, Section 3.10.1, in the PDF Reference for
the exact syntax of the path.

5.0

cQuery The text for which to search.

cWhere (optional) Specifies where the text should be searched. Values are:
ActiveDoc
Folder
Index
ActiveIndexes (default)

cDPIPath (optional) A device-independent path to a folder or Catalog index on
the user's computer. See "File Specification Strings", Section 3.10.1, in
the PDF Reference for the exact syntax of the path.
When cWhere is Folder or Index, this parameter is required.

Acrobat JavaScript Scripting Reference
Security Object

538 Acrobat JavaScript Scripting Reference

Examples

Search for the word "Acrobat".

removeIndex

Removes the specified index object from the index list.

Parameters

Returns

Nothing

Security Object

The security object is a static JavaScript object that exposes security-related PDF functions
such as encryption and digital signatures. Security functions are performed using a
SecurityHandler Object which is obtained from the security object using the getHandler
method.

N O T E : (Security�): The Security Object is available without restriction, including in Adobe
Reader. The methods and properties of the Security Object can only be executed
during batch, console or application initialization events including in Adobe Reader,
except where otherwise stated. See also Privileged versus Non-privileged Context.
The Event Object contains a discussion of Acrobat JavaScript events.

cWhere Query

ActiveIndexes search.query("Acrobat"); // "ActiveIndexes" is the default.
search.query("Acrobat", "ActiveIndexes");

ActiveDoc search.query("Acrobat", "ActiveDoc");

Folder search.query("Acrobat","Folder","/c/myDocuments");
search.query("Acrobat","Folder",app.getPath("user","documents"));
search.query("Acrobat", "Folder", "//myserver/myDocuments");

Index search.query("Acrobat", "Index", "/c/Myfiles/public/index.pdx");

5.0 �

index The Index Object to remove from the index list.

5.0 � �

Acrobat JavaScript Scripting Reference 539

Acrobat JavaScript Scripting Reference
Security Constants

Security Constants

Several convenience strings are defined the Security object, beginning
with Acrobat 7.0. The constants are held as properties of the wrapper objects listed below.

HandlerName

These are constants used when determing what handler to use.

Example

The constant (string) security.StandardHandler is used to specify the handler
property of the SecurityPolicy Object.

security.getHandler(security.PPKLiteHandler, true);

EncryptTarget

These are constants used when determing what data a policy is encrypting.

Property Type Access Description

StandardHandler String R This value can be specified in the handler
property for a SecurityPolicy Object which is
based on the Standard (password-based)
security handler.

PPKLiteHandler String R This value can be specified in the handler
property for a SecurityPolicy Object which is
based on the PPKLite (certificate-based)
security handler. This value can also be
passed to security.getHandler to
create a new security context.

APSHandler String R This the value specified in the handler
property for a SecurityPolicy Object which is
based on the Adobe Policy Server security
handler. This value can also be passed to
security.getHandler to create a new
security context.

Property Type Access Description

EncryptTargetDocument String R This is one of the values that can
be used in the target property
of the SecurityPolicy Object. This
is used for a Security Policy which
encrypts the entire document
when applied.

Acrobat JavaScript Scripting Reference
Security Properties

540 Acrobat JavaScript Scripting Reference

Example:
var filterOptions = { target: security.EncryptTargetAttachments };
security.chooseSecurityPolicy({ oOptions: filterOptions });

Security Properties

handlers

Returns an array containing the language-independent names of the available security
handlers that can be used for encryption or signatures.

See also getSecurityPolicies.

Beginning with Acrobat 6.0, access to this property is unrestricted, to allow querying to see
what handlers are available.

Backward Compatibility Note: In Acrobat 6.0, this call returned three handlers,
"Adobe.PPKLite", "Adobe.PPKMS" and "Adobe.AAB". Starting Acrobat 7.0, all the
functionality provided by Adobe.PPKMS has been rolled into Adobe.PPKLite, hence
Adobe.PPKMS is no longer available as a separate handler.

Beginning with Acrobat 7.0, a new handler is available, "Adobe.APS". This handler is only
used for authentication prior to calling any of the methods encryptUsingPolicy,
getSecurityPolicies, or chooseSecurityPolicy. It has no other valid usage
currently.

Beginning with Acrobat 7.0, there are Security Constants defined on the security object for
each of the handlers. (Except "Adobe.AAB", this handler will probably be deprecated in the
near future so no constant was added for it.) These constants should be used whenever
creating a new handler instance via getHandler or comparing against the handlers list.

EncryptTargetAttachments String R This is one of the values that can
be used in the target property
of the SecurityPolicy Object. It is
used for a Security Policy which
encrypts only the file attachments
embedded within the document.
This means the document can be
opened, however the attachments
cannot be opened without
providing the correct security
authentication. This is used for the
eEnvelope workflows.

5.0

Property Type Access Description

Acrobat JavaScript Scripting Reference 541

Acrobat JavaScript Scripting Reference
Security Methods

Type: Array Access: R.

Example

Get the list of security handlers available on this system:

for (var i=0; i < security.handlers.length; i++)
console.println(security.handlers[i])

The output to the console might be

Adobe.APS
Adobe.PPKLite
Adobe.PPKMS
Adobe.AAB

validateSignaturesOnOpen

Gets or sets the user-level preference that causes signatures to be automatically validated
when a document is opened.

N O T E : (Security �) : The property can be used to get in all situations, but can only set new
values during batch, console, application initialization and menu events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Type: Boolean Access: R/W.

Security Methods

chooseRecipientsDialog

Opens a dialog that allows a user to choose a list of recipients. Returns an array of generic
Group objects that can be used when encrypting documents or data using either
encryptForRecipients or addRecipientListCryptFilter methods of the
Doc Object.

N O T E S : Can be executed only during console, menu, or application initialization events.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Not available in Reader.

5.0 � � �

6.0 � �

Acrobat JavaScript Scripting Reference
Security Methods

542 Acrobat JavaScript Scripting Reference

Parameters

Returns

An array of generic Group Objects.

See doc.encryptForRecipients for a description of the generic Group Object.

DisplayOptions Generic Object

It contains the following properties:

Example 1

Retrieve groups with permissions

oOptions A DisplayOptions Generic Object containing the parameters for the
display options.

Property Description

bAllowPermGroups Controls whether permissions can be set for entries in
the recipient list. Default value is true.

bPlaintextMetadata Controls whether the checkbox is displayed that allows
a user to select whether meta data is plaintext or
encrypted, and also the default value. If not specified,
the checkbox is not shown. If specified, the checkbox is
shown and the default value is the value of this
property.

cTitle The title to be displayed in the dialog. The default is
"Choose Recipients".

cNote A note to be displayed in the dialog. The default is to
not show any note.

bAllowImportFromFile Whether the option is displayed that allows a user to
import recipients from a file. The default value is true.

bRequireEncryptionCert If true, recipients will be required to include an
encryption certificate. The default value is true.

bRequireEmail If true, recipients will be required to include an email
address. The default value is false.

bUserCert If true, the user will be prompted to provide his or her
own certificate so that he or she can be included in the
list of recipients. Setting this flag to true results in a
prompt but does not require that the user provide a
certificate.

Acrobat JavaScript Scripting Reference 543

Acrobat JavaScript Scripting Reference
Security Methods

var oOptions = {
bAllowPermGroups: true,
bPlaintextMetadata: false,
cTitle: "Encrypt and Email",
cNote: "Select recipients",
bAllowImportFromFile: false,
bRequireEncryptionCert: true,
bRequireEmail: true

};
var groupArray = security.chooseRecipientsDialog(oOptions);
console.println("Full name = "+ groupArray[0].userEntities[0].fullName);

Example 2

Get a list of recipients for which to encrypt data and then possibly email the document
once done.

var oOptions = { bAllowPermGroups: false,
 cNote: "Select the list of recipients. "
 + "Each person must have both an email address and a certificate.",
 bRequireEmail: true,
 bUserCert: true
};
var oGroups = security.chooseRecipientsDialog(oOptions);
// Display the list of recipients in an alert
// Build an email "to" mailList
var numCerts = oGroups[0].userEntities.length;
var cMsg = "The document will be encrypted for the following:\n";
var mailList = new Array;
for(var g=0; g<numCerts; ++g)
{
 var ue = oGroups[0].userEntities[g];
 var oCert = ue.defaultEncryptCert;
 if(oCert == null)
 oCert = ue.certificates[0];
 cMsg += oCert.subjectCN + ", " + ue.email + "\n";
 var oRDN = oCert.subjectDN;
 if(ue.email)
 {
 mailList[g] = ue.email;
 }
 else
 if (oRDN.e)
 {
 mailList[g] = oRDN.e;
 }
}
var result = app.alert(cMsg);

Example 3

List all the entries in an array of groups

Acrobat JavaScript Scripting Reference
Security Methods

544 Acrobat JavaScript Scripting Reference

var groups = security.chooseRecipientsDialog(oOptions);
for(g in groups) {

console.println("Group No. " + g);
// Permissions
var perms = groups[g].permissions;
console.println("Permissions:");
for(p in perms) console.println(p + " = " + eval("perms." +p));
// User Entities
for(u in groups[i].userEntities) {

 var user = groups[g].userEntities[u];
 console.println("User No. " + u);
 for(i in user) console.println(i + " = " + eval("user." +i));

}
}

chooseSecurityPolicy

Opens a dialog that allows a user to choose from a list of security policies, filtered according
to the options.

N O T E : (Security �) Can be executed only during batch, console, menu, or application
initialization events. Not available in Reader. This method will display UI.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

Returns a single SecurityPolicy Object or null if the user aborted selection.

Example

In this example a policy is chosen and the name is displayed.

var options = { cHandler: security.APSHandler };
var policy = security.chooseSecurityPolicy(options);
console.println("The policy chosen was: " + policy.name);

security.APSHandler is one of the Security Constants.

7.0 � �

oOptions (optional) A SecurityPolicyOptions Generic Object containing the
parameters used for filtering the list of security policies returned. If
not specified, all policies found are displayed.

Acrobat JavaScript Scripting Reference 545

Acrobat JavaScript Scripting Reference
Security Methods

exportToFile

Exports a Certificate Object to a local disk as a raw certificate file.

N O T E : (Secuirty �): Data being written must be data for a valid certificate; arbitrary data
types cannot be written. This method will not overwrite an existing file.

See also security.importFromFile.

Parameters

Returns

The path of the file that was written, if successful.

Example

var outPath = security.exportToFile(oCert, "/c/outCert.cer");

getHandler

Obtains a SecurityHandler Object. The caller can create as many new engines as desired
and each call to getHandler creates a new engine; however, there is only one UI engine.

N O T E : (Security�): This method is available from batch, console, app initialization and
menu events. It is also available in the Adobe Reader.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Backward Compatibility Note: As Adobe.PPKMS is no longer available as a separate
handle starting Acrobat 7.0, invoking getHandler with cName as "Adobe.PPKMS" returns
the engine associated with Adobe.PPKLite handler.

6.0 � �

oObject The Certificate Object that is to be exported to disk.

cDIPath The device-independent save path.

N O T E : (Security �): The parameter cDIPath must be Safe Path and
must end with the extension .cer.

5.0 �

Acrobat JavaScript Scripting Reference
Security Methods

546 Acrobat JavaScript Scripting Reference

Parameters

Returns

The SecurityHandler Object specified by cName. If the handler is not present, returns a
null object.

Example

This code selects the Adobe.PPKLite SecurityHandler.
// validate signatures on open
security.validateSignaturesOnOpen = true;

// list all available signature handlers
var a = security.handlers;
for (var i = 0; i < a.length; i++)
 console.println("a["+i+"] = "+a[i]);

// use "Adobe.PPKLite" handler engine for the UI
var ppklite = security.getHandler(

security.PPKLiteHandler, true);
// login
ppklite.login("dps017", "/C/profiles/DPSmith.pfx");

See also the example following signatureSign for a continuation of this example.

getSecurityPolicies

Returns the list of security policies currently available, filtered according to the options
specified. The master list of security policies will be updated prior to filtering. The default
security handler objects are used to retrieve the latest policies. If no policies are available or
none meet the filtering restrictions, null will be returned.

cName The language independent name of the security handler, as returned
by the handlers property.
(version 7.0) Beginning with Acrobat 7, there are constant strings
defined on the security object for each of the valid handlers. See
Security Constants, in particular, see the HandlerName object.

bUIEngine (optional) If true, the method returns the existing security handler
instance that is associated with the Acrobat user interface (so that, for
example, a user can log in via the user interface). If false (the
default), returns a new engine.

7.0 � �

Acrobat JavaScript Scripting Reference 547

Acrobat JavaScript Scripting Reference
Security Methods

N O T E S : You may be able to retrieve more policies by calling login() on the default
security handler objects before calling this function.

(Security �) Can be executed only during console or application initialization
events. Not available in Reader.

Parameters

Returns

An array of SecurityPolicy Objects or null.

SecurityPolicyOptions Generic Object

The SecurityPolicyOptions object has the following properties:

Example 1

In this example the list of favorite PPKLite policies is retrieved and the names are displayed.
This example uses security.PPKLiteHandler, see Security Constants.

var options = { bFavorites:true, cHandler:security.PPKLiteHandler };
var policyArray = security.getSecurityPolicies({ oOptions: options });
for(var i = 0; i < policyArray.length; i++)

console.println(policyArray[i].name);

Example 2

In this example the login is forced, the list of APS policies is retrieved, and the names are
displayed. This example uses security.APSHandler, see Security Constants.

bUI (optional) A flag controlling whether UI can be displayed.
Default value is false.

oOptions (optional) A SecurityPolicyOptions Generic Object containing the
parameters used for filtering the list of security policies returned. If
not specified, all policies found are returned.

Property Description

bFavorites If not passed, policies are not filtered based on whether a policy is a
Favorite. If true, only policies which are Favorites are returned. If
false, only policies which are not Favorites are returned.

cHandler If not passed, policies are not filtered based on security filter. If
defined, only policies which match the specified security filter are
returned. The valid values are defined in Security Constants, see the
HandlerName object. Only a single value can be passed.

cTarget If not passed, policies are not filtered based on target. If defined, only
policies which match the specified target are returned. The valid
values are defined in Security Constants, see the EncryptTarget
object. Only a single value can be passed.

Acrobat JavaScript Scripting Reference
Security Methods

548 Acrobat JavaScript Scripting Reference

var aps = security.getHandler(security.APSHandler, true);
aps.login();
var options = { cHandler: security.APSHandler };
var policyArray = security.getSecurityPolicies({

bUI: true,
oOptions: options

});
for(var i = 0; i < policyArray.length; i++)

console.println(policyArray[i].name);

importFromFile

Reads a raw data file and returns the data as an object with a type specified by cType. The
file being imported must be a valid certificate.

Related method, security.exportToFile

Parameters

Returns

A Certificate Object.

Example
var oMyCert = security.importFromFile("Certificate", "/c/myCert.cer");

6.0 � �

cType The type of object to be returned by this method. The only supported
type is "Certificate".

cDIPath (optional) When bUI is false, this parameter is a required and
specifies the device-independent path to the file to be opened.
If bUI is true, this is the seed path used in the open dialog.

bUI (optional) true if the user should be prompted to select the file that
is to be imported. The default is false.

cMsg (optional) If bUI is true, the title to use in the open dialog. If cMsg is
not specified, the default titleis used for the dialog.

Acrobat JavaScript Scripting Reference 549

Acrobat JavaScript Scripting Reference
SecurityPolicy Object

SecurityPolicy Object

The Security Policy object represents a group of security settings used to apply encryption
to a document. It is can be acquired as the return value of both getSecurityPolicies
and chooseSecurityPolicy.

SecurityPolicy Properties

SecurityHandler Object

SecurityHandler objects are used to access security handler capabilities such as signatures,
encryption and directories. Different security handlers will have different properties and
methods. This section documents the full set of properties and methods that security

7.0 � �

Property Type Access Description

policyID String R This is a generated string used to uniquely
identify the Security Policy. It is not intended
to be human readable.
This may be set to a known policyId on a newly
created SecurityPolicy object to force any
method using this policy to retrieve the
correct security settings before applying the
policy.

name String R This is the policy name used for UI. It may be
localized.

description String R This is the policy description used for UI. It may
be localized.

handler String R This is an enumerated value representing the
security handler implementing this Security
Policy. The possible values are defined as
Security Constants in the Security Object, in
particular, see the HandlerName object.

target String R This is an enumeration value representing the
target data to be encrypted. The possible
values are defined as Security Constants in the
Security Object with a prefix of
"EncryptTarget". See the EncryptTarget object.

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

550 Acrobat JavaScript Scripting Reference

objects may have. Individual SecurityHandler objects may or may not implement these
properties and methods.

SecurityHandler objects can be obtained using the security.getHandler method.

The JavaScript interface for Adobe.PPKLite signatures was introduced in Acrobat 5.0, with
the remainder of the JavaScript interface being introduced in Acrobat 6.0. Prior to Acrobat
6.0 there was no support in Acrobat to enable JavaScript in third party security handlers.

Not all security handlers are JavaScript enabled. Not all JavaScript enabled handlers are
enabled for all security operations. Third party public key security handlers may support
JavaScript, but only if they use the new PubSec programming interface that was introduced
in Acrobat 6.0.

JavaScript enabled handlers provided by Adobe include:

● the Adobe.PPKLite security handler, supporting signature and encryption, on Windows
operating system providing directory access through the Microsoft Active Directory
Scripting Interface (ADSI); and

● the Adobe.AAB security handler providing a local address book and support for directory
operations.

Note that the Standard security handler, used for password encryption of documents, is not
JavaScript enabled in general, however starting with Acrobat 7.0 encryption using
Standard security is possible using predefined policies. See encryptUsingPolicy for
more details.

Also starting with Acrobat 7.0, the Adobe.APS handler can be used for encryption via the
encryptUsingPolicy method. This handler will also make a directory available via the
directory services, but as no certificates will be returned from this directory it is of limited
general use.

N O T E S : (Security �): SecurityHandler Objects can only be created using the
Security Object getHandler method. This method is available only for batch,
console, application initialization and menu events, and is available in the Adobe
Reader.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

SecurityHandler Properties

appearances

An array containing the language-dependent names of the available user-configured
appearances for the specified security handler. Appearances are used to create the on-page
visual representation of a signature when signing a signature field. The name of an

5.0 �

Acrobat JavaScript Scripting Reference 551

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

appearance can be specified as a signature info object property when signing a signature
field using field.signatureSign.

Acrobat provides a standard signature appearance module that is used by Adobe signature
plug-ins and that can also be used by third party signature plug-ins. This standard signature
appearance module is pre-configured with one appearance and can be configured by users
to contain more appearances. The name of the one pre-configured appearance, called
Standard Text in the user interface, is not returned by this property.

If a security handler does not support selection of appearances then this property will
return null.

Type: Array Access: R.

digitalIDs

This method returns the certificates that are associated with the currently selected Digital
IDs for this security handler.

Type: Object Access: R.

The return value is a generic object with the following properties:

6.0 �

Property Type Version Description

oEndUserSignCert Certificate
Object

6.0 The certificate that is associated with the
currently selected Digital IDs that is to be
used by this security handler object when
signing. The property is undefined if there is
no current selection.

oEndUserCryptCert Certificate
Object

6.0 The certificate that is associated with the
currently selected Digital IDs that is to be
used when encrypting a document with
this security handler object. The property is
undefined if there is no current selection.

certs Array of
Certificate
Objects

6.0 An array of certificates corresponding to the
list of all Digital IDs that are available for this
security handler object.

stores Array of String
identifying the
Digital ID store

6.0 An array of strings, one for every Certificate
Object, identifying the store where the
Digital ID is stored. The string values are up
to the security handler. For Adobe.PPKLite
the valid values are ‘PKCS12’ and ‘MSCAPI’.

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

552 Acrobat JavaScript Scripting Reference

The Adobe.PPKLite security handler returns all currently available Digital IDs, present in any
of the following stores: Password-protected Digital ID files (both PKCS#12 and APF) and, on
Windows OS, IDs present in the Windows (MCCAPI) store.

Both oEndUserSignCert and oEndUserCryptCert properties can be set using the
user-interface. oEndUserSignCert can also be set using the login method. This
means that oEndUserCryptCert will only be returned when using a Security Handler
object that is obtained using the getHandler method with bUIEngine set to true.

Example
var sh = security.getHandler("Adobe.PPKMS", true);
var ids = sh.digitalIDs;
var oCert = ids.oEndUserSignCert;
security.exportToFile(oCert, "/c/MySigningCert.cer");

directories

Returns an array of the available Directory Objects for this Security Handler. New Directory
Objects can be created using the newDirectory method.

Type: Array Access: R.

directoryHandlers

Returns an array containing the language independent names of the available directory
handlers for the specified security handler. As an example, the Adobe.PPKMS security
handler has a directory handler named Adobe.PPKMS.ADSI that supports queries using the
Microsoft Active Directory Script Interface (ADSI). Valid directory handler names are required
when activating a new Directory Object using its info property.

Type: Array Access: R.

isLoggedIn

Returns true if currently logged into this SecurityHandler Object. See the login
method.

Different security handlers will have their own rules for determining the value of this
property. The Adobe.PPKLite handler will return true if a user is logged in to a profile file

6.0 �

6.0 �

5.0 �

Acrobat JavaScript Scripting Reference 553

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

(also called credential file, implemented as a PKCS#12 file). Adobe.PPKMS will always return
true.

Type: Boolean Access: R.

Example
var ppklite = security.getHandler("Adobe.PPKLite", true);
console.println("Is logged in = " + ppklite.isLoggedIn); // false
ppklite.login("dps017", "/C/signatures/DPSmith.pfx");
console.println("Is logged in = " + ppklite.isLoggedIn); // true

loginName

The name associated with the actively selected signing Digital ID for the security handler.
This may require that the login method be called in order to select a signing credential.
The return value is null if a signing credential is not selected or if the security handler
does not support this property.

Type: String Access: R.

loginPath

The device-independent path to the user’s profile file used to login to the security handler.
The return value is null if no one is logged in, if the security handler does not support this
property, or if this property is irrelevant for the currently logged in user.

Type: String Access: R.

name

The language-independent name of the security handler. Example values for the Default
Certificate, Windows Certificate, and Entrust Security Handlers are Adobe.PPKLite,
Adobe.PPKMS, and Entrust.PPKEF. All security handlers must support this property.

Type: String Access: R.

5.0 �

5.0 �

5.0 �

Acrobat JavaScript Scripting Reference
SecurityHandler Properties

554 Acrobat JavaScript Scripting Reference

signAuthor

Whether the security handler is capable of generating certified documents. A certified
document is a document that is signed with both a byte range signature and an object
signature. Object signatures are generated by walking the object tree of the document and
are used to detect and prevent modifications to a document. Refer to the mdp property of
the SignatureInfo Object for details regarding modification detection and prevention
(MDP) settings.

Type: Boolean Access: R.

signFDF

Indicates that the security handler is capable of signing FDF files.

Type: Boolean Access: R.

signInvisible

Whether the security handler is capable of generating invisible signatures.

Type: Boolean Access: R.

signValidate

Indicates whether the security handler is capable of validating signatures.

Type: Boolean Access: R.

signVisible

Whether the security handler is capable of generating visible signatures.

6.0 �

6.0 �

5.0 �

6.0 �

5.0 �

Acrobat JavaScript Scripting Reference 555

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

Type: Boolean Access: R.

uiName

The language-dependent string for the security handler. This string is suitable for user
interfaces. All security handlers must support this property.

Type: String Access: R.

SecurityHandler Methods

login

This method provides a mechanism by which Digital IDs can be accessed and selected for a
particular Security Handler. Through user-interface, a ‘Default DigitalID’ can be selected
which is either eternally persistent or persistent for as long as the application is running. If
such a selection has been made through the UI, then it might not be necessary to log into a
Security Handler prior to using the DigitalID.

Parameters tend to be specific to a particular handler. The behaviour for Adobe.PPKLite and
Adobe.PPKMS handlers is specified below.

The parameters cPassword and cDIPath are provided for backward compatibility, or
they can be included as properties of the oParams object. This latter method is the
preferred calling convention beginning in Acrobat 6.0.

See also logout, newUser, and loginName.

Parameters

5.0 �

5.0 �

cPassword (optional, version 5.0) The password necessary to access the
password-protected Digital ID. This parameter is supported by
Adobe.PPKLite for accessing Digital ID files and PKCS#11 devices.

cDIPath (optional, version 5.0) A device independent path to the password-
protected Digital ID file or a PKCS#11 library. This parameter is
supported by Adobe.PPKLite.

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

556 Acrobat JavaScript Scripting Reference

Returns

Returns true if the login succeeded, false otherwise.

LoginParameters Generic Object

This generic JS object contains parameters for the login method. It has the following
properties:

oParams (optional, version 6.0) A LoginParameters Generic Object with
parameters that are specific to a particular SecurityHandler Object.
The common fields in this object are described below. These fields
include the cDIPath and cPassword values, thus allowing the
parameter list to be expressed in different ways.

bUI (optional, version 6.0) Set to true if it is desired that user interface be
used to log the user in. This attribute should be supported by all
security handlers that support this method.

Property Type Version Description

cDIPath String 5.0 The path to a file that contains the Digital
ID or a PKCS#11 library. Supported by
Adobe.PPKLite security handler.

cPassword String 6.0 A password that is used to authenticate
the user. This password may used to
access a password-protected Digital ID file
or a PKCS#11 device. Supported by
Adobe.PPKLite security handler. Note that
Acrobat does not guarantee that this
password is obfuscated in memory.

cPFX String 7.0 (optional) The entire PFX (hex encoded) to
log into. If this parameter is specified, it
takes precedence over cDIPath. Note,
currently there’s no way to retrieve a hex
encoded PFX file through JS. This is only
used internally.

Acrobat JavaScript Scripting Reference 557

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

Example 1
// Use "Adobe.PPKLite" Security Handler Object for the UI
var ppklite = security.getHandler(security.PPKLiteHandler, true);
var oParams = { cPassword: "dps017", cDIPath: "/C/DPSmith.pfx" }
ppklite.login(oParams);
<..... make a signature field and sign it>
ppklite.logout();

oEndUserSignCert generic
object

6.0 Selects a Digital ID for the purpose of
performing end user signing. The value of
this property is a Certificate Object, or
generic object with the same property
names as a Certificate Object, defining the
certificate that is being selected. It may or
may not be necessary to call this method
for a particular handler. For example, if
logged in to a PKCS#12 file containing one
signing Digital ID with Adobe.PPKLite, a
signing credential will not need to be
selected. All security handlers must be
able to process the binary and SHA1Hash
properties of this object. This object can
be empty if bUI is true.

cMsg String 6.0 A message to display in the login dialog, if
bUI is true.

cURI String 7.0 URI used to connect to a server. Only
supported by the Adobe.APS handler.

cUserId String 7.0 User name used when connecting to a
server. Only supported by the Adobe.APS
handler.

cDomain String 7.0 Domain name used when connecting to a
server. Only supported by the Adobe.APS
handler.

iSlotID Integer 7.0 Specifies the slot ID of a PKCS#11 device
to log into. This parameter is supported by
the Adobe.PPKLite handler only.

cTokenLabel String 7.0 Specifies the token label of a PKCS#11
device to log into. This parameter is
supported by the Adobe.PPKLite handler
only.

Property Type Version Description

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

558 Acrobat JavaScript Scripting Reference

// PPKLite - Use UI to select a credential, when already logged in
ppklite.login(
{ oParams:

{ oEndUserSignCert: {},
 cMsg: "Select your Digital ID" },
 bUI : true

});

// PPKLite - Login and select signing credential
var oCert = { SHA1Hash: "00000000" };
ppklite.login(
{ oParams:

{ cDIPath: "/C/test/DPSmith.pfx",
 cPassword: "dps017",
 oEndUserSignCert: oCert,

 cMsg: "Select your Digital ID"
},

 bUI : true
});

Example 2
// Use "Adobe.PPKMS" Security Handler Object
var ppkms = security.getHandler("Adobe.PPKMS");

// Select credential to use when signing
var oCert = myCerts[0];
ppkms.login({ oParams: { oEndUserSignCert: oCert } });

Example 3

Use Adobe.APS Security Handler Object. This example uses security.APSHandler, see
Security Constants.

var aps = security.getHandler(security.APSHandler, true);
var oParams = { cUserName: "acrobat", cPassword: "adobedon" };
aps.login(oParams);
<..... encrypt a document using this handle and a policy id>
aps.logout();

See signatureSign for details on signing a PDF document.

logout

Logs out for the SecurityHandler Object. This method is used by Adobe.PPKLite, not
by Adobe.PPKMS.

Also see the login method.

5.0 �

Acrobat JavaScript Scripting Reference 559

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

Parameters

None

Returns

Beginning in Acrobat 6.0, returns true if the logout succeeded, false otherwise.
Previous Acrobat releases did not generate a return value.

newDirectory

Returns a new Directory Object. The directory object must be activated using its info
property before it is marked for persistance and can be used for searches. Existing directory
objects can be discovered using the directories property.

Parameters

None

Returns

Returns a new Directory Object

newUser

This method supports enrollment with Adobe.PPKLite and Adobe.PPKMS security handlers
by creating a new self-sign credential.

N O T E : (Security �): This method will not allow the user to overwrite an existing file.

Parameters

6.0 � �

5.0 � �

cPassword (optional) The password necessary to access the password-protected
Digital ID file. This parameter is ignored by Adobe.PPKMS.

cDIPath (optional) The device-independent path to the password-protected
Digital ID file. This parameter is ignored by Adobe.PPKMS.

N O T E : (Security �): Beginning with Acrobat 6.0, the parameter
cDIPath must be Safe Path and end with the extension .pfx.

oRDN (optional) The relative distinguished name (RDN) as an RDN Generic
Object containing the issuer or subject name for a certificate. The only
required field is cn. If the country c is provided, it must be two
characters, using the ISO 3166 standard (for example, 'US').

Acrobat JavaScript Scripting Reference
SecurityHandler Methods

560 Acrobat JavaScript Scripting Reference

Returns

true if successful, throws an exception if not successful.

Example
// Create a new PPKLite self-sign credential (Acrobat 5.0 syntax)
var ppklite = security.getHandler(security.PPKLiteHandler);
var oRDN = { cn: "Fred NewUser", c: "US" };
var oCPS = {oid: "1.2.3.4.5",

url: "http://www.myca.com/mycps.html",
notice: "This is a self generated certificate, hence the "

+ "recipient must verify it’s authenticity through an out "
+ "of band mechansism" };

ppklite.newUser("testtest", "/d/temp/FredNewUser.pfx", oRDN, oCPS);

// Alternate generic object syntax, allowing additional parameters
var oParams = {

cPassword : "myPassword",
cDIPath : "/d/temp/FredNewUser.pfx",
oRDN : oRDN,
oCPS : oCPS,
bUI : false

};
ppklite.newUser(oParams);

// Use a certificate from an existing signed, field to create the RDN
var f = this.getField("mySignature");
f.signatureValidate();
var sigInfo = f.signatureInfo();
var certs = sigInfo.certificates;
var oSubjectDN = certs[0].subjectDN;

oCPS (optional, version 6.0) A generic object containing certificate policy
information that will be embedded in the Certificate Policy extension
of the certificate. The object must contain property oid, which
indicates the certificate policy object identifier. The other properties
which may be present are url and (user) notice. The url is a URL
that points to detailed information about the policy under which the
certificate has been issued and user notice is a abridged version of
the same, embedded in the certificate.

bUI (optional, version 6.0) When true, the user interface can be used to
enroll. This parameter is supported by all security handlers that
support this method.

cStore (optional, version 7.0) A string identifying the store where the
generated credential has to be stored. For Adobe.PPKLite security
handler, the valid store identifiers are "PKCS12" and "MSCAPI". If this
parameter is omitted and cDIPath is provided, the generated
credential is stored in a PKCS#12 file, else it is stored in the CAPI store.

Acrobat JavaScript Scripting Reference 561

Acrobat JavaScript Scripting Reference
SignatureInfo Object

ppklite.newUser({
cPassword: "dps017",
cDIPath: "/c/temp/DPSmith.pfx",
oRDN: oSubjectDN

});

setPasswordTimeout

Sets the number of seconds after which password should expire between signatures. This
method is only supported by the Adobe.PPKLite security handler. For this handler the
default timeout value for a new user is 0 (password always required).

Parameters

Returns

Throws an exception if the user has not logged in to the Adobe.PPKLite Security Handler, or
unsuccessful for any other reason.

Example

This example logs in to the PPKLite security handler and sets the password timeout to 30
seconds. If the password timeout has expired—30 seconds in this example—the signer
must provide a password. The password is not necessary if the password has not timed out.

var ppklite= security.getHandler("Adobe.PPKLite");
ppklite.login("dps017", "/d/profiles/DPSmith.pfx");
ppklite.setPasswordTimeout("dps017", 30);

SignatureInfo Object

A generic JS object that contains the properties of a digital signature. Some properties are
supported by all handlers, and additional properties can be supported.

The SignatureInfo object is returned by the field methods field.signatureValidate
and field.signatureInfo, and is passed to the methods FDF.signatureSign,
and FDF.signatureValidate.

Writable properties can be specified when signing the object, see the
field.signatureInfo and FDF.signatureSign.

5.0 � �

cPassword The password needed to set the timeout value.

iTimeout The timeout value, in seconds. Set to 0 for always expire (that is,
password always required). Set to 0x7FFFFFFF for never expire.

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

562 Acrobat JavaScript Scripting Reference

SignatureInfo Object properties

All handlers define the following properties:

SignatureInfo Object properties

Property Type Access Version Description

buildInfo Object R 6.0 An object containing software build
and version information for the
signature. The format of this object is
not described in this document. An
Acrobat technote may be produced
that contains this information. The
subject of this technote will be
signature build properties dictionary.

date Date
Object

R 5.0 The date and time that the signature
was created, returned as a JS date
object.

dateTrusted Boolean R 7.0 This boolean indicates if the “date” is
from a trusted source or not. If this
value is not present, the date should
be assumed from an untrusted source
(e.g. signer’s computer system time).

handlerName String R 5.0 The language independent name of
the security handler that was
specified as the Filter attribute in the
signature dictionary. This is usually
the name of the security handler that
created the signature, but can also be
the name of the security handler that
the creator desires to be used when
validating the signature.

handlerUserName String R 5.0 The language dependent name
corresponding to security handler
specified by handlerName. This is
only available when the named
security handler is available.

handlerUIName String R 5.0 The language dependent name
corresponding to security handler
specified by handlerName. This is
only available when the named
security handler is available.

Acrobat JavaScript Scripting Reference 563

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

location String R/W 5.0 Optional user specified location when
signing. This can be a physical
location (such as a city) or hostname.

mdp String R/W 6.0 The Modification Detection and
Prevention (MDP) setting that was
used to sign the field or FDF Object
being read, or the MDP setting to use
when signing. Values are:
allowNone
allowAll
default
defaultAndComments

See Modification Detection and
Prevention (MDP) Values for details.
The value of allowAll, the default,
means that MDP is not used for the
signature, resulting in this not being
an author signature.

name String R 5.0 Name of the user that created the
signature.

numFieldsAltered Number R 5.0 only Deprecated. The number of fields
altered between the previous
signature and this signature. Used
only for signature fields.
Beginning in Acrobat 7.0 the
functionality offered by
signatureGetModifications should be
used instead.

numFieldsFilledIn Number R 5.0 only Deprecated. The number of fields
filled-in between the previous
signature and this signature. Used
only for signature fields.
Beginning in Acrobat 7.0 the
functionality offered by
signatureGetModifications should be
used instead.

SignatureInfo Object properties

Property Type Access Version Description

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

564 Acrobat JavaScript Scripting Reference

numPagesAltered Number R 5.0 only Deprecated. The number of pages
altered between the previous
signature and this signature. Used
only for signature fields.
Beginning in Acrobat 7.0 the
functionality offered by
signatureGetModifications should be
used instead.

numRevisions Number R 5.0 The number of revisions in the
document. Used only for signature
fields.

reason String R/W 5.0 User specified reason for signing.

revision Number R 5.0 The signature revision to which this
signature field corresponds. Used
only for signature fields.

sigValue String R 7.0 Raw bytes of the signature, as a hex
encoded string.

status Number R 5.0 The validity status of the signature,
computed during the last call to the
signatureValidate.
See the return codes of the status
property in the table “status and
idValidity Properties” on page 568.

statusText String R 5.0 The language dependent text string,
suitable for user display, denoting the
signature validity status, computed
during the last call to the
signatureValidate.

subFilter String R/W 6.0 The format to use when signing.
Consult the PDF Reference for a
complete list of supported values.
The known values used for public key
signatures include adbe.pkcs7.sha1,
adbe.pkcs7.detached, and
adbe.x509.rsa_sha1. It is important
that the caller know that a particular
signature handler can support
this format.

SignatureInfo Object properties

Property Type Access Version Description

Acrobat JavaScript Scripting Reference 565

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

timeStamp String W 7.0 The timeStamp server URL to use to
get the signature timeStamped. The
only schemes/transport protocols
supported for fetching timeStamps
are http(s).
This is a write only property. If the
signature is timestamped, during
verification the property
"dateTrusted" will be set to true
(provided the timestamp signature is
trusted) and the verifyDate and
the signing date will be the same.

verifyDate Date
Object

R 7.0 The date and time that the signature
was verified (if the signature has been
verified), returned as a JS date object.

verifyHandlerName String R 6.0 The language independent name of
the security handler that was used to
validate this signature. This will be
null if the signature has not been
validated, that is, if the status
property has a value of 1

verifyHandlerUIName String R 6.0 The language dependent name
corresponding to security handler
specified by verifyHandlerName. This
will be null if the signature has not
been validated, that is, if the status
property has a value of 1.

SignatureInfo Object properties

Property Type Access Version Description

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

566 Acrobat JavaScript Scripting Reference

SignatureInfo Object Public Key Security Handler Properties

Public key security handlers may define the following additional properties:

SignatureInfo Object Public Key Security Handler Properties

Property Type Access Version Description

appearance String W 5.0 The name of the user-configured appearance
to use when signing this field. PPKLite and
PPKMS use the standard appearance handler,
and in this situation, the appearance names
can be found in the signature appearance
configuration dialog of the user interface
(menu Edit > Preferences > Digital Signatures
in Acrobat 6.0). The default, when not
specified, is to use the Standard Text
appearance. Used only for visible signature
fields.

certificates Array R 5.0 Array containing a hierarchy of certificates
that identify the signer. The first element in
the array is the signer’s certificate, and
subsequent elements include the chain of
certificates up to the certificate authority that
issued the signer’s certificate. For self-signed
certificates this array will contain only one
entry.

contactInfo String R/W 5.0 User specified contact information for
determining trust. For example, a telephone
number that recipients of a document can use
to contact the author to establish trust. This is
not recommended for a scalable solution for
establishing trust.

byteRange Array R 6.0 An array of numbers indicating the bytes that
are covered by this signature.

docValidity Number R 6.0 The validity status of the document byte
range digest portion of the signature,
computed during the last call to
signatureValidate. All PDF document
signature field signatures include a byte range
digest.
See Validity Values for details of the return
codes.

Acrobat JavaScript Scripting Reference 567

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

idPrivValidity Number R 6.0 Returns the validity of the identity of the
signer. This value is specific to the handler. See
Private Validity Values for values supported by
the Adobe.PPKLite and Adobe.PPKMS handlers.
This value is 0 unless the signature has been
validated, that is, if the status property has a
value of 1.

idValidity Number R 6.0 Returns the validity of the identity of the
signer as number.
See the return codes of the idValidity
property in the table “status and idValidity
Properties” on page 568

objValidity Number R 6.0 The validity status of the object digest portion
of the signature, computed during the last call
to signatureValidate. For PDF documents,
signature field author signatures and
document level application rights signatures
include object digests. All FDF files are signed
using object digests.
See Validity Values for details of the return
codes.

revInfo Object R 7.0 A generic object containing two properties;
“CRL” and “OCSP”. Both of these properties are
array of strings, where each string contains
raw bytes of the revocation information that
was used to carry out revocation checking of a
certificate. The strings are hex encoded.
For “CRL” the string represents a CRL whereas
for “OCSP” the string represents an OCSP
response. These properties are populated only
if the application preference to populate them
is turned on, as this data can potentially get
very large.

SignatureInfo Object Public Key Security Handler Properties

Property Type Access Version Description

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

568 Acrobat JavaScript Scripting Reference

status and idValidity Properties

The following table list the codes returned by the Signature Info Object, status and
idValidity properties.

trustFlags Number R 6.0 The bits in this number indicate what the
signer is trusted for. The value is valid only
when the value of the status property is 4.
These trust settings are derived from trust
setting in the recipient’s trust database, for
example the Acrobat Address Book
(Adobe.AAB). Bit assignments are:

1- trusted for signatures
2- trusted for certifying documents
3- trusted for dynamic content such as
 multimedia
4- Adobe internal use
5- the javascript in the PDF file is trusted to
 operate outside the normal PDF
 restrictions

password String W 5.0 Password required as authentication when
accessing a private key that is to be used for
signing. This may or may not be required,
dependent on the policies of the security
handler.

Status Code Description

-1 Not a signature field.

0 Signature is blank or unsigned.

1 Unknown status. This occurs if the signature has not yet been
validated. This can occur if the document has not completed
downloading over a network connection.

2 Signature is invalid.

3 Signature of document is valid, identity of signer could not be
verified.

4 Signature of document is valid and identity of signer is valid.

SignatureInfo Object Public Key Security Handler Properties

Property Type Access Version Description

Acrobat JavaScript Scripting Reference 569

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

Validity Values

The following codes are returned by the docValidity and objValidity (See
SignatureInfo Object Public Key Security Handler Properties), allowing a finer granularity of
understanding of the validity of the signature then the status property.

Private Validity Values

Verification of the validity of the signer’s identity is specific to the handler that is being used
to validate the identity. This value may contain useful information regarding an identity.
The identity is returned in the idPrivValidity property. Values for Adobe.PPKMS and

Validity Values

Status Code Description

kDSSigValUnknown Validity not yet determined.

kDSSigValUnknownTrouble Validity could not be determined because of errors
encountered during the validation process.

kDSSigValUnknownBytesNotReady Validity could not be determined because all bytes are
not available, for example when viewing a file in a web
browser. Even when bytes are not immediately available,
this value may not be returned if the underlying
implementation blocks when bytes or not ready. Adobe
makes no commitment regarding whether validation
checks will block or not block, however the
implementation in Acrobat 6.0 will block when
validating docValidity and not block when validating
objValidity.

kDSSigValInvalidTrouble Validity for this digest was not computed because there
were errors in the formatting or information contained
in this signature. There is sufficient evidence to conclude
that the signature is invalid.

kDSSigValInvalidTrouble Validity for this digest is not used (e.g., no doc validity if
no byte range).

kDSSigValJustSigned The signature was just signed, so implicitly valid.

kDSSigValFalse The digest or validity is invalid

kDSSigValTrue The digest or validity is valid

Acrobat JavaScript Scripting Reference
SignatureInfo Object properties

570 Acrobat JavaScript Scripting Reference

Adobe.PPKLite security handlers are shown here. This value is also mapped to an
idValidity value that is common across all handlers.

Private Validity Values

Status Code

idValidity
Mapping

Security
Handler

Description

kIdUnknown 1 (unknown) PPKMS,
PPKLite

Validity not yet determined.

kIdTrouble 1 (unknown) PPKMS,
PPKLite

Could not determine validity because of
errors, for example internal errors, or
could not build the chain, or could not
check basic policy.

kIdInvalid 2 (invalid) PPKMS,
PPKLite

Certificate is invalid: not time nested,
invalid signature, invalid/unsupported
constraints, invalid extensions, chain is
cyclic.

kIdNotTimeValid 2 (invalid) PPKMS,
PPKLite

Certificate is outside its time window
(too early, too late).

kIdRevoked 2 (invalid) PPKMS Certificate has been revoked.

kIdUntrustedRoot 1 (unknown) PPKMS,
PPKLite

Certificate has an untrusted root
certificate.

kIdBrokenChain 2 (invalid) PPKMS,
PPKLite

Could not build a certificate chain up to
a self-signed root certificate.

kIdPathLenConstraint 2 (invalid) PPKLite Certificate chain has exceeded the
specified length restriction. The
restriction was specified in Basic
Constraints extension of one of the
certificates in the chain.

kIdCriticalExtension 1 (unknown) PPKMS One of the certificates in the chain has
an unrecognized critical extension.

kIdJustSigned 4 (valid) PPKMS,
PPKLite

Just signed by user (similar to kIdIsSelf)

kIdAssumedValid 3 (idunknown) PPKMS Certificate is valid to a trusted root, but
revocation could not be checked and
was not required.

kIdIsSelf 4 (valid) PPKMS,
PPKLite

Certificate is my credential (no further
checking was done).

Acrobat JavaScript Scripting Reference 571

Acrobat JavaScript Scripting Reference
SOAP Object

Modification Detection and Prevention (MDP) Values

Modification detection and prevention (MDP) settings control what changes are allowed to
occur in a document before the signature becomes invalid. Changes are recorded outside
of the byte range, for signature fields, and can include changes that have been
incrementally saved as part of the document or changes that have occurred in memory
between the time that a document is opened and when the signature is validated. MDP
settings may only be applied to the first signature in a document. Use of MDP will result in
an author signature. MDP has one of the following four values:

allowAll: Allow all changes to a document without any of these changes invalidating
the signature. This results in MDP not being used for the signature. This was the
behavior for Acrobat 4.0 through 5.1.

allowNone: Do not allow any changes to the document without invalidating the
signature. Note that this will also lock down the author’s signature.

default: Allow form field fill in if form fields are present in the document, otherwise do
not allow any changes to the document without invalidating the signature.

defaultAndComments: Allow form field fill in if form fields are present in the document,
and allow annotations (comments) to be added, deleted or modified, otherwise do not
allow any changes to the document without invalidating the signature. Note that
annotations can be used to obscure portions of a document and thereby affect the
visual presentation of the document.

SOAP Object

The SOAP object allows remote procedure calls to be made to, or sends an XML Message
to, a remote server from JavaScript.

The SOAP 1.1 protocol (see http://www.w3.org/TR/SOAP/ is used to marshall JavaScript
parameters to a remote procedure call (either synchronously or asynchronously) and to
unmarshall the result as a JavaScript object. The SOAP object also has the ability to

kIdValid 4 (valid) PPKMS,
PPKLite

Certificate is valid to a trusted root (in
the Windows or Acrobat Address Book).

kIdRevocationUnknown ? PPKMS,
PPKLite

Certificate is valid to a trusted root, but
revocation could not be checked and
was required by the user.

Private Validity Values

Status Code

idValidity
Mapping

Security
Handler

Description

Acrobat JavaScript Scripting Reference
SOAP Properties

572 Acrobat JavaScript Scripting Reference

communicate with Web Services described by the Web Services Description Language
(WSDL—see http://www.w3.org/TR/wsdl).

N O T E : SOAP methods connect, request and response are available only for
documents open in Acrobat Professional and Acrobat Standard., and for documents
with Form Export Rights(�) open in Adobe Reader 6.0 or later.

SOAP Properties

wireDump

If true, synchronous SOAP requests will cause the XML Request and Response to be
dumped to the JavaScript Console. This is useful for debugging SOAP problems.

Type: Boolean Access: R/W.

SOAP Methods

connect

Takes the URL of a WSDL document (cURL) and converts it to a JavaScript object with
callable methods corresponding to the web service.

The parameters to the method calls and the return values obey the rules specified for the
SOAP.request method.

Parameters

Returns

The result value from SOAP.connect is a WSDL Service Proxy object with a JavaScript
method corresponding to each operation in the WSDL document provided at the URL. The
parameters required for the method depend on the WSDL operation you are calling and
how the operation encodes its parameters.

● If the WSDL operation is using the SOAP RPC encoding (as described in Section 7 of the
SOAP 1.1 Specification) then the arguments to the service method are the same as the
parameter order in the WSDL document.

6.0

6.0 �

cURL The URL of a WSDL document. The cURL parameter must be an HTTP
or HTTPS URL.

Acrobat JavaScript Scripting Reference 573

Acrobat JavaScript Scripting Reference
SOAP Methods

● If the WSDL service is using the SOAP document/literal encoding then the function will
have a single argument indicating the request message. The argument may be a
JavaScript object literal describing the message or it may be either a string or a
ReadStream Object with an XML fragment describing the message. The return value of
the service method will correspond to the return value of the WSDL operation.

The JavaScript function objects corresponding to each web service method will use the
following properties if they are set. The default is for none of the properties to be set.

Exceptions

SOAPError, NetworkError

See the Additional Notes on the Exceptions.

SOAP Faults will cause a SOAPError exception to be thrown. If there is a problem at the
networking level, such as an unavailable endpoint, a NetworkError will be thrown.

Example

A service WSDL Document URL is needed. These can be obtained from the "Round 2
Interop Services - using SOAP 1.2" section at the following URL:
http://www.whitemesa.com/interop.htm.

var cURL = <get a URL for this service from
http://www.whitemesa.com/interop.htm>;

// Connect to the test service
var service = SOAP.connect(cURL);

// Print out the methods this service supports to the console
for(var i in service) console.println(i);

var cTestString = "This is my test string";

// Call the echoString service -- it is an RPC Encoded method

Property Description

asyncHandler This property indicates that the Web Service method should be
performed asynchronously. The property corresponds to the
oAsync parameter in SOAP.request.

requestHeader This property indicates that the Web Service method should include
a SOAP Header in the request. The property corresponds to the
oReqHeader parameter in SOAP.request.

responseHeader This property indicates that the Web Service method should return a
SOAP Header from the response. The property corresponds to the
oRespHeader parameter in SOAP.request.

authenticator This property indicates how authentication should be handled for
the Web Service method. The property correspondsto the
oAuthenticate parameter in SOAP.request.

Acrobat JavaScript Scripting Reference
SOAP Methods

574 Acrobat JavaScript Scripting Reference

var result = service.echoString(cTestString);

// This should be the same as cTestString
console.println(result + " == " + cTestString);

// Call the echoInteger service -- JavaScript doesn't support integers
// so we make our own integer object.
var oTestInt =
{
 soapType: "xsd:int",
 soapValue: "10"
};
var result = service.echoInteger(oTestInt);

// This should be the same as oTestInt.soapValue
console.println(result + " == " + oTestInt.soapValue);

This produces the following output:

echoBase64
echoBoolean
echoDate
echoDecimal
echoFloat
echoFloatArray
echoHexBinary
echoInteger
echoIntegerArray
echoPolyMorph
echoPolyMorphArray
echoPolyMorphStruct
echoString
echoStringArray
echoStruct
echoStructArray
echoVoid
This is my test string == This is my test string
10 == 10

queryServices

Locate network services that have published themselves using DNS Service Discovery
(DNS-SD). This method can locate services that have registered using Multicast DNS
(mDNS) for location on a local networking link or through unicast DNS for location within
an enterprise. The results of service location are always returned asynchronously and the
query continues (with notification as services become available and/or unavailable) until it
is stopped.

7.0 �

Acrobat JavaScript Scripting Reference 575

Acrobat JavaScript Scripting Reference
SOAP Methods

The result of querying for services is a set of service names which can be bound when
needed by calling resolveService.

Services can either use a 3rd party mDNS responder to be located in the local network link
or register themselves in a DNS server (either statically or dynamically) to be located within
an enterprise networking environment.

Parameters

See the Standard Acrobat Exceptions..

Returns

A service query object which manages the duration of the query. The query will continue
until one of the following conditions is met:

– the service query object returned from queryServices() is garbage collected.
– the stop() method of the service query object returned from queryServices()

is called.

Exceptions

Standard Acrobat Exceptions.

Additional Notes on the Parameters of SOAP.queryServices

● cType
The cType parameter indicates a DNS SRV Service Name that should be queried for.
Some possible examples are:
– "http": Locate Web Servers
– "ftp": Locate FTP Servers
– See the DNS SRV Service Name Registry for more examples

● oAsync

cType The DNS SRV Service Name to search for.
See cType for more details.

oAsync An object that will be called when a service is located.
See oAsync for specifications.

aDomains (optional) An array of domains to make the query in.
See aDomains for details.

Method Description

stop Causes the query to terminate. This method can be called from a
notification callback but the operation will not stop until idle
processing time.

Acrobat JavaScript Scripting Reference
SOAP Methods

576 Acrobat JavaScript Scripting Reference

The oAsync object is a notification object which will be notified when services are
located on the network or services which had previously been reported are removed.
The notification methods will not be called until the queryServices() method
returns and are called during idle processing, The oAsync parameter should
implement the following methods:

The service description object passed to addServices() and removeServices()
have the following properties:

● aDomains
The aDomains parameter indicates an array of domains that the query should be made
for. The only valid domains are:

Method Description

addServices This method is called when available services matching the
query are located. The parameter is an array of service
description objects (see below) for the services that have been
added.

removeServices This method is called when services (which had previously
been introduced by calling the addServices() notification
method) are no longer available. The parameter is an array of
service description object (see below) for the services that
have been removed.

N O T E : In Acrobat 7.0, only services located through mDNS (i.e.
in the “local.” domain) are updated dynamically.

Property Description

name The unicode display name of the service.

domain The DNS domain in which the service was located. If the service
was located in the local networking link then the domain name
will be “local.”.

type The DNS SRV Service Name of the service that was located –
this will be the same as the cType parameter passed to
queryServices(). This can be useful when the same
notification callback is being used for multiple queries.

Domains Description

ServiceDiscovery.local Search for services in the local networking link
using Multicast DNS (mDNS). This is useful for
finding network services in an ad hoc
networking environment but network services
will only be located within the scope of the
current network router.

Acrobat JavaScript Scripting Reference 577

Acrobat JavaScript Scripting Reference
SOAP Methods

Example

This example code will produce different output depending on where it is run.

var oNotifications =
{

addServices: function(services)
{

for(var i = 0; i < services.length; i++)
console.println("ADD: "+ services[i].name + " in domain "

+ services[i].domain);
}
removeServices: function(services)
{

for(var i = 0; i < services.length; i++)
console.println("DEL: " + services[i].name + " in domain "

+ services[i].domain);
}

};
SOAP.queryServices({

cType:"http",
oAsync:oNotifications,
aDomains:[ServiceDiscovery.local, ServiceDiscovery.DNS]

});

The output depends on the current network environment; if there are no services
advertised by DNS Service Discovery, the example will produce no output. The following is
a representative output:

ADD: My Web Server in domain local.
ADD: Joe’s Web Server in domain local.
ADD: Example.org Web Server in domain example.org.

resolveService

This method allows a service name to be bound to a network address and port in order for
a connection to be made. The connection information is returned asynchronously and
should be treated as temporary since the network location of a service may change over
time (for example, if a DHCP lease expires or if a service moves to a new server).

ServiceDiscovery.DNS Search for services in the default DNS domain
using unicast DNS. This is useful for locating
network services in the context of a DNS server
but typically requires IS assistance to register a
service and is less dynamic.

7.0 �

Domains Description

Acrobat JavaScript Scripting Reference
SOAP Methods

578 Acrobat JavaScript Scripting Reference

Parameters

Returns

A service query object which manages the duration of the resolve. The resolve will continue
until one of the following conditions is met:

– the service query object returned from resolveService() is garbage collected.
– the resolve() method of the oAsync object is called indicating that the

operationcompleted (either by resolving the service, error or a timeout).
– the stop() method of the service query object returned from

resolveService() is called.

Exceptions

Standard Acrobat Exceptions.

Additional Notes on the Parameters of SOAP.resolveService

● oAsync
The oAsync object is a notification object which will be called when the service is
resolved. The notification methods will not be called until the resolveService()
method returns and are called during idle processing. The oAsync parameter should
implement the following method:

cType The DNS SRV Service Name to resolve.

cDomain The domain that the service was located in.

cService The service name to resolve.

oAsync An object that will be called when the service is resolved.
See oAsync for additional details of this parameter.

Method Description

stop Causes the resolve to terminate. This method can be called from
a notification callback but the operation will not stop until idle
processing time.

Method Description

resolve This method is called with two parameters (nStatus and
oInfo) when the service is resolved or if it cannot be resolved.
The parameter nStatus is the state indicating if the service
could be resolved (see below). If the service was sucessfully
resolved then the oInfo object, an instance of the
ServiceInfo object (see below), specifies the connection
information.

Acrobat JavaScript Scripting Reference 579

Acrobat JavaScript Scripting Reference
SOAP Methods

The value of the nStatus parameter passed to the resolve method is one of the
following:

The ServiceInfo object passed to the resolve method has the following properties:

Example

This example code will produce different output depending on where it is run. If there are
no services advertised by DNS Service Discovery, this example will produce no output.

var oNotifications =
{

resolve: function(status, info)
{

if(status == 0)
console.println("RESOLVE: http://"

+ info.target + ":" + info.port + "/"
+ info.info.path);

else console.println("ERROR: " + status);
}

};
SOAP.resolveService({

cType: "http",
cDomain: "local.",
cService: "Joe's Web Server",
oAsync: oNotifications

});

The output depends on the current network environment – the following is a
representative output:

RESOLVE: http://127.0.0.1:80/index.html

Value Description

0 The service was successfully resolved.

1 The service timed out before being resolved. The default
timeout in Acrobat 7 is 60 seconds.

-1 There was an networking error trying to resolve the service.

Property Description

target The IP address or DNS name of the machine supplying the service.

port The port on the machine supplying the service.

info An object with name / value pairs that the service has supplied. For
example, in the case of an HTTP service, the path property will
contain the path on the webservice so that the service URL would be
http://<target>:<port>/<info["path"]>).

Acrobat JavaScript Scripting Reference
SOAP Methods

580 Acrobat JavaScript Scripting Reference

request

Initiates a remote procedure call (RPC) or sends an XML message to a SOAP HTTP endpoint.
The method will either wait for the endpoint to reply (synchronous processing) or call a
method on the notification object (asynchronous processing).

Parameters

6.0 �

cURL The URL for a SOAP HTTP Endpoint.
See cURL below for more details.

oRequest An object that specifies the remote procedure name and
parameters or the XML message to send.
See oRequest for more details on this object.

oAsync (optional) An object that specifies that the method invocation will
occur asychronously.
The default is for the request to be made synchronously.
See oAsync for more details.

cAction (optional) In SOAP 1.1, this parameter is passed as the SOAPAction
header. In SOAP 1.2, this parameter is passed as the action
parameter in the Content-Type header.
The default is for the action to be an empty string.
See cAction for additional comments.

bEncoded (optional) Encoded the request using the SOAP Encoding
described in the SOAP Specification. Otherwise, the literal
encoding is used.
The default is true.

cNamespace (optional) A namespace for the message schema when the
request does not use the SOAP Encoding.
The default is to omit the schema declaration.

oReqHeader (optional, version 7.0) An object that specifies a SOAP header to
be included with the request.
The default is to send a request with only a SOAP Body.
See oReqHeader for more details on this object.

oRespHeader (optional, version 7.0) An object that will be populated with the
SOAP headers returned when the method completes.
The default is for the eaders to not be returned.
See oRespHeader for additional specifics.

Acrobat JavaScript Scripting Reference 581

Acrobat JavaScript Scripting Reference
SOAP Methods

See the Additional Notes on the Parameters of SOAP.request.

Returns

A response object if the method was called synchronously or nothing if the method was
called asynchronously. See the description of cResponseStyle above for the object
description.

An object literal. See the Additional Notes on the Return Value

Exceptions

SOAPError, NetworkError

See the Additional Notes on the Exceptions.

SOAP Faults will cause a SOAPError to be thrown. If there is a problem at the networking
level, such as an unavailable endpoint, a NetworkError will be thrown.

Additional Notes on the Parameters of SOAP.request

● cURL
The parameter cURL is the URL for a SOAP HTTP Endpoint. The URL method must be
one of
– http—Connect to a server at a URI on a port. For example,

http://serverName:portNumber/URI
– https—Connect to a secured (SSL) server at a URI on a port.

For example, https://serverName:portNumber/URI

● oRequest
The oRequest parameter is an object literal that specifies the remote procedure name
and the parameters to call. The object literal uses the fully qualified method name of the

cVersion (optional, version 7.0) The version of the SOAP protocol to use
when generating the XML Message – either 1.1 or 1.2.
The default is to use "SOAPVersion.version_1_1".
See cVersion below.

oAuthenticate (optional, version 7.0) An object that specifies the type of
authentication scheme to use and to provide credentials .
The default is for an interactive UI to be displayed if HTTP
authentication is encountered.
See oAuthenticate for more details.

cResponseStyle (optional, version 7.0) The style of message description to use
when generating the response object – one of "JS", "XML" or
"Message".
The default is "JS".
See cResponseStyle for greater description.

Acrobat JavaScript Scripting Reference
SOAP Methods

582 Acrobat JavaScript Scripting Reference

remote procedure as the key. The namespace should be separated from the method
name by a colon; for example, if the namespace for the method is
http://mydomain/methods and the method name is echoString() then the fully
qualified name would be http://mydomain/methods:echoString. The value of this key is
an object literal, each key is a parameter of the method, and the value of each key is the
value of the corresponding parameter of the method. For example:
 oRequest: {

 "http://soapinterop.org/:echoString":{inputString: "Echo!"}
 }

When passing parameters to a remote procedure, JavaScript types are bound to SOAP
types automatically as listed in the table:

N O T E : The xsd namespace refers to the XML Schema Datatypes namespace
http://www.w3.org/2001/XMLSchema). The SOAP-ENC namespace refers to the
SOAP Encoding namespace http://schemas.xmlsoap.org/soap/encoding/).

The oRequest object supports the following properties:

JavaScript Type SOAP Type

String xsd:string

Number xsd:float

Date xsd:dateTime

Boolean xsd:boolean

ReadStream Object SOAP-ENC:base64

Array SOAP-ENC:Array

Other No type information

Property Description

soapType This is the SOAP Type that will be used for the value when
generating the SOAP message; this is useful when a datatype is
needed other than the automatic datatype binding described
above. The type should be namespace qualified using the
<namespace>:<type> notation, for example

http://mydomain/types:myType

However the xsd (the XMLSchema Datatypes namespace),
xsi (the XMLSchema Instance namespace) and SOAP-ENC
(the SOAP Encoding namespace) namespaces are implicitly
defined in the SOAP message so the soapType can use these,
as in xsd:int for the XMLSchema Datatype Integer type.

Acrobat JavaScript Scripting Reference 583

Acrobat JavaScript Scripting Reference
SOAP Methods

soapValue (Version 6.0) This is the value that will be used when
generating the SOAP message. It can be a string or a
ReadStream Object. The soapValue is passed unescaped
(i.e., will not be XML Entity escaped); for example "<" is not
converted to "<" in the XML Message. Consequently the
soapValue parameter can be a raw XML fragment which will
be passed to the XML Message.
(Version 7.0) The soapValue property could previously be a
string or a stream. It can now also be an array of nodes which
will be an ordered set of children of the node in the request
message.

soapName This is the element name that will be used when generating
the SOAP message instead of the key name in the object literal.
For example, integers are not supported in JavaScript, but an
integer parameter to a SOAP method can be constructed as
follows
 var oIntParameter = {

 soapType: "xsd:int",
 soapValue: "1"

 };

Later, the oRequest parameter for the SOAP.request
method might be
 oRequest: {
 "http://soapinterop.org/:echoInteger":
 { inputInteger: oIntParameter }
 }

The Example 1 that follows the description of the
SOAP.request illustrates this technique.

soapAttributes (Version 7.0) An object specifiying XML attributes to be
included when building the element corresponding to the
request node. The object keys are the attribute names and the
corresponding value is the attribute value.

Property Description

Acrobat JavaScript Scripting Reference
SOAP Methods

584 Acrobat JavaScript Scripting Reference

● oAsync
(Version 6.0) The oAsync object literal must have a function called response which
will be called with two parameters (oResult and cURI) when the response returns.
oResult is the same result object that would have been returned from the request call
if it was called synchronously. cURI is the URI of the endpoint that the request was
made to.

(Version 7.0) The oAsync object response callback now has the following parameters:

soapQName (Version 7.0) An object specifying the namespace qualified
name (QName) of the request node. For example, in the
following element <ns:name
xmlns:ns="urn:example.org"> the element name is a
QName consisting of a local name ("local") and a
namespace ("urn:example.org”).
This object has two properties:

soapAttachment (Version 7.0) A boolean indicating that the soapValue
contents of the node should be encoded as an attachment
according to the SwA specification. The soapValue must be a
stream if the corresponding soapAttachment property is
true, otherwise an exception will be thrown.

soapParamOrder (Version 7.0) An array indicating the order in which RPC
parameters should be sent to the server. The array is a set of
strings with the parameter names. This value is only applicable
when bEncoding is true.

Parameter Description

response The response object from the SOAP request.

uri The URI that the SOAP request was made to.

exception An exception object (see the exceptions below) if there was an error,
null otherwise.

Property Description

Property Description

localName A string indicating the local
name of the QName

nameSpace A string indicating the
namespace of the QName.

Acrobat JavaScript Scripting Reference 585

Acrobat JavaScript Scripting Reference
SOAP Methods

● cAction
The cAction parameter is the SOAPAction header for the method. The SOAPAction is a
URN written to an HTTP header used by firewalls and servers to filter SOAP requests. The
WSDL file for the SOAP service or the SOAP service description will usually describe the
SOAPAction header required (if any).

● oReqHeader

The oReqHeader object specifies a request header to include with the SOAP request.
The object is specified in the same way as the oRequest object except for two
additional properties that can be specified in the request description:

● oRespHeader
The oRespHeader object is populated once the function returns if the function is
being called synchronously (the header will be passed to the oAsync callback method
otherwise). See the description of the cResponseStyle parameter for the object
format.

● cVersion
The cVersion parameter indicates the SOAP Version to use when generating the
message. The cVersion parameter is one of :

● oAuthenticate
The oAuthenticate object specifies how to handle HTTP authentication or specifies
credentials to use for Web Service Security. The default is to present a user interface to

header A response SOAP header (see the description of the
oRespHeader parameter) or null if there are no response
headers.

Property Description

soapActor The recipient (or actor specified as a URI) that the SOAP header
should be processed by. The default is that the header will be
processed by the first recipient to process the request.

soapMustUnderstand A boolean indicating that the request body can not be
interpreted if this header type is not understood by the
recipent. The default is that understanding the header is
optional.

Value Description

SOAPVersion.version_1_1 (Default) Encode the message using the SOAP 1.1
protocol.

SOAPVersion.version_1_2 Encode the message using the SOAP 1.2 protocol.

Parameter Description

Acrobat JavaScript Scripting Reference
SOAP Methods

586 Acrobat JavaScript Scripting Reference

the user to handle HTTP authentication challenges for BASIC and DIGEST authentication
modes. The oAuthenticate object can have the following properties:

● cResponseStyle
The cResponseStyle parameter is an enumerated type indicating how the return
value (in the case of the SOAP Body) and the oRespHeader object (in the case of a
SOAP header) will be structured:

Property Description

Username A string containing the username to use for authentication.

Password A string containing the authentication credential to use.

UsePlatformAuth A boolean indicating that platform authentication should be
used. If platform authentication is enabled, the Username
and Password are ignored and the underlying platform
networking code is used. This may cause an authentication UI
to be shown to the user and/or the credentials of the currently
logged in user to be used. The default is false and is only
supported on the Windows platform.

Property Description

SOAPMessageStyle.JS (Default) The response will be an object describing
the SOAP Body (or SOAP Header) of the returned
message (this is the result that Acrobat 6.0 produced).
This is recommended when using the SOAP encoding
for the request but is not ideal when using the literal
encoding – using the XML or Message style is better.

SOAPMessageStyle.XML The response will be a stream object containing the
SOAP Body (or SOAP Header) as an XMLfragment. If
there are any attachments associated with the
response, the Stream object will have an object
property oAttachments. The object keys are the
unique names for the attachment parts and the value
must be a Stream object containing the attachment
contents.

Acrobat JavaScript Scripting Reference 587

Acrobat JavaScript Scripting Reference
SOAP Methods

A ReadStream Object is an object literal that represents a stream of data. The object literal
should contain a function called read, which takes the form:

var readSteamObject = {
read: function(nBytes) {...};

}

The read() method takes the number of bytes to read and returns a hex encoded string
with the data from the stream. The read() method returns a zero length string to indicate
end of stream. Alternatively, you can use the SOAP.streamFromString function to
create a read stream.

Additional Notes on the Return Value

If there is no oAsync parameter (that is, a synchronous request) then request returns
the result from the SOAP method. Otherwise, nothing is returned. The SOAP types in the
result are mapped to JavaScript types as follows:

SOAPMessageStyle.Message The response will be an object describing the SOAP
Body (or SOAP Header) corresponding to the XML
Message. This differs from the JS response style in the
following ways:
● XML Elements are returned as an array of

objects rather than an object to maintain
order and allow elements with the same
name.

● XML Attributes are preserved using the
soapAttributes property.

● Namespaces are processed and returned in
the soapName and soapQName properties.

● The content of an element is in the
soapValue property.

SOAP Type JavaScript Type

xsd:string String

xsd:integer Number

xsd:float Number

xsd:dateTime Date

xsd:boolean Boolean

xsd:hexBinary ReadStream Object

xsd:base64Binary ReadStream Object

SOAP-ENC:base64 ReadStream Object

Property Description

Acrobat JavaScript Scripting Reference
SOAP Methods

588 Acrobat JavaScript Scripting Reference

Additional Notes on the Exceptions

● SOAPError: This exception is thrown when the SOAP endpoint returns a SOAPFault. The
SOAPError Exception object has the following properties:

● NetworkError: This exception is thrown when there is a failure from the underlying
HTTPtransport layer or in obtaining a Network connection. The NetworkError Exception
object has the following property:

● Standard Acrobat Exceptions can also be thrown.

N O T E : If the method was called asynchronously then the exception object may be passed
to the response() callback method.

Example 1

A service WSDL Document URL is needed. These can be obtained from the "Round 2
Interop Services - using SOAP 1.2" section at the following URL:
http://www.whitemesa.com/interop.htm.

var cURL = <get a URL for this service from
http://www.whitemesa.com/interop.htm>;

var cTestString = "This is my test string";

// Call the echoString SOAP method -- it is an RPC Encoded method
var response = SOAP.request(
{
 cURL: cURL,
 oRequest: {
 "http://soapinterop.org/:echoString": {
 inputString: cTestString
 }
 },

SOAP-ENC:Array Array

No Type Information String

Property Description

faultCode A string indicating the SOAP Fault Code for this fault.

faultActor A string indicating the SOAP Actor that generated the fault.

faultDetail A string indicating detail associated with the fault.

Property Description

statusCode An HTTP Status code or –1 if the Network connection could
not be made.

SOAP Type JavaScript Type

Acrobat JavaScript Scripting Reference 589

Acrobat JavaScript Scripting Reference
SOAP Methods

 cAction: "http://soapinterop.org/"
});

var result =
response["http://soapinterop.org/:echoStringResponse"]["return"];

// This should be the same as cTestString
console.println(result + " == " + cTestString);

// Call the echoInteger SOAP method -- JavaScript doesn't support
// integers so we make our own integer object.
var oTestInt =
{
 soapType: "xsd:int",
 soapValue: "10"
};

var response = SOAP.request(
{
 cURL: cURL,
 oRequest: {
 "http://soapinterop.org/:echoInteger": {
 inputInteger: oTestInt
 }
 },
 cAction: "http://soapinterop.org/"
});

var result =
response["http://soapinterop.org/:echoIntegerResponse"]["return"];

// This should be the same as oTestInt.soapValue
console.println(result + " == " + oTestInt.soapValue);

This produces the following output:

This is my test string == This is my test string
10 == 10

Example 2

This example illustrates setting a SOAP Header and getting it back.

var cURL = <URL of a Service>;
var NS = "http://adobe.com/FEAT/:";
var oHeader = {};
oHeader[NS + "testSession"] =
{

soapType: "xsd:string",
soapValue: "Header Test String"

};
var oResultHeader = {};
var oRequest = {};

Acrobat JavaScript Scripting Reference
SOAP Methods

590 Acrobat JavaScript Scripting Reference

oRequest[NS + "echoHeader"] = {};
var response = SOAP.request(
{

cURL: cURL,
oRequest: oRequest,
cAction: "http://soapinterop.org/",
oReqHeader: oHeader,
oRespHeader: oResultHeader

});

Example 3

This example illustrate the use of HTTP Authentication.

var oAuthenticator =
{

Username: "myUserName",
Password: "myPassword"

};
var response = SOAP.request(
{

cURL: cURL,
oRequest: {

"http://soapinterop.org/:echoString":
{

inputString: cTestString
}

},
cAction: "http://soapinterop.org/",
oAuthenticate: oAuthenticator

});

response

This method Initiates a remote procedure call (RPC) or sends an XML message to a SOAP
HTTP endpoint without waiting for a reply.

Parameters

6.0 �

cURL The URL for a SOAP HTTP Endpoint.The URL method must be one of
● http—Connect to a server at a URI on a port. For example,

http://serverName:portNumber/URI
● https—Connect to a secured (SSL) server at a URI on a port.

For example, https://serverName:portNumber/URI
See cURL under SOAP.request.

Acrobat JavaScript Scripting Reference 591

Acrobat JavaScript Scripting Reference
SOAP Methods

Returns

Boolean

Exceptions

If there is a problem at the networking level, such as an unavailable endpoint, a
NetworkError will be thrown.

Example

See the Example 1 that follows the SOAP.request method.

oRequest An object that specifies the remote procedure name and
parameters or the XML message to send.
See oRequest under SOAP.request.

cAction (optional) The SOAP Action header for this request as specified by
the SOAP Specification.
The default is for the SOAP Action to be empty.
See cAction under SOAP.request.

bEncoded (optional) Encoded the request using the SOAP Encoding described
in the SOAP Specification.
The default is true.

cNamespace (optional) A namespace for the message schema when the request
does not use the SOAP Encoding (the bEncoded flag is false).
The default is to have no namespace.

oReqHeader (optional, version 7.0) An object that specifies a SOAP header to be
included with the request.
The default is to send a request with only a SOAP Body.
See oReqHeader under SOAP.request.

cVersion (optional, version 7.0) The version of the SOAP protocol to use.
The default is to use "SOAPVersion.version_1_1".
See cVersion under SOAP.request.

oAuthenticate (optional, version 7.0) An object that specifies the type of
authentication scheme to use and to provide credentials.
The default is for an interactive UI to be displayed if HTTP
authentication is encountered.
See oAuthenticate under SOAP.request.

Acrobat JavaScript Scripting Reference
SOAP Methods

592 Acrobat JavaScript Scripting Reference

streamDecode

This function allows the oStream object to be decoded with the specified encoding type,
cEncoder. It returns a ReadStream Object (see request) which will have been decoded
appropriately. Typically this be would used to access data returned as part of a SOAP
method when it was encoded in Base64 or Hex encoding.

Parameters

Returns

ReadStream Object

streamDigest

This function allows the oStream object to be digested with the specified encoding type,
cEncoder. It returns a ReadStream Object which will have the computed digest of the
oStream. Typically this would be used to compute a digest to validate the integrity of the
original data stream or as part of an authentication scheme for a Web Service.

Parameters

6.0

oStream A stream object to be decoded with the specified encoding type.

cEncoder Permissible values for this string are "hex" (for Hex encoded) and
"base64" (Base 64 encoded).

7.0

oStream A stream object to compute the digest of using the specified message
digest algorithm.

cEncoder The digest algorithm to use. The cEncoder parameter must be one
of the following values:

Digest Algorithm Description

StreamDigest.MD5 Digest the content using the MD5
Digest Algorithm (see RFC 1321)

StreamDigest.SHA1 Digest the content using the SHA-1
Digest Algorithm (see RFC 3174)

Acrobat JavaScript Scripting Reference 593

Acrobat JavaScript Scripting Reference
SOAP Methods

Returns

A ReadStream Object with the binary digest of the stream. The result must be converted to
a text format (such as Base64 or HEX) using SOAP.streamEncode() to be used as a
string.

Example
var srcStm = SOAP.streamFromString("This is a string I want to digest");
var digest = SOAP.streamDigest(srcStm, StreamDigest.SHA1);

streamEncode

This function allows the oStream object to be encoded with the specified encoding type,
cEncoder. It returns a ReadStream Object (see request) which will have the appropriate
encoding applied. Typically this would used to pass data as part of a SOAP method when it
must be encoded in Base64 or Hex encoding.

Parameters

Returns

ReadStream Object

streamFromString

This function converts a string to a ReadStream Object (see request). Typically this would
be used to pass data as part of a SOAP method.

Parameters

Returns

ReadStream Object

6.0

oStream A stream object to be encoded with the specified encoding type.

cEncoder Permissible values for this string are "hex" (for Hex encoded) and
"base64" (Base 64 encoded).

6.0

cString The string to be converted

Acrobat JavaScript Scripting Reference
Sound Object

594 Acrobat JavaScript Scripting Reference

stringFromStream

This function converts a ReadStream Object (see request) to a string. Typically, this would
be used to examine the contents of a stream object returned as part of a response to a
SOAP method.

Parameters

Returns

String

Sound Object

This object is the representation of a sound that is stored in the document. The array of all
sound objects can be obtained from doc.sounds. See also doc methods getSound,
importSound, and deleteSound.

Sound Properties

name

The name associated with this sound object.

Type: String Access: R.

Example
console.println("Dumping all sound objects in this document.");
var s = this.sounds;
for (var i = 0; i < this.sounds.length; i++)

console.println("Sound[" + i + "]=" + s[i].name);

6.0

oStream ReadStream Object to be converted.

5.0

Acrobat JavaScript Scripting Reference 595

Acrobat JavaScript Scripting Reference
Sound Methods

Sound Methods

play

Plays the sound asynchronously.

Parameters

None

Returns

Nothing

pause

Pauses the currently playing sound. If the sound is already paused then the sound play is
resumed.

Parameters

None

Returns

Nothing

stop

Stops the currently playing sound.

Parameters

None

Returns

Nothing

Span Object

A span object is used to represent a length of text and its associated properties in a rich text
form field or annotation. The rich text value of a form field or annotation consists of an array
of span objects representing the text and formatting of the annotation. It is important to
note that the span objects are a copy of the rich text value of the field or annotation. Use
the field.richValue, event.richValue (and richChange, richChangeEx), or
annot.richContents to modify and reset the rich text value to update the field.

6.0

Acrobat JavaScript Scripting Reference
Span Properties

596 Acrobat JavaScript Scripting Reference

Span Properties

alignment

The horizontal alignment of the text. Alignment for a line of text is determined by the first
span on the line. The values of alignment are

left
center
right

The default value is left.

Type: String Access: R/W.

The example following superscript illustrates the usage of alignment.

fontFamily

The font family used to draw the text. It is an array of family names to be searched for in
order. The first entry in the array is the font name of the font to use; the second entry is an
optional generic family name to use if an exact match of the first font is not found. The
generic family names are

symbol, serif, sans-serif, cursive, monospace, fantasy

The default generic family name is sans-serif.

Type: Array Access: R/W.

Example

Set the defaultStyle font family for a rich text field.

f = this.getField("Text1");
style = f.defaultStyle;

// if Courier Std is not found on the user’s system, use a monospace
style.fontFamily = ["Courier Std", "monospace"];
f.defaultStyle = style;

fontStretch

Specifies the normal, condensed or extended face from a font family to be used to draw the
text. The values of fontStretch are

ultra-condensed, extra-condensed, condensed, semi-condensed, normal,
semi-expanded, expanded, extra-expanded, ultra-expanded

The default value is normal.

Type: String Access: R/W.

Acrobat JavaScript Scripting Reference 597

Acrobat JavaScript Scripting Reference
Span Properties

fontStyle

Specifies the text is drawn with an italic or oblique font.

italic
normal

The default is normal.

Type: String Access: R/W.

fontWeight

The weight of the font used to draw the text. For the purposes of comparison, normal is
anything under 700 and bold is greater than or equal to 700. The values of fontWeight
are

100,200,300,400,500,600,700,800,900

The default value is 400.

Type: Number Access: R/W.

text

The text within the span.

Type: String Access: R/W.

The example following superscript illustrates the usage of text.

textColor

The RGB color to be used to draw the text. The value of textColor is a color array, see the
Color Object for a description of color array. The default color is black.

Type: Color Array Access: R/W.

The example following superscript illustrates the usage of textColor.

textSize

The point size of the text. The value of textSize can be any number between 0 and
32767 inclusive. A text size of zero means to use the largest point size that will allow all text
data to fit in the field’s rectangle.

The default text size is 12.0.

Type: Number Access: R/W.

The example following field.richValue illustrates the usage of textSize.

Acrobat JavaScript Scripting Reference
Span Properties

598 Acrobat JavaScript Scripting Reference

strikethrough

If strikethrough is true, the text is drawn with a strikethrough. The default is false.

Type: Boolean Access: R/W.

subscript

Specifies the text is subscript. If true, subscript text is drawn with a reduced point size and
a lowered baseline. The default is false.

Type: Boolean Access: R/W.

superscript

Specifies the text is superscript. If true, superscript text is drawn with a reduced point size
and a raised baseline. The default is false.

Type: Boolean Access: R/W.

Example

Write rich text to a rich text field using various properties. See field.richValue for
more details and examples.

var f = this.getField("myRichField");

// need an array to hold the span objects
var spans = new Array();

// each span object is an object, so we must create one
spans[0] = new Object();
spans[0].alignment = "center";
spans[0].text = "The answer is x";

spans[1] = new Object();
spans[1].text = "2/3";
spans[1].superscript = true;

spans[2] = new Object();
spans[2].superscript = false;
spans[2].text = ". ";

spans[3] = new Object();
spans[3].underline = true;
spans[3].text = "Did you get it right?";
spans[3].fontStyle = "italic";
spans[3].textColor = color.red;

Acrobat JavaScript Scripting Reference 599

Acrobat JavaScript Scripting Reference
Spell Object

// now assign our array of span objects to the field using
// field.richValue
f.richValue = spans;

underline

If underline is true, the text is underlined. The default is false.

Type: Boolean Access: R/W.

The example following superscript illustrates the usage of underline.

Spell Object

This object allows users to check the spelling of Comments and Form Fields and other
spelling domains. To be able to use the spell object, the user must have installed the
Acrobat Spelling plug-in and the spelling dictionaries.

N O T E : (Adobe Reader �) The spell object is not available in versions of the Adobe
Reader prior to 7.0. In Adobe Reader 7.0, all properties and methods—with the
exception of customDictionaryCreate, customDictionaryDelete and
customDictionaryExport—are accessible.

Spell Properties

available

true if the spell object is available.

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Boolean Access: R.

Example
console.println("Spell checking available: " + spell.available);

5.0

5.0

Acrobat JavaScript Scripting Reference
Spell Properties

600 Acrobat JavaScript Scripting Reference

dictionaryNames

An array of available dictionary names. A subset of this array can be passed to check,
checkText, and checkWord, and to spellDictionaryOrder to force the use of a
specific dictionary or dictionaries and the order they should be searched.

A listing of valid dictionary names for the user’s installation can be obtained by executing
spell.dictionaryNames from the console.

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Array Access: R.

dictionaryOrder

The dictionary array search order specified by the user on the Spelling Preferences panel.
The Spelling plug-in will search for words first in the doc.spellDictionaryOrder
array if it has been set for the document, and then it will search this array of dictionaries.

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Array Access: R.

domainNames

The array of spelling domains that have been registered with the Spelling plug-in by other
plug-ins. A subset of this array can be passed to check to limit the scope of the spell check.

Depending on the user's installation, valid domains can include:

Everything
Form Field
All Form Fields
Comment
All Comments

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Array Access: R.

5.0

5.0

5.0

Acrobat JavaScript Scripting Reference 601

Acrobat JavaScript Scripting Reference
Spell Properties

languages

This property returns the array of available ISO 639-2/3166-1 language/country codes. A
subset of this array can be passed to the check, checkText, checkWord, and
customDictionaryCreate methods, and to the doc.spellLanguageOrder
property to force the use of a specific language or languages and the order they should be
searched.

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Array Access: R.

Depending on the user’s installation, valid language/country codes can include:

N O T E : In version 7.0, the entries in this array are different from the entries returned in
version 6.0. On input from JavaScript, the Acrobat 6.0 ISO codes are internally
mapped onto the new ISO codes in order to not break any JavaScript code
developed for Acrobat 6.0. Codes are not translated on output.

Example

List all available language codes.

6.0

Code Description Code Description

ca_ES Catalan el_GR Greek

cs_CZ Czech hu_HU Hungarian

da_DK Danish it_IT Italian

nl_NL Dutch nb_NO Norwegian – Bokmal

en_CA English – Canadian nn_NO Norwegian – Nynorsk

en_GB English – UK pl_PL Polish

en_US English – US pt_BR Portuguese – Brazil

fi_FI Finish pt_PT Portuguese

fr_CA French – Canadian ru_RU Russian

fr_FR French es_ES Spanish

de_DE German sv_SE Swedish

de_CH German – Swiss tr_TR Turkish

Acrobat JavaScript Scripting Reference
Spell Methods

602 Acrobat JavaScript Scripting Reference

console.println(spell.languages.toSource());

languageOrder

This property returns the dictionary search order as an array of ISO 639-2, 3166 language
codes. This is the order specified by the user on the Spelling Preferences panel. The Spelling
plug-in will search for words first in the doc.spellLanguageOrder array if it has been
set for the document, and then it will search this array of languages.

N O T E : (Adobe Reader �) For Adobe Reader, this property is available only for Adobe
Reader 7.0 or later.

Type: Array Access: R.

Example

Get a listing of the dictionary search order.

console.println(spell.languageOrder.toSource());

Spell Methods

addDictionary

Adds a dictionary to the list of available dictionaries.

A dictionary actually consists of four files: DDDxxxxx.hyp, DDDxxxxx.lex,
DDDxxxxx.clx, and DDDxxxxx.env. The cFile parameter must be the device-
independent path of the .hyp file. For example, "/c/temp/testdict/TST.hyp".
Spelling will look in the parent directory of the TST.hyp file for the other three files. All four
file names must start with the same unique 3 characters to associate them with each other,
and they must end with the dot three extensions listed above, even on a Macintosh.

N O T E : Beginning with Acrobat 6.0, this method is no longer supported. The return value of
this method is always false. Use the customDictionaryOpen method.

Parameters

6.0

� � �

cFile The device-independent path to the dictionary files.

cName The dictionary name used in the spelling dialog and can be used as the
input parameter to the check, checkText, and checkWord.

Acrobat JavaScript Scripting Reference 603

Acrobat JavaScript Scripting Reference
Spell Methods

Returns

false

addWord

Adds a new word to a dictionary. See also the removeWord.

N O T E S : (Security �): Beginning with Acrobat 7.0, this method is allowed only during
console or batch events. See also Privileged versus Non-privileged Context.

Internally, the Spell Check Object scans the user "Not-A-Word" dictionary and
removes the word if it is listed there. Otherwise, the word is added to the user
dictionary. The actual dictionary is not modified.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

Returns

true if successful, otherwise, false.

check

Presents the Spelling dialog to allow the user to correct misspelled words in form fields,
annotations, or other objects.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

bShow (optional) When true (the default), Spelling combines the cName value
with "User: " and shows that name in all lists and menus. For example if
cName is "Test", Spelling adds "User: Test" to all lists and menus.
When false, Spelling does not show this custom dictionary in any lists or
menus.

5.0 � �

cWord The new word to add.

cName (optional) The dictionary name or language code. An array of the currently
installed dictionaries can be obtained using dictionaryNames or
languages.

5.0

Acrobat JavaScript Scripting Reference
Spell Methods

604 Acrobat JavaScript Scripting Reference

Parameters

Returns

true if the user changed or ignored all of the flagged words. When the user dismisses the
dialog before checking everything the method returns false.

Example
var dictionaries = ["de", "French", "en-GB"];
var domains = ["All Form Fields", "All Annotations"];
if (spell.check(domains, dictionaries))

console.println("You get an A for spelling.");
else

console.println("Please spell check this form before you submit.");

checkText

Presents the spelling dialog to allow the user to correct misspelled words in the specified
string.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

aDomain (optional) An array of document objects that should be checked by
the Spelling plug-in, for example form fields or comments. When you
do not supply an array of domains the "EveryThing" domain will be
used. An array of the domains that have been registered can be
obtained using the domainNames.

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell.languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

5.0

cText The string to check.

Acrobat JavaScript Scripting Reference 605

Acrobat JavaScript Scripting Reference
Spell Methods

Returns

The result from the spelling dialog in a new string.

Example
var f = this.getField("Text Box") // a form text box
f.value = spell.checkText(f.value); // let the user pick the dictionary

checkWord

Checks the spelling of a specified word.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

Returns

A null object if the word is correct, otherwise an array of alternative spellings for the
unknown word.

Example 1
var word = "subpinna"; /* misspelling of "subpoena" */
var dictionaries = ["English"];
var f = this.getField("Alternatives") // alternative spellings listbox
f.clearItems();
f.setItems(spell.checkWord(word, dictionaries));

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell.languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

5.0

cWord The word to check.

aDictionary (optional) The array of dictionary names or language codes that the
spell checker should use. The order of the dictionaries in the array is
the order the spell checker will use to check for misspelled words. An
array of the currently installed dictionaries can be obtained using
spell.dictionaryNames or spell.languages. When this
parameter is omitted the spellDictionaryOrder list will be
searched followed by the dictionaryOrder list.

Acrobat JavaScript Scripting Reference
Spell Methods

606 Acrobat JavaScript Scripting Reference

Example 2

The following script goes through the document and marks with a squiggle annot any
misspelled word. The contents of the squiggle annot contains the suggested alternative
spellings. The script can be executed from the console, as a mouse up action within the
document, a menu, or as a batch sequence.

var ckWord, numWords;
for (var i = 0; i < this.numPages; i++)
{

numWords = this.getPageNumWords(i);
for (var j = 0; j < numWords; j++)
{

ckWord = spell.checkWord(this.getPageNthWord(i, j))
if (ckWord != null)
{

this.addAnnot({
page: i,
type: "Squiggly",
quads: this.getPageNthWordQuads(i, j),
author: "A. C. Acrobat",
contents: ckWord.toString()

});
}

}
}

customDictionaryClose

Closes a custom dictionary that was opened using customDictionaryOpen or
customDictionaryCreate.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

Returns

true if successful, false on failure.

6.0

cName Dictionary name used when this dictionary was opened or created.

Acrobat JavaScript Scripting Reference 607

Acrobat JavaScript Scripting Reference
Spell Methods

customDictionaryCreate

Use this method to create a new custom dictionary file and add it to the list of available
dictionaries.

N O T E S : (Security �): This method is allowed only during console, menu or batch events.
See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

true if successful, false on failure. This method will fail if the user does not have read
and write permission to this directory.

Example

Open this document, the Acrobat JavaScript Scripting Reference, in Acrobat and execute the
following script in the console. This script goes through the bookmarks and extracts the
first word of each bookmark. If that word is already in a dictionary, it is discarded. An
unknown word—assumed to be the name of an Acrobat JavaScript object, property or
method—is added into a newly created dictionary called "JavaScript".

spell.customDictionaryCreate("JavaScript", "en", true);
function GetJSTerms(bm, nLevel)
{

var newWord = bm.name.match(re);
 var ckWord = spell.checkWord(newWord[0]);
 if (ckWord != null)
 {

var cWord = spell.addWord(newWord[0], "JavaScript");
 if (cWord) console.println(newWord[0]);
 }

6.0 � �

cName Dictionary name used in the spelling dialog and can be used as the
input parameter to check, checkText, and checkWord methods.

cLanguage (optional) Use this parameter to associate this dictionary with a
language. A list of available languages can be obtained from the
spell.languages property.

bShow (optional) If true, the default, spelling will combine the cName
parameter with "User: " and show that name in all lists and menus.
For Example, if cName is "Test", spelling will add "User: Test" to
all lists and menus. When bShow is false, Spelling will not show
this custom dictionary in any lists or menus.

Acrobat JavaScript Scripting Reference
Spell Methods

608 Acrobat JavaScript Scripting Reference

 if (bm.children != null)
 for (var i = 0; i < bm.children.length; i++)
 GetJSTerms(bm.children[i], nLevel + 1);
}
console.println("\nAdding New words to the \"JavaScript\" "

+ "dictionary:");
var re = /^\w+/;
GetJSTerms(this.bookmarkRoot, 0);

customDictionaryDelete

Use this method to close and delete a custom dictionary file that was opened via
ccustomDictionaryOpen or customDictionaryCreate.

N O T E S : (Security �): This method is allowed only during console, menu or batch events.
See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

true if successful, false on failure. This method will fail if the user does not have
sufficient file system permission.

Example

Delete a custom dictionary.

spell.customDictionaryDelete("JavaScript");

customDictionaryExport

This method will export a custom dictionary to a new file that was opened using the spell
methods customDictionaryOpen or customDictionaryCreate .

The user will be prompted for an export directory. The custom dictionary will be saved
there as a .clam file using the dictionary name and the language specified on
customDictionaryCreate. For example if the dictionary name is "JavaScript" and the
"en" language as specified when it was created then the export file name will be
JavaScript-eng.clam.

6.0 � �

cName The name of the dictionary to be deleted. This is the name used when
this dictionary was opened or created.

6.0 � �

Acrobat JavaScript Scripting Reference 609

Acrobat JavaScript Scripting Reference
Spell Methods

Exported custom dictionaries can be used in subsequent customDictionaryOpen
calls.

N O T E S : (Security �): This method is allowed only during console, menu or batch events.
See also Privileged versus Non-privileged Context.

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no
longer privileged, see JavaScript Execution through the Menu for details.

Parameters

Returns

true if successful, false on failure. This method will fail if the user does not have
sufficient file system permission.

Example

Export a custom dictionary for distribution to other users. The exported dictionary can then
be sent to other users. (See the example that follows customDictionaryCreate.)

spell.customDictionaryExport("JavaScript");

customDictionaryOpen

Use this method to add an custom export dictionary to the list of available dictionaries. See
customDictionaryExport.

N O T E : A custom dictionary file can be created using the customDictionaryCreate
and customDictionaryExport methods.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

cName The dictionary name used when this dictionary was opened or
created.

6.0

cDIPath The device independent path to the custom dictionary file.

cName Dictionary name used in the spelling dialog and can be used as the
input parameter to check, checkText, and checkWord methods

Acrobat JavaScript Scripting Reference
Spell Methods

610 Acrobat JavaScript Scripting Reference

Returns

true if successful, false on failure. This method will fail if the user does not have read
permission for the file.

Example

This example continues the ones begun following customDictionaryCreate and
customDictionaryExport.

Add an custom export dictionary to the list of available dictionaries. The user places the
custom export dictionary any any folder for which there is read/write permission. One
particular choice is the user dictionaries folder. This location of this folder can be
obtained from the app.getPath method.

app.getPath("user", "dictionaries");

Once the export dictionary has been placed, listing it can be made automatic by adding
some folder level JavaScript. The path to the user JavaScripts can be obtained by
executing

app.getPath("user", "javascript");

Finally, create an .js file in this folder and add the line

var myDictionaries = app.getPath("user", "dictionaries");
spell.customDictionaryOpen(myDictionaries, "JavaScripts", true);

The next time Acrobat is started, the "JavaScript" dictionary will be open and available.

ignoreAll

Adds or removes a word from the Spelling ignored-words list of the current document.

N O T E : A document must be open in the viewer or this method will throw an exception.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

bShow (optional) If true, the default, Spelling will combine the cName
parameter with "User:" and show that name in all lists and menus.
For Example if cName is "Test", Spelling will add "User: Test" to
all lists and menus. When bShow is false, Spelling will not show
this custom dictionary in any lists or menus.

6.0

Acrobat JavaScript Scripting Reference 611

Acrobat JavaScript Scripting Reference
Spell Methods

Parameters

Returns

true if successful. An exception is thrown if there is no document open in the viewer when
this method is executed.

Example
var bIgnored = spell.ignoreAll("foo");
if (bIgnored) console.println("\"foo\" will be ignored);

removeDictionary

Removes a user dictionary that was added via addDictionary.

N O T E : Beginning with Acrobat 6.0, this method is no longer supported. The return value of
this method is always false. Use the customDictionaryClose method.

Parameters

Returns

false

removeWord

Removes a word from a dictionary. Words cannot be removed from user dictionaries that
were created using either customDictionaryCreate or
customDictionaryExport.

See also addWord.

N O T E : Internally the Spell Check object scans the user dictionary and removes the
previously added word if it is there. Otherwise the word is added to the user’s "Not-
A-Word" dictionary. The actual dictionary is not modified.

cWord The word to be added or removed from the ignored list.

bIgnore (optional) If true (the default), the word is added to the document
ignored word list; if false, the word is removed from the ignored list.

� � �

cName The name of the dictionary to remove. Must be the same name as was
used with addDictionary.

5.0 �

Acrobat JavaScript Scripting Reference
Spell Methods

612 Acrobat JavaScript Scripting Reference

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

Returns

true if successful, false otherwise

userWords

Gets the array of words a user has added to or removed from a dictionary. See also
addWord and checkWord.

N O T E : (Adobe Reader �) For Adobe Reader, this method is available only for Adobe
Reader 7.0 or later.

Parameters

Returns

The user’s array of added or removed words.

Example

List the words added to the "JavaScript" dictionary. (See the example that follows the
description of customDictionaryCreate.)

var aUserWords = spell.userWords({cName: "JavaScript"});
aUserWords.toSource();

cWord The word to remove.

cName (optional) The dictionary name or language code. An array of
currently installed dictionaries can be obtained using
dictionaryNames or languages.

5.0

cName (optional) The dictionary name or language code. An array of currently
installed dictionaries can be obtained using dictionaryNames or
languages. If cName is not specified, the current default dictionary will
be used. The current default dictionary is the first dictionary specified in
the Spelling preferences dialog.

bAdded (optional) When true, return the user’s array of added words. When
false, return the user’s array of removed words. The default is true.

Acrobat JavaScript Scripting Reference 613

Acrobat JavaScript Scripting Reference
Statement Object

Statement Object

Use statement objects to execute SQL updates and queries, and retrieve the results of
these operations. To create a statement object, use connection.newStatement.

See also:

● The Connection Object.

● The ADBC Object.

● Column Generic Object, ColumnInfo Generic Object, Row Generic Object, TableInfo
Generic Object

Statement Properties

columnCount

The number of columns in each row of results returned by a query. It is undefined in the
case of an update operation.

Type: Number Access: R.

rowCount

The number of rows affected by an update. It is not the number of rows returned by a query.
Its value is undefined in the context of a query.

Type: Number Access: R.

Statement Methods

execute

Executes an SQL statement through the context of the Statement object. On failure,
execute throws an exception.

N O T E : There is no guarantee that a client can do anything on a statement if an execute has
neither failed nor returned all of its data.

5.0 �

Acrobat JavaScript Scripting Reference
Statement Methods

614 Acrobat JavaScript Scripting Reference

Parameters

Returns

Nothing

Example
statement.execute("Select * from ClientData");

If the name of the database table or column name contains spaces, they need to be
enclosed in escaped quotes. For example:

var execStr1 = "Select firstname, lastname, ssn from \"Employee Info\"";
var execStr2 = "Select \"First Name\" from \"Client Data\"";
statement.execute(execStr1);
statement.execute(execStr2);

A cleaner solution would be to enclose the whole SQL string with single
quotes, then table names and column names can be enclosed with double
quotes.

var execStr3 = 'Select "First Name","Second Name" from "Client Data" ';
statement.execute(execStr3);

See getRow and nextRow for extensive examples.

getColumn

Obtains a column object representing the data in the specified column.

N O T E : Once a column is retrieved with one of these methods, future calls attempting to
retrieve the same column may fail.

Parameters

Returns

A Column Generic Object representing the data in the specified column , or null on
failure.

cSQL The SQL statment to execute.

nColumn The column from which to get the data. May be a column number
or a string, the name of the desired column (see the ColumnInfo
Generic Object).

nDesiredType (optional) Which of the ADBC JavaScript Types best represents the
data in the column.

Acrobat JavaScript Scripting Reference 615

Acrobat JavaScript Scripting Reference
Statement Methods

getColumnArray

Obtains an array of column objects, one for each column in the result set. A “best guess” is
used to decide which of the ADBC JavaScript Types best represents the data in the column.

N O T E : Once a column is retrieved with one of these methods, future calls attempting to
retrieve the same column may fail.

Parameters

None

Returns

An array of column objects, or null on failure as well as a zero-length array.

getRow

Obtains a Row Generic Object representing the current row. This object contains
information from each column. As for getColumnArray, column data is captured in the
“best guess” format.

A call to nextRow should precede a call to getRow. Calling getRow twice, without an
intervening call to nextRow yields a null return value for the second call to getRow.

Parameters

None

Returns

A Row Generic Object.

Example 1

Every Row object contains a property for each column in a row of data. Consider the
following example:

var execStr = "SELECT firstname, lastname, ssn FROM \"Employee Info\"";
statement.execute(execStr);
statement.nextRow();
row = statement.getRow();
console.println("The first name of the first person retrieved is: "

+ row.firstname.value);
console.println("The last name of the first person retrieved is: "

+ row.lastname.value);
console.println("The ssn of the first person retrieved is: "

+ row.ssn.value);

Example 2

If the column name contains spaces, then the above syntax for accessing the row
properties (for example,, row.firstname.value) does not work. Alternatively,

Connect = ADBC.newConnection("Test Database");
statement = Connect.newStatement();

Acrobat JavaScript Scripting Reference
Statement Methods

616 Acrobat JavaScript Scripting Reference

var execStr = 'Select "First Name","Second Name" from "Client Data" ';
statement.execute(execStr);
statement.nextRow();

// Populate this PDF file
this.getField("name.first").value = row["First Name"].value;
this.getField("name.last").value = row["Second Name"].value;

nextRow

Obtains data about the next row of data generated by a previously executed query. This
must be called following a call to execute to acquire the first row of results.

Parameters

None

Returns

Nothing. Throws an exception on failure (if, for example, there is no next row).

Example

The following example is a rough outline of how to create a series of buttons and
Document Level JavaScripts to browse a database and populate a PDF form.

For the getNextRow button, defined below, the nextRow() is used to retrieve the next
row from the database, unless there is an exception thrown (indicating that there is no next
row), in which case, we reconnect to the database, and use nextRow() to retrieve the first
row of data (again).

/* Button Script */
// getConnected button
if (getConnected())

populateForm(statement.getRow());

// a getNextRow button
try {

statement.nextRow();
}catch(e){

getConnected();
}
var row = statement.getRow();
populateForm(row);

/* Document Level JavaScript */
// getConnected() Doc Level JS
function getConnected()
{

try {
ConnectADBCdemo = ADBC.newConnection("ADBCdemo");
if (ConnectADBCdemo == null)

throw "Could not connect";

Acrobat JavaScript Scripting Reference 617

Acrobat JavaScript Scripting Reference
TableInfo Generic Object

statement = ConnectADBCdemo.newStatement();
if (statement == null)

throw "Could not execute newStatement";
if (statement.execute("Select * from ClientData"))

throw "Could not execute the requested SQL";
if (statement.nextRow())

throw "Could not obtain next row";
return true;

} catch(e) {
app.alert(e);
return false;

}
}
// populateForm()
/* Maps the row data from the database, to a corresponding text field
in the PDF file. */
function populateForm(row)
{

this.getField("firstname").value = row.FirstName.value;
this.getField("lastname").value = row.LastName.value;
this.getField("address").value = row.Address.value;
this.getField("city").value = row.City.value;
this.getField("state").value = row.State.value;
this.getField("zip").value = row.Zipcode.value;
this.getField("telephone").value = row.Telephone.value;
this.getField("income").value = row.Income.value;

}

TableInfo Generic Object

This generic JS object contains basic information about a table, and is returned by
connection.getTableList. It contains the following properties.

Property Type Access Description

name String R The identifying name of a table. This string could
be used in SQL statements to identify the table
that the tableInfo object is associated with.

description String R A string that contains database-dependent
information about the table.

Acrobat JavaScript Scripting Reference
Template Object

618 Acrobat JavaScript Scripting Reference

Template Object

Template objects are named pages within the document. These pages may be hidden or
visible and can be copied or spawned. They are typically used to dynamically create content
(for example, to add pages to an invoice on overflow).

See also the Doc Object templates property, and methods createTemplate,
getTemplate, and removeTemplate.

Template Properties

hidden

Determines whether the template is hidden. Hidden templates cannot be seen by the user
until they are spawned or are made visible. When an invisible template is made visible it is
appended to the document.

N O T E : Setting this property in Adobe Reader (prior to version 5.1) generates an exception.
For Adobe Reader 5.1 and 6.0, setting this property depends on Advanced Forms
Feature document rights. For Adobe Reader 7.0, it is not possible to set this property
under any circumstances.

Type: Boolean Access: R/W.

name

The name of the template which was supplied when the template was created.

Type: String Access: R.

Template Methods

spawn

Creates a new page in the document based on the template.

5.0 � �

5.0

5.0 � �

Acrobat JavaScript Scripting Reference 619

Acrobat JavaScript Scripting Reference
Template Methods

Parameters

Returns

Prior to Acrobat 6.0, this method returned nothing. Now, spawn returns an object
representing the page contents of the page spawned. This return object can then be used
as the value of the optional parameter oXObject for subsequent calls to spawn..

N O T E : Repeatedly spawning the same page can cause a large inflation in the file size. To
avoid this file size inflation problem, spawn now returns an object that represents
the page contents of the spawned page. This return value can be used as the value
of the oXObject parameter in subsequent calls to the spawn method to spawn
the same page.

Example 1

This example spawns all templates and appends them one by one to the end of the
document.

var a = this.templates;
for (i = 0; i < a.length; i++)

a[i].spawn(this.numPages, false, false);

Example 2 (version 6.0)

The following example spawns the same template 31 times using the oXObject
parameter and return value. Using this technique avoids overly inflating the file size.

var t = this.templates;
var T = t[0];
var XO = T.spawn(this.numPages, false, false);
for (var i=0; i<30; i++) T.spawn(this.numPages, false, false, XO);

nPage (optional) The 0-based index of the page number after which or on
which the new page will be created, depending on the value of
bOverlay. The default is 0.

bRename (optional) Whether form fields on the page should be renamed. The
default is true.

bOverlay (optional) When true (the default), the template is overlaid on the
specified page. When false, it is inserted as a new page before the
specified page.
To append a page to the document, set bOverlay to false and set
nPage to the number of pages in the document.

N O T E : For certified documents, or documents with “Advanced Form
Features rights” (�), the bOverlay parameter is disabled;
this means that a template cannot be overlaid for these types of
documents.

oXObject (optional, version 6.0) The value of this parameter is the return value
of an earlier call to spawn.

Acrobat JavaScript Scripting Reference
Thermometer Object

620 Acrobat JavaScript Scripting Reference

Thermometer Object

This object is a combined status window/progress bar that indicates to the user that a
lengthy operation is in progress. To acquire a thermometer object, use
app.thermometer.

Example

The following is a general example that illustrates how to use all properties and methods of
the thermometer object.

var t = app.thermometer; // acquire a thermometer object
t.duration = this.numPages;
t.begin();
for (var i = 0; i < this.numPages; i++)
{

t.value = i;
t.text = "Processing page " + (i + 1);
if (t.cancelled) break; // break if operation cancelled
... process the page ...

}
t.end();

Thermometer Properties

cancelled

Whether the user wants to cancel the current operation. The user can indicate to the script
the desire to terminate the operation by pressing the escape key on the Windows and Unix
platforms and command-period on the Macintosh platform.

Type: Boolean Access: R.

duration

Sets the value that corresponds to a full thermometer display. The thermometer is
subsequently filled in by setting its value. The default duration is 100.

Type: Number Access: R/W.

value

Sets the current value of the thermometer and updates the display. The allowed value
ranges from 0 (empty) to the value set in the duration. For example, if the thermometer’s

6.0

Acrobat JavaScript Scripting Reference 621

Acrobat JavaScript Scripting Reference
Thermometer Methods

duration is 10, the current value must be between 0 and 10, inclusive. If value is less than
zero, it is set to zero. If value is greater than duration, it is set to duration.

Type: Number Access: R/W.

text

Sets the text string that is displayed by the thermometer.

Type: String Access: R/W.

Thermometer Methods

begin

Initializes the thermometer and displays it with the current value as a percentage of the
duration.

Parameters

None

Returns

Nothing

Example

Count words on each page of current document, report running total and use
thermometer to track progress.

var t = app.thermometer; // acquire a thermometer object
t.duration = this.numPages;
t.begin();
var cnt=0;
for (var i = 0; i < this.numPages; i++)
{

t.value = i;
t.text = "Processing page " + (i + 1);

 cnt += getPageNumWords(i);
console.println("There are " + cnt + "words in this doc.");
if (t.cancelled) break;

}
t.end();

end

Draws the thermometer with its current value set to the thermometer’s duration (a full
thermometer), then removes the thermometer from the display.

Acrobat JavaScript Scripting Reference
TTS Object

622 Acrobat JavaScript Scripting Reference

Parameters

None

Returns

Nothing

TTS Object

The JavaScript TTS object allows users to transform text into speech. To be able to use the
TTS object, the user’s machine must have a Text-To-Speech engine installed on it. The Text-
To-Speech engine will render text as digital audio and then “speak it”. It has been
implemented mostly with accessibility in mind but it could potentially have many other
applications, bringing to life PDF documents.

This is currently a Windows-only feature and requires that the Microsoft Text to Speech
engine be installed in the operating system.

The TTS object is present on both the Windows and Mac platforms (since it is a JavaScript
object); however, it is disabled on the Mac.

N O T E : Acrobat 5.0 has taken a very different approach to providing accessibility for
disabled users by integrating directly with popular screen readers. Some of the
features and methods defined in 4.05 for the TTS object have been deprecated as a
result as they conflict with the screen reader. The TTS object remains, however, as it
still has useful functionality in its own right that might be popular for multi-media
documents.

TTS Properties

available

true if the TTS object is available and the Text-To-Speech engine can be used.

Type: Boolean Access: R.

Example
console.println("Text to speech available: " + tts.available);

numSpeakers

The number of different speakers available to the current text to speech engine. See also
the speaker and the getNthSpeakerName.

4.05

http://microsoft.com/msdownload/sapi/engine10.asp?submit9=Microsoft+Text-to-Speech+Engine+%28MSTTSA22L.EXE%29

Acrobat JavaScript Scripting Reference 623

Acrobat JavaScript Scripting Reference
TTS Properties

Type: Integer Access: R.

pitch

Sets the baseline pitch for the voice of a speaker. The valid range for pitch is from 0 to 10,
with 5 being the default for the mode.

Type: Integer Access: R/W.

soundCues

Deprecated. Now returns only false.

Type: Boolean Access: R/W.

speaker

Allows users to specify different speakers with different tone qualities when performing
text-to-speech. See also the numSpeakers and the getNthSpeakerName.

Type: String Access: R/W.

speechCues

Deprecated. Now returns only false.

Type: Boolean Access: R/W.

speechRate

Sets the speed at which text will be spoken by the Text-To-Speech engine. The value for
speechRate is expressed in number of words per minute.

Type: Integer Access: R/W.

volume

Sets the volume for the speech. Valid values are from 0 (mute) to 10 (loudest).

Type: Integer Access: R/W.

�

�

Acrobat JavaScript Scripting Reference
TTS Methods

624 Acrobat JavaScript Scripting Reference

TTS Methods

getNthSpeakerName

Gets the nth speaker name in the currently installed text to speech engine (see also
numSpeakers and speaker).

Parameters

Returns

The name of the specified speaker.

Example

Enumerate through all of the speakers available.

for (var i = 0; i < tts.numSpeakers; i++) {
var cSpeaker = tts.getNthSpeakerName(i);
console.println("Speaker[" + i + "] = " + cSpeaker);
tts.speaker = cSpeaker;
tts.qText ("Hello");
tts.talk();

}

pause

Immediately pauses text-to-speech output on a TTS object. Playback of the remaining
queued text can be resumed via resume.

Parameters

None

Returns

Nothing

nIndex The index of the desired speaker name.

Acrobat JavaScript Scripting Reference 625

Acrobat JavaScript Scripting Reference
TTS Methods

qSilence

Queues a period of silence into the text.

Parameters

Returns

Nothing

qSound

Puts the specified sound into the queue in order to be performed by talk. It accepts one
parameter, cSound, from a list of possible sound cue names. These names map directly to
sound files stored in the SoundCues folder, if it exists.

tts.qSound("DocPrint"); // Plays DocPrint.wav

The SoundCues folder should exist at the program level for the viewer, for example,
C:\Program Files\Adobe\Acrobat 5.0\SoundCues.

N O T E : Windows only—qSound can handle only 22KHz,16 bit PCM .wav files. These should
be at least one second long in order to avoid a queue delay problem in MS SAPI. In
case the sound lasts less than one second, it should be edited and have a silence
added to the end of it.

Parameters

Returns

Nothing

qText

Puts text into the queue in order to be performed by talk.

Parameters

Returns

Nothing

Example
tts.qText("Hello, how are you?");

nDuration The amount of silence in milliseconds.

cSound The sound cue name to use.

cText The text to convert to speech.

Acrobat JavaScript Scripting Reference
TTS Methods

626 Acrobat JavaScript Scripting Reference

reset

Stops playback of current queued text and flushes the queue. Playback of text cannot be
resumed via resume. Additionally, it resets all the properties of the TTS object to their
default values.

Parameters

None

Returns

Nothing

resume

Resumes playback of text on a paused TTS object.

Parameters

None

Returns

Nothing

stop

Stops playback of current queued text and flushes the queue. Playback of text cannot be
resumed with resume.

Parameters

None

Returns

Nothing

talk

Sends whatever is in the queue to be spoken by the Text-To-Speech engine. If text output
had been paused, talk resumes playback of the queued text.

Parameters

None

Returns

Nothing

Acrobat JavaScript Scripting Reference 627

Acrobat JavaScript Scripting Reference
this Object

Example
tts.qText("Hello there!");
tts.talk();

this Object

In JavaScript the special keyword this refers to the current object. In Acrobat the current
object is defined as follows:

● In an object method, it is the object to which the method belongs.

● In a constructor function, it is the object being constructed.

● In a function defined in one of the Folder Level JavaScripts files, it is undefined. It is
recommended that calling functions pass the document object to any function at this
level that needs it.

● In a Document level script or Field level script it is the document object and therefore
can be used to set or get document properties and functions.

For example, assume that the following function was defined at the Plug-in folder level:

function PrintPageNum(doc)
{ /* Print the current page number to the console. */

console.println("Page = " + doc.page);
}

The following script outputs the current page number to the console (twice) and then
prints the page:

/* Must pass the document object. */
PrintPageNum(this);
/* Same as the previous call. */
console.println("Page = " + this.pageNum);
/* Prints the current page. */
this.print(false, this.pageNum, this.pageNum);

Variable and Function Name Conflicts

Variables and functions that are defined in scripts are parented off of the this object. For
example:

var f = this.getField("Hello");

is equivalent to

this.f = this.getField("Hello");

with the exception that the variable f can be garbage collected at any time after the script is
run.

Acrobat JavaScript Scripting Reference
Util Object

628 Acrobat JavaScript Scripting Reference

Acrobat JavaScript programmers should avoid using property and method names from the
Doc Object as variable names. Use of method names when after the reserved word "var"
will throw an exception, as the following line illustrates:

var getField = 1; // TypeError: redeclaration of function getField

Use of property names will not throw an exception, but the value of the property may not
be altered if the property refers to an object:

// "title" will return "1", but the document will now be named "1".
var title = 1;

// property not altered, info still an object
var info = 1; // "info" will return [object Info]

The following is an example of avoiding variable name clash.

var f = this.getField("mySignature"); // uses the ppklite sig handler

// use "Info" rather than "info" to avoid a clash
var Info = f.signatureInfo();

// some standard signatureInfo properties
console.println("name = " + Info.name);

Util Object

A static JavaScript object that defines a number of utility methods and convenience
functions for string and date formatting and parsing.

Util Methods

iconStreamFromIcon

This method converts a XObject based Icon Generic Object into an Icon Stream Generic
Object.

Parameters

Returns

Icon Stream Generic Object

7.0

oIcon An Icon Generic Object to be converted into an Icon Stream Generic
Object.

Acrobat JavaScript Scripting Reference 629

Acrobat JavaScript Scripting Reference
Util Methods

It allows an icon obtained via Doc.importIcon or from doc.getIcon to be used in a
function like app.addToolButton, which would other wise accept only a Icon Stream
Generic Object as input parameter.

Example

Import an icon to the document level named icons tree and add a toolButton to the app.

this.importIcon("myIcon", "/C/temp/myIcon.jpg", 0);
var oIcon = util.iconStreamFromIcon(this.getIcon("myIcon"));
app.addToolButton({

cName: "myButton",
oIcon: myIcon,
cExec: "console.println('My Button!');",
cTooltext: "My button!",
nPos: 0

});

printf

Formats one or more values as a string according to a format string. This is similar to the C
function of the same name. This method converts and formats incoming arguments into a
result string according to a format string (cFormat).

The format string consists of two types of objects:

● Ordinary characters, which are copied to the result string

● Conversion specifications, each of which causes conversion and formatting of the next
successive argument to printf().

Each conversion specification is constructed as follows:

%[,nDecSep][cFlags][nWidth][.nPrecision]cConvChar

The following table describes the components of a conversion specification.

3.01

nDecSep Preceded by a comma character (,), is a digit from 0 to 3 which
indicates the decimal/separator format:
● 0 - comma separated, period decimal point.
● 1 - no separator, period decimal point.
● 2 - period separated, comma decimal point.
● 3 - no separator, comma decimal point.

Acrobat JavaScript Scripting Reference
Util Methods

630 Acrobat JavaScript Scripting Reference

Parameters

Returns

A result string (cResult) formatted as specified.

Example
var n = Math.PI * 100;
console.clear();
console.show();
console.println(util.printf("Decimal format: %d", n));
console.println(util.printf("Hex format: %x", n));
console.println(util.printf("Float format: %.2f", n));
console.println(util.printf("String format: %s", n));

Output
Decimal format: 314
Hex format: 13A
Float format: 314.16
String format: 314.159265358979

cFlags Only valid for numeric conversions and consists of a number of
characters (in any order), which will modify the specification:
● + - specifies that the number will always be formatted with a sign.
● space - if the first character is not a sign, a space will be prefixed.
● 0 - specifies padding to the field with leading zeros.
● # - which specifies an alternate output form. For f the output will

always have a decimal point.

nWidth A number specifying a minimum field width. The converted argument
will be formatted in so that it is at least this many characters wide,
including the sign and decimal point, and may be wider if necessary. If
the converted argument has fewer characters than the field width it
will be padded on the left to make up the field width. The padding
character is normally a space, but is 0 if zero padding flag is present.

nPrecision A number, preceded by a period character (.), which specifies the
number of digits after the decimal point for float conversions.

cConvChar One of:
● d - integer, interpret the argument as an integer (truncating if

necessary).
● f - float, interpret the argument as a number.
● s - string, interpret the argument as a string.
● x - hexadecimal, interpret the argument as an integer (truncating if

necessary)and format in unsigned hexadecimal notation.

cFormat The format string to use.

Acrobat JavaScript Scripting Reference 631

Acrobat JavaScript Scripting Reference
Util Methods

printd

The printd method returns a date using the format specified by the cFormat parameter.

Parameters

Returns

The formatted date string.

cFormat String Patterns with bXFAPicture set to false.

3.01

cFormat A string that represents the date and time format desired. This string
is a pattern of supported substrings that are place-holders for date
and time data. Recognized date and time strings are given in the table
cFormat String Patterns with bXFAPicture set to false.
● (version 5.0) Beginning with version 5.0, cFormat can also be a

number. See the table Quick formats with bXFAPicture set to false
for supported number values for cFormat.

● (version 7.0) When bXFAPicture is true, the parameter
cFormat is interpreted using the XFA Picture Clause format.

oDate oDate is a date object to format.
A date object can be obtained from the Date() constructor of core
JavaScript, or from the util.scand method.

bXFAPicture (optional, version 7.0) A boolean, which if true, the value of the
cFormat parameter is interpreted using the XFA Picture Clause
format, which gives extensive support for localized times and dates.
See XFA Picture Clauses with bXFAPicture set to true for additional
discussion.
The default is false.

String Effect Example Version

mmmm Long month September

mmm Abbreviated month Sept

mm Numeric month with leading zero 09

m Numeric month without leading zero 9

dddd Long day Wednesday

ddd Abbreviated day Wed

dd Numeric date with leading zero 03

Acrobat JavaScript Scripting Reference
Util Methods

632 Acrobat JavaScript Scripting Reference

d Numeric date without leading zero 3

yyyy Long year 1997

yy Abbreviate Year 97

HH 24 hour time with leading zero 09

H 24 hour time without leading zero 9

hh 12 hour time with leading zero 09

h 12 hour time without leading zero 9

MM minutes with leading zero 08

M minutes without leading zero 8

ss seconds with leading zero 05

s seconds without leading zero 5

tt am/pm indication am

t single digit am/pm indication a

j Japanese Emperor Year (abbreviated)

N O T E : (version 7.0) This format string has
been deprecated. Use the XFA
Picture Clause format.

6.0

jj Japanese Emperor Year

N O T E : (version 7.0) This format string has
been deprecated. Use the XFA
Picture Clause format.

6.0

\ use as an escape character

String Effect Example Version

Acrobat JavaScript Scripting Reference 633

Acrobat JavaScript Scripting Reference
Util Methods

Quick formats with bXFAPicture set to false

XFA Picture Clauses with bXFAPicture set to true

The section devoted to date and time pictures in the documents XFA-Picture Clause 2.0
Specification and XFA-Picture Clause Version 2.2 – CCJK Addendum provide the
documentation for the strings that make up the cFormat parameter of util.printd in
the case the bXFAPicture parameter is set to true.

See the Adobe Web Documentation section for a link to these two documents.

Example 1

To format the current date in long format, for example, you would use the following script:

var d = new Date();
console.println("Today is " + util.printd("mmmm dd, yyyy", d));

Example 2 (Version 5.0)
// display date in a local format
console.println(util.printd(2, new Date()));

Example 3 (Version 7.0)

This example illustrates the XFA-Picture Clause.

// execute in console
console.println(

util.printd("EEE, 'the' D 'of' MMMM, YYYY", new Date(), true));
// the output on this day is
Tue, the 13 of July, 2004

Locale-Sensitive Picture Clauses. Normally processing of picture clauses occurs in the
ambient locale. It is possible however to indicate that picture processing be done in a
specific locale. This is of use when formatting or parsing data that is locale-specific and
different from the ambient locale. The syntax for this extension to compound picture
clauses is:

category-name(locale-name){picture-symbols}

The code executed in the console,

util.printd("date(fr){DD MMMM, YYYY}", new Date(), true)

yields the output on this day,

13 juillet, 2004

Value Description Example Version

0 PDF date format D:20000801145605+07'00' 5.0

1 Universal 2000.08.01 14:56:05 +07'00' 5.0

2 Localized string 2000/08/01 14:56:05 5.0

Acrobat JavaScript Scripting Reference
Util Methods

634 Acrobat JavaScript Scripting Reference

The XFA-Picture Clause gives extensive support for Chinese, Chinese (Taiwan), Japanese,
and Korean (CCJK) times and dates. The example below, a custom format script of a text
field, gives the current date formatted for a Japanese locale.

event.value = util.printd("date(ja){ggYY/M/D}", new Date(), true)

printx

Formats a source string, cSource, according to a formatting string, cFormat. A valid
format for cFormat is any string which may contain special masking characters:

Parameters

Returns

The formatted string.

Example

To format a string as a U.S. telephone number, for example, use the following script:

var v = "aaa14159697489zzz";
v = util.printx("9 (999) 999-9999", v);
console.println(v);

3.01

Value Effect

? Copy next character.

X Copy next alphanumeric character, skipping any others.

A Copy next alpha character, skipping any others.

9 Copy next numeric character, skipping any others.

* Copy the rest of the source string from this point on.

\ Escape character.

> Uppercase translation until further notice.

< Lowercase translation until further notice.

= Preserve case until further notice (default).

cFormat The formatting string to use.

cSource The source string to use.

Acrobat JavaScript Scripting Reference 635

Acrobat JavaScript Scripting Reference
Util Methods

scand

Converts the supplied date, cDate, into a JavaScript date object according to rules of the
supplied format string, cFormat. This routine is much more flexible than using the date
constructor directly.

N O T E : Given a two digit year for input, scand resolves the ambiguity as follows: if the year
is less than 50 then it is assumed to be in the 21st century (that is, add 2000), if it is
greater than or equal to 50 then it is in the 20th century (add 1900). This heuristic is
often known as the Date Horizon.

The supplied date cDate should be in the same format as described by cFormat.

Parameters

Returns

The converted date object, or null if the conversion fails.

Example 1
/* Turn the current date into a string. */
var cDate = util.printd("mm/dd/yyyy", new Date());
console.println("Today’s date: " + cDate);
/* Parse it back into a date. */
var d = util.scand("mm/dd/yyyy", cDate);
/* Output it in reverse order. */
console.println("Yet again: " + util.printd("yyyy mmm dd", d));

Example 2

The method will return null if the conversions fails, this can occur if the user inputs a data
different than what is expected. In this case, simple test the return value for null.

var d= util.scand("mm/dd/yyyy", this.getField("myDate").value);
if (d== null)

app.alert("Please enter a valid date of the form" +
 " \"mm/dd/yyyy\".")

else {
console.println("You entered the date: "

 + util.printd("mmmm dd, yyyy",d));
}

4.0

cFormat The rules to use for formatting the date. cFormat uses the same
syntax as found in printd.

cDate The date to convert.

Acrobat JavaScript Scripting Reference
Util Methods

636 Acrobat JavaScript Scripting Reference

spansToXML

This method converts an array of Span Objects into an XML(XFA) String as described in the
PDF 1.5 Specification.

Parameters

Returns

String

Example

This example gets the value of a rich text field, turns all of the text blue, converts it to an
XML string and then prints it to the console

var f = getField("Text1");
var spans = f.richValue;
for(var index = 0; index < spans.length; index++)
 spans[index].textColor = color.blue;
console.println(util.spansToXML(spans));

streamFromString

This function converts a string to a ReadStream Object.

Parameters

Returns

String

Example

This example takes the reponse given in a text field of this document, and appends this
response to an attached document.

var v = this.getField("myTextField").value;
var oFile = this.getDataObjectContents("MyNotes.txt");

6.0

An array of Span Objects An array of span objects to be converted into an XML string.

7.0

cString The string to be converted into a ReadStream Object.

cCharSet (optional) The encoding for the string in cString. The
options are: utf-8, utf-16, Shift-JIS, BigFive, GBK, UHC. The
default is utf-8.

Acrobat JavaScript Scripting Reference 637

Acrobat JavaScript Scripting Reference
Util Methods

var cFile = util.stringFromStream(oFile, "utf-8");
cFile += "\r\n" + cFile;
oFile = util.streamFromString(cFile, "utf-8");
this.setDataObjectContents("MyNotes.txt", oFile);

This example uses Doc.getDataObjectContents, util.stringFromStream
and Doc.setDataObjectContents.

stringFromStream

This function converts a ReadStream Object to a string.

Parameters

Returns

ReadStream Object

Example

Assume there is a text file embedded in this document. This example reads the contents of
the attachment, and displays it in the multiline text field.

var oFile = this.getDataObjectContents("MyNotes.txt");
var cFile = util.stringFromStream(oFile, "utf-8");
this.getField("myTextField").value = cFile;

This example uses getDataObjectContents to get the file stream of the attached
document.

xmlToSpans

This method converts an XML(XFA) String as described in the PDF 1.5 Specification to an
array of span objects suitable for specifying as the richValue or richContents of a field or
annotation.

7.0

oStream ReadStream Object to be converted into a string.

cCharSet (optional) The encoding for the string in oStream. The
options are: utf-8, utf-16, Shift-JIS, BigFive, GBK, UHC. The
default is utf-8.

6.0

Acrobat JavaScript Scripting Reference
XFAObject Object

638 Acrobat JavaScript Scripting Reference

Parameters

Returns

An Array of Span Objects

Example

Get the rich text string from "Text1", convert it to XML, then convert back again to an array
of span objects and repopulate the text field.

var f = getField("Text1");
var spans = f.richValue;
var str = util.spansToXML(spans);
var spans = util.xmlToSpans(str);
f.richValue = spans;

XFAObject Object

The XFAObject object corresponds to the appModel in the XFA Scripting reference. All the
XFA documents are located at http://partners.adobe.com/asn/tech/pdf/xmlformspec.jsp.

An XFAObject Object is returned by the XMLData.parse and XMLData.applyXPath
methods.

Example

The following code detects whether the PDF document was created by Adobe Designer
and has XML forms, or has Acrobat forms.

if (typeof xfa == "object") {
if (this.dynamicXFAForm) {

console.println("This is a dynamic XML form.");
else

console.println("This is a static XML form.");
}
else console.println("This is an Acrobat Form.");

XMLData Object

XMLData is a static object that allows the creation of a JavaScript object representing an
XML document tree, and permits the manipulation of arbitrary XML documents via the XFA

a string An XML (XFA) string to be converted to an array of Span
Objects.

6.0.2

Acrobat JavaScript Scripting Reference 639

Acrobat JavaScript Scripting Reference
XMLData Object Methods

Data Dom. In XFA, there are several other Dom’s parallel to the Data Dom, but for the
purpose of the XMLData Object only the Data Dom is used.

PDF documents which return true to the doc.dynamicXFAForm property can use the
XMLData object, but cannot have its form fields manipulated by that object, as the two
data DOMs are isolated from each other.

XMLData Object Methods

applyXPath

The applyXPath method permits the manipulation and query of an XML document via
XPath expressions. XPath expressions evaluate to one of the known four types: Boolean,
Number, String, Node-set. In JavaScript, they are returned, respectively, as the following
types: Boolean, Number, String, Object.

If an object is returned, this object is of type XFAObject (see the XFAObject Object),
which represents either a tree started by a single node, or by a list of nodes (a tree list). The
type of this object is the same as the one returned by the XMLData.parse.

See the References section for the link to the W3C document, XML Path Language (XPath),
for the details of the XPath language.

N O T E : XFA provides a type of query mechanism, the SOM expressions, similar to that of
XPath. XPath is widely used in the XML community, we provide the extra
applyXPath method so that users can chose what query mechanism to use.

Parameters

Returns

Boolean, Number, String, or XFAObject.

Example

Consider the following XML data string, the family tree of the “Robat” family. The method
XMLData.applyXPath can return a boolean, a number, a string or a XFAObject. This
example illustrates each of these return types, in the process of extracting information from
the given set of XML data.

7.0

oXml An XFAObject object representing an XML document tree.

N O T E : An exception is thrown when the value of this
parameter is a nodeList XFA object instead the root
of an XML tree, as required.

cXPath A string parameter with the XPATH query to be performed
on the document tree.

Acrobat JavaScript Scripting Reference
XMLData Object Methods

640 Acrobat JavaScript Scripting Reference

var cXMLDoc = "<family name = 'Robat'>\
 <grandad id = 'm1' name = 'A.C.' gender='M'>\
 <child> m2 </child>\
 <personal>\
 <income>100000</income>\
 </personal>\
 </grandad>\
 <dad id = 'm2' name = 'Bob' gender='M'>\
 <parent> m1 </parent>\
 <spouse> m3 </spouse>\
 <child> m4 </child>\
 <child> m5 </child>\
 <child> m6 </child>\
 <personal>\
 <income>75000</income>\
 </personal>\
 </dad>\
 <mom id = 'm3' name = 'Mary' gender='F'>\
 <spouse> m2 </spouse>\
 <personal>\
 <income>25000</income>\
 </personal>\
 </mom>\
 <daugther id = 'm4' name = 'Sue' gender='F'>\
 <parent> m2 </parent>\
 <personal>\
 <income>40000</income>\
 </personal>\
 </daugther>\
 <son id = 'm5' name = 'Jim' gender='M'>\
 <parent> m2 </parent>\
 <personal>\
 <income>35000</income>\
 </personal>\
 </son>\
 <daughter id = 'm6' name = 'Megan' gender='F'>\
 <parent> m2 </parent>\
 <personal>\
 <income>30000</income>\
 </personal>\
 </daughter>\
</family>";
var myXML= XMLData.parse(cXMLDoc, false);

The following line illustrates a return value of an XFAObject.

Get mom’s data
var a = XMLData.applyXPath(myXML, "//family/mom")
a.saveXML('pretty');
<?xml version="1.0" encoding="UTF-8"?>
<mom id="m3" name="Mary" gender="F">
 <spouse> m2 </spouse>

Acrobat JavaScript Scripting Reference 641

Acrobat JavaScript Scripting Reference
XMLData Object Methods

 <personal>
 <income>25000</income>
 </personal>
</mom>
// get the income element value
a.personal.income.value = "20000"; // change the income

Get dad’s name, an attribute.

var b = XMLData.applyXPath(myXML, "//family/dad/@name");
b.saveXML('pretty');
<?xml version="1.0" encoding="UTF-8"?>
 name="Bob"
// assign to a variable
var dadsName = b.value; // dadsName = "Bob"

Get all attributes of dad node.

var b = XMLData.applyXPath(myXML, "//family/dad/attribute::*");
for(var i=0; i < b.length; i++)

console.println(b.item(i).saveXML('pretty'))

The loop above outputs the following to the console.

<?xml version="1.0" encoding="UTF-8"?>
 id="m2"
<?xml version="1.0" encoding="UTF-8"?>
 name="Bob"
<?xml version="1.0" encoding="UTF-8"?>
 gender="M"

Extract particular information from this we have,

console.println("For attribute 2, we have " + b.item(2).name + " = '"
+ b.item(2).value + "'.");

which yields an output of

For attribute 2, we have gender = 'M'.

Get dad’s second child.

var c = XMLData.applyXPath(myXML, "//family/dad/child[position()=2]");
c.saveXML('pretty')
<?xml version="1.0" encoding="UTF-8"?>
<child> m5 </child>

This is the id of dad’s second child. In the examples below, we get the family data on
this child.

The following illustrates a return value of string.

// calculate the value of dadsName using XPath methods.
var dadsName = XMLData.applyXPath(myXML, "string(//family/dad/@name)")
// dadsName is assigned a value of "Bob" with this one line.

Get the family info on dad’s second child. The line that follows assigns c = "m5", the return
value of this call to applyXPath is a string. The function normalize-space converts
its argument to a string and removes surrounding spaces.

Acrobat JavaScript Scripting Reference
XMLData Object Methods

642 Acrobat JavaScript Scripting Reference

var c = XMLData.applyXPath(myXML,
"normalize-space(//family/dad/child[2])");

var d = "//*[@id = \'" + c + "\']"; // Note: d= "//*[@id = 'm5']"
XMLData.applyXPath(myXML, d).saveXML('pretty'); // show what we have
<son id="m5" name="Jim" gender="M">
 <parent> m2 </parent>
 <personal>
 <income>35000</income>
 </personal>
</son>

Now get the 6th child node of the family root, and display some info on same. The XPath
functions name() and concat() are used.

var e = XMLData.applyXPath(myXML,
"concat(name(//family/child::*[position()=6]), '=',
//family/child::*[position()=6]/@name)");

console.println(e); // the output is "daughter=Megan"

Get the names of all members of the the “Robat" family.

e = XMLData.applyXPath(myXML,"//family/child::*");
for (var i = 1; i <= e.length; i++) {
 var str = "string(//family/child::*["+i+"]/@name)";
 console.println(XMLData.applyXPath(myXML,str));
}

the output is

A.C.
Bob
Mary
Sue
Jim
Megan

The following illustrates a return value of a boolean type.

var f = XMLData.applyXPath(myXML, "//family/dad/@id = 'm2'");
if (f == true) console.println("dad's id is 'm2'");
else console.println("dad's id is not 'm2'");

The following lines of code illustrate a return value of number.

// get dad’s income
g = XMLData.applyXPath(myXML, "number(//family/dad/personal/income)");
// double dad's salary, implied conversion to a number type
console.println("Dad's double salary is " +

XMLData.applyXPath(myXML, "//family/dad/personal/income * 2"));

Now compute the total income of the family “Robat”.

console.println("Total income of A.C. Robat's family is "
+ XMLData.applyXPath(myXML, "sum(//income)") + ".");

The above line write the following to the console.

Total income of A.C. Robat's family is 305000.

Acrobat JavaScript Scripting Reference 643

Acrobat JavaScript Scripting Reference
XMLData Object Methods

List the individual incomes.

var g = XMLData.applyXPath(myXML, "//income")
for (var i =0; i< g.length; i++) console.println(g.item(i).value);

parse

The parse method creates an object representing an XML document tree. The parameters
to XMLData.parse are the same as the parameters to the loadXML method present in
the XFA Data Dom.

The object of type XFAObject (see the XFAObject Object), returned by parse, represents
either a tree headed by a single node, or a tree started by a list of nodes (a tree list).

Parameters

Returns

XFAObject

Example 1

Consider the XML document as first introduced in the example following the
XMLData.applyXPath method.

var x = XMLData.parse(cXMLDoc, false);
var y = x.family.name; // a XFAObject
console.println(y.value); // output to console is "Robat"

Get info about dad

y = x.family.dad.id; // a XFAObject
console.println(y.value); // output to console is "m2"

y = x.family.dad.name.value; // y = "Bob"
x.family.dad.name.value = "Robert"; // change name to "Robert"
y = x.family.dad.name.value; // y = "Robert"

y = x.family.dad.personal.income.value; // y = "75000"
x.family.dad.personal.income.value = "80000"; // give dad a raise

7.0

param1 A string containing the XML document.

param2 (optional) A boolean which, if true, the root node of the
XML document should be ignored. If false, the root node
should not be ignored. The default value is true.

Acrobat JavaScript Scripting Reference
XMLData Object Methods

644 Acrobat JavaScript Scripting Reference

Example 2

A create a simple XML document and manipulate it.

x = XMLData.parse("<a> <c>A.</c><d>C.</d> ", false);
x.saveXML("pretty");

The output of the previous line is

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 <c>A.</c>
 <d>C.</d>

</xfa:data>

Now create another simple document.

y = XMLData.parse("Robat", false);
y.saveXML("pretty");

The output of this line is

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 Robat
</xfa:data>

Append y onto x

x.nodes.append(y.clone(true).nodes.item(0));
x.saveXML("pretty");

The result is

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 <c>A.</c>
 <d>C.</d>

 Robat
</xfa:data>

Now execute

x.nodes.insert(y.clone(true).nodes.item(0), x.nodes.item(0));
x.saveXML("pretty")

to obtain

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 Robat
 <a>
 <c>A.</c>
 <d>C.</d>

Acrobat JavaScript Scripting Reference 645

Acrobat JavaScript Scripting Reference
XMLData Object Methods

 Robat
</xfa:data>

Now remove these two nodes.

x.nodes.remove(x.nodes.namedItem("b"));
x.nodes.remove(x.nodes.namedItem("b"));

Now, we are back to the original XML document.

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 <c>A.</c>
 <d>C.</d>

</xfa:data>

Try executing the following line

x.a.nodes.insert(y.clone(true).nodes.item(0), x.a.nodes.item(0));
x.saveXML("pretty");

yields the following output:

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 Robat
 <c>A.</c>
 <d>C.</d>

</xfa:data>

Now remove that node just inserted:

x.a.nodes.remove(x.a.nodes.namedItem("b"));

Now insert y, actually a clone of y, between first and second children of the element a

x.a.nodes.insert(y.clone(true).nodes.item(0), x.a.nodes.item(1));

This produces the following

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 <c>A.</c>
 Robat
 <d>C.</d>

</xfa:data>

Remove that node just inserted:

x.a.nodes.remove(x.a.nodes.namedItem("b"));

Finally, append y onto a

x.a.nodes.append(y.clone(true).nodes.item(0));

Acrobat JavaScript Scripting Reference
XMLData Object Methods

646 Acrobat JavaScript Scripting Reference

yielding

<?xml version="1.0" encoding="UTF-8"?>
<xfa:data xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <a>
 <c>A.</c>
 <d>C.</d>
 Robat

</xfa:data>

Acrobat JavaScript Scripting Reference 647

New Features and Changes

This section summarizes the new features and changes introduced in Acrobat 7.0 and prior.

Acrobat 7.0 Changes

The “Acrobat Multimedia JavaScript Reference”, which appeared as a separate document in
version 6.0.2, has been merged into the “Acrobat JavaScript Scripting Reference”. See the
section “Introduced in Acrobat 6.0.2” on page 662 for a listing of all Multimedia JavaScript
objects, properties and methods.

Execution of JavaScript through a menu event is no longer privileged. For details see the
paragraph JavaScript Execution through the Menu on page 680 for detailed discussion.

There is now support for executing privileged code in a non-privileged context. See
Privileged versus Non-privileged Context on page 679 for details.

The App Folder JavaScript files are now pre-compiled to improve performance, see
Bytecode to Improve Performance.

The Adobe Reader now has a console window. There is a preference under Edit >
Preferences > General > JavaScript to “Show console on errors and messages”. In
addition to errors and exceptions, the console can also be opened programmatically with
console.show(). See the Console Object for a few other details.

The debugging capability of the JavaScript Debugging window can be made available for
Adobe Reader on Windows and Macintosh platforms. In order to debug within Adobe
Reader, the JavaScript file debugger.js needs to be installed, and the windows registry
needs to be edited appropriately. See the Acrobat JavaScript Scripting Guide for the
technical details.

Introduced in Acrobat 7.0

The following properties and methods are introduced in Acrobat 7:

Alerter Object methods:
dispatch

New Features and Changes
Acrobat 7.0 Changes

648 Acrobat JavaScript Scripting Reference

Annot Object properties:
callout
caretSymbola

creationDatea

dashb

delayb

doCaption
intent
leaderExtend
leaderLength
lineEnding
opacityb

refType
richDefaultsa

seqNumb

statea

stateModela

style
subjecta

Annot3D Object properties:
activated
context3D
innerRect
name
page
rect

App Object properties:
constants

methods:
beginPriv
browseForDoc
endPriv
execDialog
launchURL
trustedFunction
trustPropagatorFunction

Dialog Object methods:
enable
end
load
store

Acrobat JavaScript Scripting Reference 649

New Features and Changes
Acrobat 7.0 Changes

Doc Object properties:
docIDa
dynamicXFAForm
external
hidden
mouseX
mouseY
noautocomplete
nocache
requiresFullSave

methods:
addWatermarkFromFile
addWatermarkFromText
embedDocAsDataObject
encryptUsingPolicy
getAnnot3D
getAnnots3D
getDataObjectContents
getOCGOrder
openDataObject
removeScript
setDataObjectContents
setOCGOrder

Doc.media Object methods:
getOpenPlayers

Field Object methods:
signatureGetModifications

OCG Object properties:
constants
initState
locked

methods:
getIntent
setIntent

PlayerInfo Object methods:
honors

New Features and Changes
Acrobat 7.0 Changes

650 Acrobat JavaScript Scripting Reference

printParams Object properties:
nUpAutoRotate
nUpNumPagesH
nUpNumPagesV
nUpPageBorder
nUpPageOrder

Search Object properties:
attachments
ignoreAccents
objectMetadata
proximityRange

Security Object Security Constants
methods:

chooseSecurityPolicy
getSecurityPolicies

SecurityPolicy Object SecurityPolicy Properties

SOAP Object methods:
queryServices
resolveService
streamDigest

Util Object methods:
iconStreamFromIcon
streamFromString
stringFromStream

XMLData Object methods:
applyXPath
parse

a. Present in version 6.0, documented in version 7.0.
b. Present in version 5.0, documented in version 7.0.

Acrobat JavaScript Scripting Reference 651

New Features and Changes
Acrobat 7.0 Changes

Modified in Acrobat 7.0

Changed or Enhanced Objects, Methods, and Properties

The following properties and methods have been changed or enhanced:

App Object methods:
addToolButton
execMenuItem
getPath
mailGetAddrs
openDoc

Console Object The console window now available in Adobe Reader.

Doc Object methods:
createTemplate
mailDoc
print
saveAs
submitForm

Field Object methods:
signatureSetSeedValue

Index Object methods:
build

OCG Object properties:
name

printParams Object properties:
pageHandling

Search Object properties:
indexes

Security Object properties:
handlers

methods:
getHandler

SecurityHandler Object properties:
digitalIDs
methods:

login
newUser

New Features and Changes
Acrobat 6.0 Changes

652 Acrobat JavaScript Scripting Reference

Acrobat 6.0 Changes

The notion of a Safe Path is introduced for this version of Acrobat. See the link provided for
details.

Introduced in Acrobat 6.0

The following properties and methods are introduced in Acrobat 6:

SOAP Object methods:
connect
request

Spell Object The Spell object is not available in Adobe Reader 7.0
or higher
methods:

addWord

Util Object methods:
printd

ADBC Object SQL Types

AlternatePresentation Object properties:
active
type

methods:
start
stop

Annot Object properties:
borderEffectIntensity
borderEffectStyle
inReplyTo
richContents
toggleNoView

methods:
getStateInModel
transitionToState

Acrobat JavaScript Scripting Reference 653

New Features and Changes
Acrobat 6.0 Changes

App Object properties:
fromPDFConverters
printColorProfiles
printerNames
runtimeHighlight
runtimeHighlightColor
thermometer
viewerType

methods:
addToolButton
getPath
mailGetAddrs
newFDF
openFDF
popUpMenuEx
removeToolButton

Bookmark Object methods:
setAction

Catalog Object properties:
isIdle
jobs

methods:
getIndex
remove

Certificate Object properties:
keyUsage
usage

Collab Object methods:
addStateModel
removeStateModel

Connection Object methods:
close

New Features and Changes
Acrobat 6.0 Changes

654 Acrobat JavaScript Scripting Reference

Dbg Object properties:
bps

methods:
c
cb
q
sb
si
sn
so
sv

Directory Object properties:
info

methods:
connect

DirConnection Object properties:
canList
canDoCustomSearch
canDoCustomUISearch
canDoStandardSearch
groups
name
uiName

methods:
search
setOutputFields

Acrobat JavaScript Scripting Reference 655

New Features and Changes
Acrobat 6.0 Changes

Doc Object properties:
alternatePresentations
documentFileName
metadata
permStatusReady

methods:
addLink
addRecipientListCryptFilter
addScript
encryptForRecipients
exportAsText
exportXFAData
getLegalWarnings
getLinks
getOCGs
getPrintParams
importXFAData
newPage
removeLinks
setAction
setPageAction
setPageTabOrder

Error Objects properties:
fileName
lineNumber
message
name

methods:
toString

Event Object properties:
fieldFull
richChange
richChangeEx
richValue

New Features and Changes
Acrobat 6.0 Changes

656 Acrobat JavaScript Scripting Reference

FDF Object properties:
deleteOption
isSigned
numEmbeddedFiles

methods:
addContact
addEmbeddedFile
addRequest
close
mail
save
signatureClear
signatureSign
signatureValidate

Field Object properties:
buttonFitBounds
comb
commitOnSelChange
defaultStyle
radiosInUnison
richText
richValue
rotation

methods:
getLock
setLock
signatureGetSeedValue
signatureSetSeedValue

Index Object methods:
build

Link Object properties:
borderColor
borderWidth
highlightMode
rect

methods:
setAction

Acrobat JavaScript Scripting Reference 657

New Features and Changes
Acrobat 6.0 Changes

OCG Object properties:
name
state

methods:
setAction

printParams Object properties:
binaryOK
bitmapDPI
colorOverride
colorProfile
constants
downloadFarEastFonts
fileName
firstPage
flags
fontPolicy
gradientDPI
interactive
lastPage
pageHandling
pageSubset
printAsImage
printContent
printerName
psLevel
rasterFlags
reversePages
tileLabel
tileMark
tileOverlap
tileScale
transparencyLevel
usePrinterCRD
useT1Conversion

Report Object properties:
style

New Features and Changes
Acrobat 6.0 Changes

658 Acrobat JavaScript Scripting Reference

Search Object properties:
docInfo
docText
docXMP
bookmarks
ignoreAsianCharacterWidth
jpegExif
legacySearch
markup
matchWholeWord
wordMatching

Security Object methods:
chooseRecipientsDialog
getSecurityPolicies
importFromFile

SecurityHandler Object properties:
digitalIDs
directories
directoryHandlers
signAuthor
signFDF

methods:
newDirectory

SOAP Object properties:
wireDump

methods:
connect
request
response
streamDecode
streamEncode
streamFromString
stringFromStream

Acrobat JavaScript Scripting Reference 659

New Features and Changes
Acrobat 6.0 Changes

Span Object properties:
alignment
fontFamily
fontStretch
fontStyle
fontWeight
text
textColor
textSize
strikethrough
subscript
superscript
underline

Spell Object properties:
languages
languageOrder

methods:
customDictionaryClose
customDictionaryCreate
customDictionaryExport
customDictionaryOpen
ignoreAll

Thermometer Object properties:
cancelled
duration
value
text

methods:
begin
end

Util Object methods:
printd
spansToXML
xmlToSpans

New Features and Changes
Acrobat 6.0 Changes

660 Acrobat JavaScript Scripting Reference

Modified in Acrobat 6.0

Changed or Enhanced Objects, Methods, and Properties

The following properties and methods have been changed or enhanced:

App Object methods:
addMenuItem
alert
listMenuItems
listToolbarButtons
response

Doc Object properties:
layout
zoomType

methods:
createDataObject
exportAsFDF
exportAsXFDF
exportDataObject
flattenPages
getField (see Extended Methods)
getURL
importDataObject
importIcon
print
saveAs
spawnPageFromTemplate
submitForm

Event Object properties:
changeEx

Field Object properties:
name

methods:
buttonImportIcon
signatureInfo
signatureSign
signatureValidate

Acrobat JavaScript Scripting Reference 661

New Features and Changes
Acrobat 6.0 Changes

Extended Methods

The doc.getField method has been extended in Acrobat 6.0 so that it retrieves the
field object of individual widgets. See Field Access from JavaScript for a discussion of
widgets and how to work with them.

Global Object Persistent global data only applies to variables of type
Boolean, Number or String. Acrobat 6.0 has reduced
the maximum size of global persistent variables from
32 k to 2-4 k. Any data added to the string after this
limit is dropped.

Search Object methods:
query

SecurityHandler Object The following were introduced in Acrobat 5.0 as
properties and methods of the PPKLite
Signature Handler Object. In Acrobat 6.0 they
are properties and methods of the SecurityHandler
Object All of these have new descriptions, and some
have additional parameters.

N O T E : When signing using JavaScript methods, the
user’s digital signature profile must be a.pfx
file, not an .apf, as in prior versions of Acrobat.
To convert an .apf profile to the new .pfx
type, use the UI (Advanced > Manage Digital
IDs > My Digital ID Files > Select My Digitial
ID File) to import the .apf profile.

properties:
appearances
isLoggedIn
loginName
loginPath
name
signInvisible
signVisible
uiName

methods:
login
logout
newUser
setPasswordTimeout

Template Objectt methods:
spawn

New Features and Changes
Acrobat 6.0 Changes

662 Acrobat JavaScript Scripting Reference

Deprecated in Acrobat 6.0

Introduced in Acrobat 6.0.2

The following objects, properties and methods are introduced in Acrobat 6.0.2:

The following table lists the objects, properties and methods of the Multimedia plugin. In
Acrobat 6.0.2, multimedia JavaScript was documented in a separate document called the
“Acrobat Multimedia JavaScript Reference”.

Search Object properties:
soundex
thesaurus

Spell Object methods:
addDictionary
removeDictionary

XFAObject Object

App Object properties:
media
monitors

Acrobat JavaScript Scripting Reference 663

New Features and Changes
Acrobat 6.0 Changes

App.media Object properties:
align
canResize
closeReason
defaultVisible
ifOffScreen
layout
monitorType
openCode
over
pageEventNames
raiseCode
raiseSystem
renditionType
status
trace
version
windowType

methods:
addStockEvents
alertFileNotFound
alertSelectFailed
argsDWIM
canPlayOrAlert
computeFloatWinRect
constrainRectToScreen
createPlayer
getAltTextData
getAltTextSettings
getAnnotStockEvents
getAnnotTraceEvents
getPlayers
getPlayerStockEvents
getPlayerTraceEvents
getRenditionSettings
getURLData
getURLSettings
getWindowBorderSize
openPlayer
removeStockEvents
startPlayer

New Features and Changes
Acrobat 6.0 Changes

664 Acrobat JavaScript Scripting Reference

Doc Object properties:
innerAppWindowRect
innerDocWindowRect
media
outerAppWindowRect
outerDocWindowRect
pageWindowRect

Doc.media Object properties:
canPlay

methods:
deleteRendition
getAnnot
getAnnots
getRendition
newPlayer

Event Object A new Screen type used with Multimedia along with
associated event names.

Events Object methods:
add
dispatch
remove

Acrobat JavaScript Scripting Reference 665

New Features and Changes
Acrobat 6.0 Changes

EventListener Object methods:
afterBlur
afterClose
afterDestroy
afterDone
afterError
afterEscape
afterEveryEvent
afterFocus
afterPause
afterPlay
afterReady
afterScript
afterSeek
afterStatus
afterStop
onBlur
onClose
onDestroy
onDone
onError
onEscape
onEveryEvent
onFocus
onGetRect
onPause
onPlay
onReady
onScript
onSeek
onStatus
onStop

Marker Object properties:
frame
index
name
time

Markers Object properties:
player

methods:
get

New Features and Changes
Acrobat 6.0 Changes

666 Acrobat JavaScript Scripting Reference

MediaOffset Object properties:
frame
marker
time

MediaPlayer Object properties:
annot
defaultSize
doc
events
hasFocus
id
innerRect
iisOpen
isPlaying
markers
outerRect
page
settings
uiSize
visible

methods:
close
open
pause
play
seek
setFocus
stop
triggerGetRect
where

MediaReject Object properties:
rendition

MediaSelection Object properties:
selectContext
players
rejects
rendition

Acrobat JavaScript Scripting Reference 667

New Features and Changes
Acrobat 6.0 Changes

MediaSettings Object properties:
autoPlay
baseURL
bgColor
bgOpacity
endAt
data
duration
floating
layout
monitor
monitorType
page
palindrome
players
rate
repeat
showUI
startAt
visible
volume
windowType

Monitor Object properties:
colorDepth
isPrimary
rect
workRect

Monitors Object methods:
bestColor
bestFit
desktop
document
filter
largest
leastOverlap
mostOverlap
nonDocument
primary
secondary
select
tallest
widest

New Features and Changes
Acrobat 6.0 Changes

668 Acrobat JavaScript Scripting Reference

PlayerInfo Object properties:
id
mimeTypes
name
version

methods:
canPlay
canUseData

PlayerInfoList Object methods:
select

Rendition Object properties:
altText
doc
fileName
type
uiName

methods:
getPlaySettings
select
testCriteria

ScreenAnnot Object properties:
altText
alwaysShowFocus
display
doc
events
extFocusRect
innerDeviceRect
noTrigger
outerDeviceRect
page
player
rect

methods:
hasFocus
setFocus

Acrobat JavaScript Scripting Reference 669

New Features and Changes
Acrobat 5.0 Changes

Acro b at 5 . 0 C h a n g e s

Introduced in Acrobat 5.0

ADBC Object methods:
getDataSourceList
newConnection

Annot Object properties:
alignment
AP
arrowBegin
arrowEnd
author
contents
doc
fillColor
hidden
modDate
name
noView
page
point
points
popupRect
print
rect
readOnly
rotate
strokeColor
textFont
type
soundIcon
width

methods:
destroy
getProps
setProps

New Features and Changes
Acrobat 5.0 Changes

670 Acrobat JavaScript Scripting Reference

App Object properties:
activeDocs
fs
plugIns
viewerVariation

methods:
addMenuItem
addSubMenu
clearInterval
clearTimeOut
listMenuItems
listToolbarButtons
newDoc
openDoc
popUpMenu
setInterval
setTimeOut

Bookmark Object properties:
children
color
doc
name
open
parent
style

methods:
createChild
execute
insertChild
remove

Color Object methods:
convert
equal

Connection Object methods:
newStatement
getTableList
getColumnList

Acrobat JavaScript Scripting Reference 671

New Features and Changes
Acrobat 5.0 Changes

Data Object properties:
creationDate
modDate
MIMEType
name
path
size

Doc Object properties:
bookmarkRoot
disclosed (5.0.5)
icons
info
layout
securityHandler
selectedAnnots
sounds
templates
URL

methods:
addAnnot
addField
addIcon
addThumbnails
addWeblinks
bringToFront
closeDoc
createDataObject
createTemplate
deletePages
deleteSound
exportAsXFDF
exportDataObject
extractPages
flattenPages
getAnnot
getAnnots
getDataObject
getIcon
getPageBox
getPageLabel

New Features and Changes
Acrobat 5.0 Changes

672 Acrobat JavaScript Scripting Reference

getPageNthWord
getPageNthWordQuads
getPageRotation
getPageTransition
getSound
importAnXFDF
importDataObject
importIcon
importSound
importTextData
insertPages
movePage
print
removeDataObject
removeField
removeIcon
removeTemplate
removeThumbnails
removeWeblinks
replacePages
saveAs
selectPageNthWord
setPageBoxes
setPageLabels
setPageRotations
setPageTransitions
submitForm
syncAnnotScan

Event Object properties:
changeEx
keyDown
targetName

Acrobat JavaScript Scripting Reference 673

New Features and Changes
Acrobat 5.0 Changes

Field Object properties:
buttonAlignX
buttonAlignY
buttonPosition
buttonScaleHow
buttonScaleWhen
currentValueIndices
doNotScroll
doNotSpellCheck
exportValues
fileSelect
multipleSelection
rect
strokeColor
submitName
valueAsString

methods:
browseForFileToSubmit
buttonGetCaption
buttonGetIcon
buttonSetCaption
buttonSetIcon
checkThisBox
defaultIsChecked
isBoxChecked
isDefaultChecked
setAction
signatureInfo
signatureSign
signatureValidate

FullScreen Object properties:
backgroundColor
clickAdvances
cursor
defaultTransition
escapeExits
isFullScreen
loop
timeDelay
transitions
usePageTiming
useTimer

New Features and Changes
Acrobat 5.0 Changes

674 Acrobat JavaScript Scripting Reference

Global Object methods:
subscribe

Identity Object properties:
corporation
email
loginName
name

Index Object properties:
available
name
path
selected

PlayerInfo Object properties:
certified
loaded
name
path
version

PPKLite Signature Handler
Object (now listed under the
SecurityHandler Object)

properties
appearances
isLoggedIn
loginName
loginPath
name
signInvisible
signVisible
uiName

methods:
login
logout
newUser
setPasswordTimeout

Acrobat JavaScript Scripting Reference 675

New Features and Changes
Acrobat 5.0 Changes

Report Object properties:
absIndent
color
absIndent

methods:
breakPage
divide
indent
outdent
open
mail
Report
save
writeText

Search Object properties:
available
indexes
markup
maxDocs
proximity
refine
soundex
stem

methods:
addIndex
getIndexForPath
query
removeIndex

Security Object properties:
handlers
validateSignaturesOnOpen

methods:
getHandler

New Features and Changes
Acrobat 5.0 Changes

676 Acrobat JavaScript Scripting Reference

Modified in Acrobat 5.0

● The console can act as an editor and can execute JavaScript code.

● The following properties and methods have been changed or enhanced:

Spell Object properties:
available
dictionaryNames
dictionaryOrder
domainNamess

methods:
addDictionary
addWord
check
checkText
checkWord
removeDictionary
removeWord
userWords

Statement Object properties:
columnCount
rowCount

methods:
execute
getColumn
getColumnArray
getRow
nextRow

Template Object properties:
hidden
name

methods:
spawn

App Object language
execMenuItem

Doc Object exportAsFDF
print
submitForm

Event Object type

Acrobat JavaScript Scripting Reference 677

New Features and Changes
Acrobat 5.0 Changes

● The section related to Event Object has been greatly enhanced to facilitate better
understanding of the Acrobat JavaScript Event model.

Deprecated in Acrobat 5.0

The following properties and methods have been deprecated:

Modified in Acrobat 5.05

● A new symbol has been added to the quick bar denoting which methods are missing
from Acrobat™ Approval™ .

● In the Doc Object, the property disclosed has been added.

Field Object textFont
value
buttonImportIcon
getItemAt

Util Object printd

App Object fullscreen
numPlugIns
getNthPlugInName

Doc Object author
creationDate
creationDate
keywords
modDate
numTemplates
producer
title
getNthTemplate
spawnPageFromTemplate

Field Object hidden

TTS Object soundCues
speechCues

New Features and Changes
Acrobat 5.0 Changes

678 Acrobat JavaScript Scripting Reference

Modified in Adobe 5.1 Reader

A new column has been added to the Quick Bars that summarize availability, and the
meanings of the fourth and fifth columns has changed. They now indicate the availability
of a property or method in the Adobe Reader and Acrobat Approval respectively.

● The symbols that appear in the fourth column indicate whether a property or method is
available in Adobe Reader, and also whether access depends on document rights in the
Acrobat 5.1 Reader.

● The fifth column indicates whether a property or method is available in Acrobat
Approval.

Access to the following properties and methods has changed for the Adobe 5.1 Reader:

Annot Object properties:
alignment
AP
arrowBegin
arrowEnd
author
contents
doc
fillColor
hidden

methods:
destroy
getProps
setProps

modDate
name
noView
page
point
points
popupRect
print

rect
readOnly
rotate
strokeColor
textFont
type
soundIcon
width

Doc Object properties:
selectedAnnots

methods:
addAnnot
addField
exportAsFDF
exportAsXFDF
getAnnot
getAnnots
getNthTemplate
importAnFDF

importAnXFDF
importDataObject
mailDoc
mailForm
spawnPageFromTemplate
submitForm
syncAnnotScan

Template Object methods:
spawn

Acrobat JavaScript Scripting Reference 679

Security and Technical Notes

In this section, security implementations to Acrobat are summarized, other technical notes
are presented as well.

Security Notes

Through the various iterations of the Acrobat software, changes have been made to
improve the overall security profile of Acrobat. In this section, these various changes are
cataloged.

Safe Path

The following is an Acrobat 6.0 addition.

A security posture Acrobat has taken concerns all JavaScript methods that write data to the
local hard drive based on a path passed to it by one of its parameters. All paths are required
to a safe path: For windows, the path cannot point to a system critical folder, for example, a
root, windows or system directory. However, this is not the only requirement for a path to
be safe; a path is also subject to certain, unspecified tests as well.

For many of the methods in question, the file name must have an extension appropriate to
the type of data that is to be saved; some methods may have a no-overwrite restriction.
These additional restrictions are noted in the documentation.

Generally, when a path is judged to be “not safe”, a NotAllowedError (see the Error
Objects) exception is thrown and the method fails.

Privileged versus Non-privileged Context

In versions of Acrobat prior to 7.0, certain security restricted methods could only be
executed in a privileged context1, typically, during a console, batch, menu or application
initialization event. All other events (for example, page open and mouse up events) are
considered non-privileged.

Beginning with Acrobat 7.0, menu events are no longer considered privileged, see the
paragraph, “JavaScript Execution through the Menu”, below.

In Acrobat 7.0, the concept of a trusted function is introduced. Trusted functions allow
privileged code—code that normally requires a privileged context to execute—to execute
in non-privileged contexts. For details and examples, see app.trustedFunction().

1. Beginning with version 6.0, there is an exception to this statement. Security restricted methods can execute in a non-
privileged context provided the document is Certified by the document author for embedded JavaScript. See the description
of column 3 of the quick bar retarding security for additional details.

Security and Technical Notes
Technical Notes

680 Acrobat JavaScript Scripting Reference

Technical Notes

JavaScript Execution through the Menu

Beginning with Acrobat 7.0, execution of JavaScript through a menu event is no longer
privileged. To execute a security restricted method (�) through a menu event, one of the
following must be true:

1. Under Edit > Preferences > General > JavaScript, the item labeled “Enable menu
items JavaScript execution privileges” must be checked.

2. The method must be executed through a trusted function. For details and examples, see
app.trustedFunction().

The paragraph titled Privileged versus Non-privileged Context also should be reviewed.

Bytecode to Improve Performance

In versions of Acrobat previous to 7.0, the JavaScript files AForm.js, ADBC.js,
Annots.js, AnWizard.js, media.js, and SOAP.js resided in the App JavaScript
folder. Beginning with Acrobat 7.0, these files will not be shipped with Acrobat Professional,
Acrobat Standard or Adobe Reader. In their place, a pre-compiled bytecode is used in order
to improve performance. The debugger.js file in the App folder is not included in the
bytecode.

Files in the User JavaScript folder will not be included in the pre-compiled bytecode file.

Acrobat prefers that users put their own .JS files in the User JavaScript folder, the same
place where glob.js resides. JavaScript code that sets up menu-items (addMenuItem)
should be put in config.js in the User JavaScript folder. The location of this folder can
be found programmatically by executing app.getPath("user","javascript")
from the console.

	Contents
	Preface
	Description
	Audience
	Resources
	Online Help
	References

	Document Conventions
	Font Conventions Used in This Book
	Quick Bars

	Acrobat JavaScript Scripting Reference
	ADBC Object
	ADBC Properties
	SQL Types
	JavaScript Types

	ADBC Methods
	getDataSourceList
	newConnection

	Alerter Object
	Alerter Object Methods
	dispatch

	AlternatePresentation Object
	AlternatePresentation Properties
	active
	type

	AlternatePresentation Methods
	start
	stop

	Annot Object
	Annotation Types
	Annotation Access from JavaScript
	Annot Properties
	alignment
	AP
	arrowBegin
	arrowEnd
	attachIcon
	author
	borderEffectIntensity
	borderEffectStyle
	callout
	caretSymbol
	contents
	creationDate
	dash
	delay
	doc
	doCaption
	fillColor
	gestures
	hidden
	inReplyTo
	intent
	leaderExtend
	leaderLength
	lineEnding
	lock
	modDate
	name
	noteIcon
	noView
	opacity
	page
	point
	points
	popupOpen
	popupRect
	print
	quads
	rect
	readOnly
	refType
	richContents
	richDefaults
	rotate
	seqNum
	state
	stateModel
	strokeColor
	style
	subject
	textFont
	textSize
	toggleNoView
	type
	soundIcon
	vertices
	width

	Annot Methods
	destroy
	getProps
	getStateInModel
	setProps
	transitionToState

	Annot3D Object
	Annot3D Properties
	activated
	context3D
	innerRect
	name
	page
	rect

	App Object
	App Properties
	activeDocs
	calculate
	constants
	focusRect
	formsVersion
	fromPDFConverters
	fs
	fullscreen
	language
	media
	monitors
	numPlugIns
	openInPlace
	platform
	plugIns
	printColorProfiles
	printerNames
	runtimeHighlight
	runtimeHighlightColor
	thermometer
	toolbar
	toolbarHorizontal
	toolbarVertical
	viewerType
	viewerVariation
	viewerVersion

	App Methods
	addMenuItem
	addSubMenu
	addToolButton
	alert
	beep
	beginPriv
	browseForDoc
	clearInterval
	clearTimeOut
	endPriv
	execDialog
	execMenuItem
	getNthPlugInName
	getPath
	goBack
	goForward
	hideMenuItem
	hideToolbarButton
	launchURL
	listMenuItems
	listToolbarButtons
	mailGetAddrs
	mailMsg
	newDoc
	newFDF
	openDoc
	openFDF
	popUpMenu
	popUpMenuEx
	removeToolButton
	response
	setInterval
	setTimeOut
	trustedFunction
	trustPropagatorFunction

	App.media Object
	App.media Object Properties
	align
	canResize
	closeReason
	defaultVisible
	ifOffScreen
	layout
	monitorType
	openCode
	over
	pageEventNames
	raiseCode
	raiseSystem
	renditionType
	status
	trace
	version
	windowType

	App.media Object Methods
	addStockEvents
	alertFileNotFound
	alertSelectFailed
	argsDWIM
	canPlayOrAlert
	computeFloatWinRect
	constrainRectToScreen
	createPlayer
	getAltTextData
	getAltTextSettings
	getAnnotStockEvents
	getAnnotTraceEvents
	getPlayers
	getPlayerStockEvents
	getPlayerTraceEvents
	getRenditionSettings
	getURLData
	getURLSettings
	getWindowBorderSize
	openPlayer
	removeStockEvents
	startPlayer

	Bookmark Object
	Bookmark Properties
	children
	color
	doc
	name
	open
	parent
	style

	Bookmark Methods
	createChild
	execute
	insertChild
	remove
	setAction

	Catalog Object
	Catalog Properties
	isIdle
	jobs

	Catalog Methods
	getIndex
	remove

	CatalogJob Generic Object
	Certificate Object
	Certificate Properties
	binary
	issuerDN
	keyUsage
	MD5Hash
	SHA1Hash
	serialNumber
	subjectCN
	subjectDN
	ubRights
	usage

	Collab Object
	Collab Methods
	addStateModel
	removeStateModel

	Color Object
	Color Arrays
	Color Properties
	Color Methods
	convert
	equal

	Column Generic Object
	ColumnInfo Generic Object
	Connection Object
	Connection Methods
	close
	newStatement
	getTableList
	getColumnList

	Console Object
	Console Methods
	show
	hide
	println
	clear

	Data Object
	Data Properties
	creationDate
	modDate
	MIMEType
	name
	path
	size

	DataSourceInfo Generic Object
	Dbg Object
	Dbg Properties
	bps

	Dbg Methods
	c
	cb
	q
	sb
	si
	sn
	so
	sv

	Dialog Object
	Dialog Methods
	enable
	end
	load
	store

	Directory Object
	Directory Properties
	info

	Directory Methods
	connect

	DirConnection Object
	DirConnection Properties
	canList
	canDoCustomSearch
	canDoCustomUISearch
	canDoStandardSearch
	groups
	name
	uiName

	DirConnection Methods
	search
	setOutputFields

	Doc Object
	Doc Access from JavaScript
	Doc Properties
	alternatePresentations
	author
	baseURL
	bookmarkRoot
	calculate
	creationDate
	creator
	dataObjects
	delay
	dirty
	disclosed
	docID
	documentFileName
	dynamicXFAForm
	external
	filesize
	hidden
	icons
	info
	innerAppWindowRect
	innerDocWindowRect
	keywords
	layout
	media
	metadata
	modDate
	mouseX
	mouseY
	noautocomplete
	nocache
	numFields
	numPages
	numTemplates
	path
	outerAppWindowRect
	outerDocWindowRect
	pageNum
	pageWindowRect
	permStatusReady
	producer
	requiresFullSave
	securityHandler
	selectedAnnots
	sounds
	spellDictionaryOrder
	spellLanguageOrder
	subject
	templates
	title
	URL
	zoom
	zoomType

	Doc Methods
	addAnnot
	addField
	addIcon
	addLink
	addRecipientListCryptFilter
	addScript
	addThumbnails
	addWatermarkFromFile
	addWatermarkFromText
	addWeblinks
	bringToFront
	calculateNow
	closeDoc
	createDataObject
	createTemplate
	deletePages
	deleteSound
	embedDocAsDataObject
	encryptForRecipients
	encryptUsingPolicy
	exportAsText
	exportAsFDF
	exportAsXFDF
	exportDataObject
	exportXFAData
	extractPages
	flattenPages
	getAnnot
	getAnnot3D
	getAnnots
	getAnnots3D
	getDataObject
	getDataObjectContents
	getField
	getIcon
	getLegalWarnings
	getLinks
	getNthFieldName
	getNthTemplate
	getOCGs
	getOCGOrder
	getPageBox
	getPageLabel
	getPageNthWord
	getPageNthWordQuads
	getPageNumWords
	getPageRotation
	getPageTransition
	getPrintParams
	getSound
	getTemplate
	getURL
	gotoNamedDest
	importAnFDF
	importAnXFDF
	importDataObject
	importIcon
	importSound
	importTextData
	importXFAData
	insertPages
	mailDoc
	mailForm
	movePage
	newPage
	openDataObject
	print
	removeDataObject
	removeField
	removeIcon
	removeLinks
	removeScript
	removeTemplate
	removeThumbnails
	removeWeblinks
	replacePages
	resetForm
	saveAs
	scroll
	selectPageNthWord
	setAction
	setDataObjectContents
	setOCGOrder
	setPageAction
	setPageBoxes
	setPageLabels
	setPageRotations
	setPageTabOrder
	setPageTransitions
	spawnPageFromTemplate
	submitForm
	syncAnnotScan

	Doc.media Object
	Doc.media Object Properties
	canPlay

	Doc.media Object Methods
	deleteRendition
	getAnnot
	getAnnots
	getOpenPlayers
	getRendition
	newPlayer

	Error Objects
	Error Properties
	fileName
	lineNumber
	extMessage
	message
	name

	Error Methods
	toString

	Event Object
	Event Type/Name Combinations
	Document Event Processing
	Form Event Processing
	Multimedia Event Processing
	Event Properties
	change
	changeEx
	commitKey
	fieldFull
	keyDown
	modifier
	name
	rc
	richChange
	richChangeEx
	richValue
	selEnd
	selStart
	shift
	source
	target
	targetName
	type
	value
	willCommit

	Events Object
	Events Object Methods
	add
	dispatch
	remove

	EventListener Object
	EventListener Object Methods
	afterBlur
	afterClose
	afterDestroy
	afterDone
	afterError
	afterEscape
	afterEveryEvent
	afterFocus
	afterPause
	afterPlay
	afterReady
	afterScript
	afterSeek
	afterStatus
	afterStop
	onBlur
	onClose
	onDestroy
	onDone
	onError
	onEscape
	onEveryEvent
	onFocus
	onGetRect
	onPause
	onPlay
	onReady
	onScript
	onSeek
	onStatus
	onStop

	FDF Object
	FDF Properties
	deleteOption
	isSigned
	numEmbeddedFiles

	FDF Methods
	addContact
	addEmbeddedFile
	addRequest
	close
	mail
	save
	signatureClear
	signatureSign
	signatureValidate

	Field Object
	Field Access from JavaScript
	Field Properties
	alignment
	borderStyle
	buttonAlignX
	buttonAlignY
	buttonFitBounds
	buttonPosition
	buttonScaleHow
	buttonScaleWhen
	calcOrderIndex
	charLimit
	comb
	commitOnSelChange
	currentValueIndices
	defaultStyle
	defaultValue
	doNotScroll
	doNotSpellCheck
	delay
	display
	doc
	editable
	exportValues
	fileSelect
	fillColor
	hidden
	highlight
	lineWidth
	multiline
	multipleSelection
	name
	numItems
	page
	password
	print
	radiosInUnison
	readonly
	rect
	required
	richText
	richValue
	rotation
	strokeColor
	style
	submitName
	textColor
	textFont
	textSize
	type
	userName
	value
	valueAsString

	Field Methods
	browseForFileToSubmit
	buttonGetCaption
	buttonGetIcon
	buttonImportIcon
	buttonSetCaption
	buttonSetIcon
	checkThisBox
	clearItems
	defaultIsChecked
	deleteItemAt
	getArray
	getItemAt
	getLock
	insertItemAt
	isBoxChecked
	isDefaultChecked
	setAction
	setFocus
	setItems
	setLock
	signatureGetModifications
	signatureGetSeedValue
	signatureInfo
	signatureSetSeedValue
	signatureSign
	signatureValidate

	FullScreen Object
	FullScreen Properties
	backgroundColor
	clickAdvances
	cursor
	defaultTransition
	escapeExits
	isFullScreen
	loop
	timeDelay
	transitions
	usePageTiming
	useTimer

	Global Object
	Creating Global Properties
	Deleting Global Properties
	Global Methods
	setPersistent
	subscribe

	Icon Generic Object
	Icon Stream Generic Object
	Identity Object
	Identity Properties
	corporation
	email
	loginName
	name

	Index Object
	Index Properties
	available
	name
	path
	selected

	Index Methods
	build

	Link Object
	Link Properties
	borderColor
	borderWidth
	highlightMode
	rect

	Link Methods
	setAction

	Marker Object
	Marker Object Properties
	frame
	index
	name
	time

	Markers Object
	Markers Object Properties
	player

	Markers Object Methods
	get

	MediaOffset Object
	MediaOffset Object Properties
	frame
	marker
	time

	MediaPlayer Object
	MediaPlayer Object Properties
	annot
	defaultSize
	doc
	events
	hasFocus
	id
	innerRect
	isOpen
	isPlaying
	markers
	outerRect
	page
	settings
	uiSize
	visible

	MediaPlayer Object Methods
	close
	open
	pause
	play
	seek
	setFocus
	stop
	triggerGetRect
	where

	MediaReject Object
	MediaReject Object Properties
	rendition

	MediaSelection Object
	MediaSelection Object Properties
	selectContext
	players
	rejects
	rendition

	MediaSettings Object
	MediaSettings Object Properties
	autoPlay
	baseURL
	bgColor
	bgOpacity
	endAt
	data
	duration
	floating
	layout
	monitor
	monitorType
	page
	palindrome
	players
	rate
	repeat
	showUI
	startAt
	visible
	volume
	windowType

	Monitor Object
	Monitor Object Properties
	colorDepth
	isPrimary
	rect
	workRect

	Monitors Object
	Monitors Object Properties
	Monitors Object Methods
	bestColor
	bestFit
	desktop
	document
	filter
	largest
	leastOverlap
	mostOverlap
	nonDocument
	primary
	secondary
	select
	tallest
	widest

	OCG Object
	OCG Properties
	constants
	initState
	locked
	name
	state

	OCG Methods
	getIntent
	setAction
	setIntent

	PlayerInfo Object
	PlayerInfo Object Properties
	id
	mimeTypes
	name
	version

	PlayerInfo Object Methods
	canPlay
	honors
	canUseData

	PlayerInfoList Object
	PlayerInfoList Object Properties
	PlayerInfoList Object Methods
	select

	PlugIn Object
	PlugIn Properties
	certified
	loaded
	name
	path
	version

	printParams Object
	PrintParams Properties
	binaryOK
	bitmapDPI
	colorOverride
	colorProfile
	constants
	downloadFarEastFonts
	fileName
	firstPage
	flags
	fontPolicy
	gradientDPI
	interactive
	lastPage
	nUpAutoRotate
	nUpNumPagesH
	nUpNumPagesV
	nUpPageBorder
	nUpPageOrder
	pageHandling
	pageSubset
	printAsImage
	printContent
	printerName
	psLevel
	rasterFlags
	reversePages
	tileLabel
	tileMark
	tileOverlap
	tileScale
	transparencyLevel
	usePrinterCRD
	useT1Conversion

	Rendition Object
	Rendition Object Properties
	altText
	doc
	fileName
	type
	uiName

	Rendition Object Methods
	getPlaySettings
	select
	testCriteria

	RDN Generic Object
	Report Object
	Report Properties
	absIndent
	color
	size
	style

	Report Methods
	breakPage
	divide
	indent
	outdent
	open
	save
	mail
	Report
	writeText

	Row Generic Object
	ScreenAnnot Object
	ScreenAnnot Object Properties
	altText
	alwaysShowFocus
	display
	doc
	events
	extFocusRect
	innerDeviceRect
	noTrigger
	outerDeviceRect
	page
	player
	rect

	ScreenAnnot Object Methods
	hasFocus
	setFocus

	Search Object
	Search Properties
	attachments
	available
	docInfo
	docText
	docXMP
	bookmarks
	ignoreAccents
	ignoreAsianCharacterWidth
	indexes
	jpegExif
	legacySearch
	markup
	matchCase
	matchWholeWord
	maxDocs
	objectMetadata
	proximity
	proximityRange
	refine
	soundex
	stem
	thesaurus
	wordMatching

	Search Methods
	addIndex
	getIndexForPath
	query
	removeIndex

	Security Object
	Security Constants
	Security Properties
	handlers
	validateSignaturesOnOpen

	Security Methods
	chooseRecipientsDialog
	chooseSecurityPolicy
	exportToFile
	getHandler
	getSecurityPolicies
	importFromFile

	SecurityPolicy Object
	SecurityPolicy Properties

	SecurityHandler Object
	SecurityHandler Properties
	appearances
	digitalIDs
	directories
	directoryHandlers
	isLoggedIn
	loginName
	loginPath
	name
	signAuthor
	signFDF
	signInvisible
	signValidate
	signVisible
	uiName

	SecurityHandler Methods
	login
	logout
	newDirectory
	newUser
	setPasswordTimeout

	SignatureInfo Object
	SignatureInfo Object properties

	SOAP Object
	SOAP Properties
	wireDump

	SOAP Methods
	connect
	queryServices
	resolveService
	request
	response
	streamDecode
	streamDigest
	streamEncode
	streamFromString
	stringFromStream

	Sound Object
	Sound Properties
	name

	Sound Methods
	play
	pause
	stop

	Span Object
	Span Properties
	alignment
	fontFamily
	fontStretch
	fontStyle
	fontWeight
	text
	textColor
	textSize
	strikethrough
	subscript
	superscript
	underline

	Spell Object
	Spell Properties
	available
	dictionaryNames
	dictionaryOrder
	domainNames
	languages
	languageOrder

	Spell Methods
	addDictionary
	addWord
	check
	checkText
	checkWord
	customDictionaryClose
	customDictionaryCreate
	customDictionaryDelete
	customDictionaryExport
	customDictionaryOpen
	ignoreAll
	removeDictionary
	removeWord
	userWords

	Statement Object
	Statement Properties
	columnCount
	rowCount

	Statement Methods
	execute
	getColumn
	getColumnArray
	getRow
	nextRow

	TableInfo Generic Object
	Template Object
	Template Properties
	hidden
	name

	Template Methods
	spawn

	Thermometer Object
	Thermometer Properties
	cancelled
	duration
	value
	text

	Thermometer Methods
	begin
	end

	TTS Object
	TTS Properties
	available
	numSpeakers
	pitch
	soundCues
	speaker
	speechCues
	speechRate
	volume

	TTS Methods
	getNthSpeakerName
	pause
	qSilence
	qSound
	qText
	reset
	resume
	stop
	talk

	this Object
	Variable and Function Name Conflicts

	Util Object
	Util Methods
	iconStreamFromIcon
	printf
	printd
	printx
	scand
	spansToXML
	streamFromString
	stringFromStream
	xmlToSpans

	XFAObject Object
	XMLData Object
	XMLData Object Methods
	applyXPath
	parse

	New Features and Changes
	Acrobat 7.0 Changes
	Introduced in Acrobat 7.0
	Modified in Acrobat 7.0

	Acrobat 6.0 Changes
	Introduced in Acrobat 6.0
	Modified in Acrobat 6.0
	Deprecated in Acrobat 6.0
	Introduced in Acrobat 6.0.2

	Acrobat 5.0 Changes
	Introduced in Acrobat 5.0
	Modified in Acrobat 5.0
	Deprecated in Acrobat 5.0
	Modified in Acrobat 5.05
	Modified in Adobe 5.1 Reader

	Security and Technical Notes
	Security Notes
	Technical Notes

