
Module 4 - Tag management systems

This toolkit is designed for Professional Developer Exam Aspirants. There are six Modules.

Study Each module per week to stick to schedule. Technical Parts of applications are depicted in

Videos, you can learn more about them from experience League. You can visit Get prep page to

understand the contents and anticipate the learning journey.

This is Professional Exam, Developer toolkit Module 4. This module contains four sections.

4.1 Tags Overview

Tags in Adobe Experience Platform are the next generation of tag management capabilities from

Adobe. Tags give customers a simple way to deploy and manage all of the analytics, marketing,

and advertising tags necessary to power relevant customer experiences.

Tags empower anyone to build and maintain their own integrations, called extensions. These

extensions are available to Adobe Experience Cloud customers in an app-store experience so

they can quickly install, configure, and deploy their tags.

Tags are offered to Adobe Experience Cloud customers as an included value-add feature.

Key benefits
• Faster time to value.
• Trustworthy data through centralized collection, organization, and delivery using

data elements.
• Compelling experiences through the integration of data and marketing

technology using rule builder.

Key features

Extensions

An extension is a package of code (JavaScript, HTML, and CSS) that extends the tags

functionality. Build, manage, and update your integrations using a virtually self-service interface.

You can think of extensions as apps you use to achieve your tasks.

Extension catalog

Browse, configure, and deploy marketing/advertising tools built and maintained by independent

software vendors.

Rule builder

Create robust rules that combine multiple events, sequenced in the way that you determine using

if/then logic with conditions and exceptions. Rules provide options for:

https://experienceleague.adobe.com/docs/certification/program/technical-certifications/aa/aa-professional/aa-p-developer.html?lang=en
https://experienceleague.adobe.com/docs/experience-platform/tags/home.html?lang=en

• Events
• Conditions
• Exceptions
• Actions

The rule builder includes real-time error checking and syntax highlighting for your custom code.

When the criteria outlined in your rules are met and conditions are satisfied, the actions you

define are executed in order.

Data elements

Collect, organize, and deliver data across web-based marketing and advertising technology.

Enterprise publishing

The publishing process enables teams to publish code to pages. Different people can create an

implementation, approve it, and publish it on your pages.

• Changes to your code are encapsulated within the libraries you define.
• You specify where and when you want your code deployed.
• Multiple libraries can be built in parallel by different teams.
• Unlimited development environments.
• A deliberate, permission-based process for merging libraries together.

Open APIs

Automate implementations of individual technologies or a group of technologies.

• Tags interact with the Reactor API.
• Deployments can be automated through APIs.
• Integrate the APIs with your own internal systems.
• You can build your own user interface if desired.

Light, modular container tag

The content of your container is minified, including your custom code. Everything is modular. If

you don’t need an item, it is not included in your library. The result is an implementation that is

fast and compact. See Minification.

Other highlights

Tags provide several improvements over similar systems, including:

• No use of document.write () where Chrome doesn’t allow it.

• The Page Top and Page Bottom rules are bundled into the main library to
minimize unnecessary HTTP calls.

https://experienceleague.adobe.com/docs/experience-platform/tags/publish/builds.html?lang=en

• Custom action scripts within a rule can be loaded in parallel, but are executed
sequentially.

• If you avoid Page Top and Page Bottom rules, the code is mostly asynchronous,
with a path to getting fully async.

4.2 Tag Management

Adobe Experience Platform Launch makes it easy to manage tags, and it provides innovative tools for

collecting and distributing data across digital marketing systems.

Tag, you’re it.
Tags are at the heart of any analytics practice. They make it possible for you to collect data, which become

the insights you need. The challenge is deploying and managing those tags efficiently.

Built by the same engineers that built Dynamic Tag Management (DTM) back in 2013, Launch is our next-

generation tag management system that unifies our entire marketing technology ecosystem. With Launch,

third-party developers can build, maintain, and continuously update their integrations with Adobe

Experience Cloud, meaning you can deploy both Adobe and third-party apps with ease — and capture and

use customer data as you please.

Extensive Extensions catalog
Browse, configure, and deploy marketing technology built and maintained directly by independent

software vendors.

Redesigned rule builder
Integrate the data and functionality of marketing and ad technologies to unify different products.

Open APIs
Automate baseline implementations for one tool or several.

Component-based publishing
Publish only what you intend by bundling the rules, data elements, and extensions that make up a library.

4.3 Packet analyzers

Packet analyzers let you view the data sent by your implementation to Adobe data collection

servers.

https://business.adobe.com/products/analytics/tag-management.html
https://experienceleague.adobe.com/docs/analytics/implementation/validate/packet-monitor.html?lang=en

Similar to the Adobe Experience Cloud debugger, a packet monitor shows what data parameters

are being passed in an image request; however, packet monitors provide added functionality:

• View custom link tracking image requests
• View image requests using implementation methods other than JavaScript, such

as hard-coded image requests or Appmeasurement

To view Analytics requests, filter outgoing requests using “b/ss”.

In very rare cases, the debugger will report an image request although no request makes it to

Adobe’s Analytics processing servers. Using a packet monitor is a great way to be 100% sure

that a specific image request is being fired successfully.

While Adobe does not provide an official packet monitor, there are a wide range of them on the

internet. The following are some packet monitors others have found useful.

TIP

These lists are not meant to be comprehensive, but rather information on frequently
used monitors.

Firefox Internet Explorer Chrome Standalone Programs

Observe Point (tag viewer) HttpWatch Observe Point (tag viewer) Charles

HttpFox

Chrome Developer Tools Fiddler

Tamper Data

Firebug Lite Wireshark

HttpWatch

Firebug

NOTE

Adobe does NOT support or troubleshoot any issues you experience with these packet
monitors. Consult the packet monitor’s originating site for assistance.

Typical HTTP response status codes

When AppMeasurement sends data to Adobe data collection servers, servers respond with a

response status code.

• 200 OK: The most common response from data collection servers. The image
request was successfully received and a transparent image was returned.

• 302 FOUND: There are a couple possible reasons to receive this response:

https://www.observepoint.com/product#plugin
https://www.httpwatch.com/
https://www.observepoint.com/product#plugin
https://www.charlesproxy.com/
https://addons.thunderbird.net/en-us/firefox/addon/httpfox/
https://code.google.com/chrome/devtools/docs/overview.html
https://www.fiddler2.com/fiddler2/
https://addons.mozilla.org/en-US/firefox/addon/tamper-data-for-ff-quantum/
https://chrome.google.com/webstore/detail/firebug-lite-for-google-c/ehemiojjcpldeipjhjkepfdaohajpbdo
https://www.wireshark.org/
https://www.httpwatch.com/
https://getfirebug.com/

• The first image request of a visitor: A redirect occurs if a user visits your
site for the first time. This redirect is to obtain a visitor cookie. It does not
affect data collection.

• Integration between Comscore and Adobe: If your organization uses a
Comscore/Analytics integration, each image request always results in a
302 response.

• 404 NOT FOUND: This response means that the image request was not found,
and data is not sent to Adobe data collection servers. This response is also
possible when hardcoded image requests are not formatted correctly. Work with
the individual or team who implemented Analytics to resolve this issue.

NS_BINDING_ABORTED in response codes

This message occurs because the link tracking image request is designed to let the browser

proceed to the next page before waiting for a response from the Adobe data collection servers.

Adobe’s response to the image request is simply a blank 1x1 transparent image, which is not

relevant to the content of the page. If you see a line item in your packet monitor from Adobe,

either with a 200 OK response or an NS_BINDING_ABORTED response, the data has reached

Adobe’s servers. There is no need to have the page wait any longer.

Packet monitors integrated as a plug-in rarely see the full response. They tend to see the request

as aborted because the full response was not received. These monitors also rarely make a

distinction between whether it was the request or response that was aborted. A stand alone packet

monitor typically has more detailed messages and reports the status more accurately. For

example, a user may get a message in Charles saying “Client closed connection before receiving

entire response.” This means the data did reach our servers, just the browser moved on to the

next page before the 1x1 pixel was received.

If an external packet monitor reports that the data collection request is aborted, rather than the

response, this is a cause for concern. Adobe Customer Care can provide help in troubleshooting.

More help on this feature

• Data collection query parameters
• Hash collisions
• Legacy Adobe Experience Cloud Debugger

4.4 Satellite object reference

https://experienceleague.adobe.com/docs/analytics/implementation/validate/query-parameters.html?lang=en
https://experienceleague.adobe.com/docs/analytics/implementation/validate/hash-collisions.html?lang=en
https://experienceleague.adobe.com/docs/analytics/implementation/validate/debugger.html?lang=en
https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/satellite-object.html?lang=en

This document serves as a reference for the client-side _satellite object and the various

functions you can perform with it.

track

Code

_satellite.track(identifier: string [, detail: *])
Copy
Toggle Text Wrapping

Example

_satellite.track('contact_submit', { name: 'John Doe' });
Copy
Toggle Text Wrapping

track fires all rules using the Direct Call event type that has been configured with the given

identifier from the Core tag extension. The above example triggers all rules using a Direct Call

event type where the configured identifier is contact_submit. An optional object containing

related information is also passed. The detail object can be accessed by

entering %event.detail% within a text field in a condition or action or event.detail inside

the code editor in a Custom Code condition or action.

getVar

Code

_satellite.getVar(name: string) => *
Copy
Toggle Text Wrapping

Example

var product = _satellite.getVar('product');
Copy
Toggle Text Wrapping

In the example provided, if a data element exists with a matching name, the data element’s value

will be returned. If no matching data element exists, it will then check to see if a custom variable

with a matching name has previously been set using _satellite.setVar(). If a matching

custom variable is found, its value will be returned.

NOTE

You can use percent (%) syntax to reference variables for many form fields in your tag

implementation, reducing the need to call _satellite.getVar(). For example,

using %product% will access the value of the product data element or custom variable.

When an event triggers a rule, you can pass the rule’s corresponding event object

into _satellite.getVar() like so:

// event refers to the calling rule's event

var rule = _satellite.getVar('return event rule', event);
Copy
Toggle Text Wrapping

setVar

Code

_satellite.setVar(name: string, value: *)
Copy
Toggle Text Wrapping

Example

_satellite.setVar('product', 'Circuit Pro');
Copy
Toggle Text Wrapping

setVar() sets a custom variable with a given name and value. The value of the variable can

later be accessed using _satellite.getVar().

You may optionally set multiple variables at once by passing an object where the keys are

variable names and the values are the respective variable values.

_satellite.setVar({ 'product': 'Circuit Pro', 'category': 'hobby' });
Copy
Toggle Text Wrapping

getVisitorId

Code

_satellite.getVisitorId() => Object
Copy
Toggle Text Wrapping

Example

var visitorIdInstance = _satellite.getVisitorId();
Copy
Toggle Text Wrapping

If the Adobe Experience Cloud ID extension is installed on the property, this method returns the

Visitor ID instance. See the Experience Cloud ID Service documentation for more information.

logger

Code

_satellite.logger.log(message: string)
Copy
Toggle Text Wrapping

_satellite.logger.info(message: string)
Copy
Toggle Text Wrapping

_satellite.logger.warn(message: string)
Copy
Toggle Text Wrapping

_satellite.logger.error(message: string)
Copy
Toggle Text Wrapping

Example

_satellite.logger.error('No product ID found.');
Copy
Toggle Text Wrapping

The logger object allows for a message to be logged to the browser console. The message will

only be displayed if tag debugging is enabled by the user (by

calling _satellite.setDebug(true) or using an appropriate browser extension).

Logging Deprecation Warnings

_satellite.logger.deprecation(message: string)
Copy
Toggle Text Wrapping

Example

_satellite.logger.deprecation('This method is no longer supported, please use
[new example] instead.');
Copy

https://experienceleague.adobe.com/docs/id-service/using/home.html?lang=en

Toggle Text Wrapping

This logs a warning to the browser console. The message is displayed whether or not tag

debugging is enabled by the user.

cookie

_satellite.cookie contains functions for reading and writing cookies. It is an exposed copy

of the third-party library js-cookie. For details on more advanced usage of this library, please

review the js-cookie documentation.

Set a cookie

To set a cookie, use _satellite.cookie.set().

Code

_satellite.cookie.set(name: string, value: string[, attributes: Object])
Copy
Toggle Text Wrapping
NOTE

In the old setCookie method of setting cookies, the third (optional) argument to this

function call was an integer that indicated the cookie’s expiration time in days. In this
new method, an “attributes” object is accepted as a third argument instead. In order to
set an expiration for a cookie using the new method, you must provide
an expires property in the attributes object and set it to the desired value. This is

demonstrated in the example below.

Example

The following function call writes a cookie that expires in one week.

_satellite.cookie.set('product', 'Circuit Pro', { expires: 7 });
Copy
Toggle Text Wrapping

Retrieve a cookie

To retrieve a cookie, use _satellite.cookie.get().

Code

_satellite.cookie.get(name: string) => string
Copy
Toggle Text Wrapping

https://www.npmjs.com/package/js-cookie#basic-usage
https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/satellite-object.html?lang=en#setCookie

Example

The following function call reads a previously set cookie.

var product = _satellite.cookie.get('product');
Copy
Toggle Text Wrapping

Remove a cookie

To remove a cookie, use _satellite.cookie.remove().

Code

_satellite.cookie.remove(name: string)
Copy
Toggle Text Wrapping

Example

The following function call removes a previously set cookie.

_satellite.cookie.remove('product');
Copy
Toggle Text Wrapping

buildInfo

Code

_satellite.buildInfo
Copy
Toggle Text Wrapping

This object contains information about the build of the current tag runtime library. The object

contains the following properties:

turbineVersion

This provides the Turbine version used inside the current library.

turbineBuildDate

The ISO 8601 date when the version of Turbine used inside the container was built.

buildDate

https://www.npmjs.com/package/@adobe/reactor-turbine
https://www.npmjs.com/package/@adobe/reactor-turbine

The ISO 8601 date when the current library was built.

This example demonstrates the object values:

{

 turbineVersion: "14.0.0",

 turbineBuildDate: "2016-07-01T18:10:34Z",

 buildDate: "2016-03-30T16:27:10Z"

}
Copy
Toggle Text Wrapping

environment

This object contains information about the environment that the current tag runtime library is

deployed on.

Code

_satellite.environment
Copy
Toggle Text Wrapping

The object contains the following properties:

{

 id: "ENbe322acb4fc64dfdb603254ffe98b5d3",

 stage: "development"

}
Copy
Toggle Text Wrapping

Property Description

id The id of the environment.

stage The environment for which this library was built. The possible values are development, staging, and production.

notify

NOTE

This method has been deprecated. Please use _satellite.logger.log() instead.

Code

_satellite.notify(message: string[, level: number])
Copy
Toggle Text Wrapping

Example

_satellite.notify('Hello world!');
Copy
Toggle Text Wrapping

notify logs a message to the browser console. The message will only be displayed if tag

debugging is enabled by the user (by calling _satellite.setDebug(true) or using an

appropriate browser extension).

An optional logging level can be passed which will affect the styling and filtering of the message

being logged. Supported levels are as follows:

3 - Informational messages.

4 - Warning messages.

5 - Error messages.

If you do not provide a logging level or pass any other level value, the message will be logged as

a regular message.

setCookie

IMPORTANT

This method has been deprecated. Please use _satellite.cookie.set() instead.

Code

_satellite.setCookie(name: string, value: string, days: number)
Copy
Toggle Text Wrapping

Example

_satellite.setCookie('product', 'Circuit Pro', 3);
Copy
Toggle Text Wrapping

https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/satellite-object.html?lang=en#cookie-set

This sets a cookie in the user’s browser. The cookie will persist for the number of days specified.

readCookie

IMPORTANT

This method has been deprecated. Please use _satellite.cookie.get() instead.

Code

_satellite.readCookie(name: string) => string
Copy
Toggle Text Wrapping

Example

var product = _satellite.readCookie('product');
Copy
Toggle Text Wrapping

This reads a cookie from the user’s browser.

removeCookie

NOTE

This method has been deprecated. Please use _satellite.cookie.remove() instead.

Code

_satellite.removeCookie(name: string)
Copy
Toggle Text Wrapping

Example

_satellite.removeCookie('product');
Copy
Toggle Text Wrapping

This removes a cookie from the user’s browser.

Debugging Functions

https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/satellite-object.html?lang=en#cookie-get
https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/satellite-object.html?lang=en#cookie-remove

The following functions should not be accessed from the production code. They are intended

only for debugging purposes and will change over time as needed.

container

Code

_satellite._container
Copy
Toggle Text Wrapping

Example

IMPORTANT

This function should not be accessed from the production code. It is intended only for
debugging purposes and will change over time as needed.

monitor

Code

_satellite._monitors
Copy
Toggle Text Wrapping

Example

IMPORTANT

This function should not be accessed from the production code. It is intended only for
debugging purposes and will change over time as needed.

Sample

On your web page running a tag library, add a snippet of code to your HTML. Typically, the

code is inserted into the <head> element before the <script> element that loads the tag library.

This allows the monitor to catch the earliest system events that occur in the tag library. For

example:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Title</title>

 <script>

 window._satellite = window._satellite || {};

 window._satellite._monitors = window._satellite._monitors || [];

 window._satellite._monitors.push({

 ruleTriggered: function (event) {

 console.log(

 'rule triggered',

 event.rule

);

 },

 ruleCompleted: function (event) {

 console.log(

 'rule completed',

 event.rule

);

 },

 ruleConditionFailed: function (event) {

 console.log(

 'rule condition failed',

 event.rule,

 event.condition

);

 }

 });

 </script>

 <script src="//assets.adobedtm.com/launch-
EN5bfa516febde4b22b3e7c6f96f6b439f.min.js"

 async></script>

</head>

<body>

 <h1>Click me!</h1>

</body>

</html>
Copy
Toggle Text Wrapping

In the first script element, because the tag library has not been loaded yet, the

initial _satellite object is created and an array on _satellite._monitors is initialized. The

script then adds a monitor object to that array. The monitor object can specify the following

methods which will later be called by the tag library:

ruleTriggered

This function is called after an event triggers a rule but before the rule’s conditions and actions

have been processed. The event object passed to ruleTriggered contains information about the

rule that was triggered.

ruleCompleted

This function is called after a rule has been fully processed. In other words, the event has

occurred, all conditions have passed, and all actions have been executed. The event object passed

to ruleCompleted contains information about the rule that was completed.

ruleConditionFailed

This function is called after a rule has been triggered and one of its conditions has failed. The

event object passed to ruleConditionFailed contains information about the rule that was

triggered and the condition that failed.

If ruleTriggered is called, either ruleCompleted or ruleConditionFailed will be called

shortly thereafter.

NOTE

A monitor doesn’t have to specify all three methods (ruleTriggered, ruleCompleted,

and ruleConditionFailed). Tags in Adobe Experience Platform work with whatever

supported methods have been provided by the monitor.

Testing the Monitor

The example above specifies all three methods in the monitor. When they’re called, the monitor

logs out relevant information. To test this, set up two rules in the tag library:

1. A rule that has a click event and a browser condition that passes only if the
browser is Chrome.

2. A rule that has a click event and a browser condition that passes only if the
browser is Firefox.

If you open the page in Chrome, open the browser console, and select the page, the following

appears in the console:

Additional hooks or additional information might be added to these handlers as needed.

More help on this feature

• Data elements
• Asynchronous deployment
• Tags overview

https://experienceleague.adobe.com/docs/experience-platform/tags/ui/data-elements.html?lang=en
https://experienceleague.adobe.com/docs/experience-platform/tags/client-side/asynchronous-deployment.html?lang=en
https://experienceleague.adobe.com/docs/experience-platform/tags/home.html?lang=en

	4.1 Tags Overview
	Key benefits
	Key features
	Extensions
	Extension catalog
	Rule builder
	Data elements
	Enterprise publishing
	Open APIs
	Light, modular container tag

	Other highlights

	4.2 Tag Management
	Tag, you’re it.
	Extensive Extensions catalog
	Redesigned rule builder
	Open APIs
	Component-based publishing

	4.3 Packet analyzers
	Typical HTTP response status codes
	NS_BINDING_ABORTED in response codes
	More help on this feature

	4.4 Satellite object reference
	track
	getVar
	setVar
	getVisitorId
	logger
	Logging Deprecation Warnings

	cookie
	Set a cookie
	Retrieve a cookie
	Remove a cookie

	buildInfo
	turbineVersion
	turbineBuildDate
	buildDate

	environment
	notify
	setCookie
	readCookie
	removeCookie
	Debugging Functions
	container
	monitor
	ruleTriggered
	ruleCompleted
	ruleConditionFailed
	Testing the Monitor

	More help on this feature

